
An Approach to Reviewing Software in Medical Devices

Raoul Jetley S. Purushothaman Iyer
Dept of Computer Science

North Carolina State University
Raleigh, NC 27695-8207

EMail: {rpjetley, purush}@csc.ncsu.edu

Paul L. Jones
Center for Devices

and Radiological Health
Food and Drug Administration

Rockville, MD 20857
EMail: pxj@cdrh.fda.gov

Abstract

Formal methods have been long proposed as a technique for
producing safety-critical software in spite of the upfront cost. In
contrast, however, market forces dictate early and quick delivery of
software in medical devices to field. Given these competing forces
the US Food and Drug Administration is required, by US Congress,
to review applications for introducing new devices within a certain
time limit. However, FDA is encouraged to carry out follow-up
reviews of approved devices and can recall a device if problems are
found.

In this paper we study howpre- andpost-deployment analysis of
designs and implementations can be carried out, based on formal-
methods based tools, to make the process of reviewing software
(in medical devices) easy. We discuss a methodology that is based
on using abstractions to relate designs and implementations. We
present a case study involving a generic infusion pump, where
we show how the various stages can be carried out. Finally, we
present a number of experimental results to show our proposed
methodology is effective.

1 Introduction

Safety is a primary concern for software used in medical device
systems. To ensure safe operation of medical device software, the
US Food and Drug Administration (FDA) is charged with enforcing
strict standards. In particular, the FDA is charged with carrying an
initial review of a product application within a prescribed time limit
so that a device manufacturer can bring his product to market in a
timely manner. Furthermore, the FDA is allowed to carrying on
post-deployment review of a product and monitor its performance.
If problems are detected during this stage then FDA could recall the
product off the market.

The FDA currently uses process-oriented guidelines and testing
methodologies to review and certify medical devices for general
use. This approach, though not entirely without merit, is far from
comprehensive, and lacks the rigor required for demonstrating that
the source code is correct with respect to product specifications. All
too often, safety related (software) errors are discovered only after a
device is already on the market. When such errors are discovered, it
becomes essential to ensure that modifications preserve the overall
safety and effectiveness of the device; A noteworthy statistic is that
of the 242 recalls conducted by the FDA between 1992 and 1998,
192 (or 79%) were due to software defects that were introduced
when changes were made to the software after its initial production
and distribution [1].

With the ever increasing growth in the use of personal technologies,
such as PDAs, wireless connectivity, and medical devices, a
convergence of all three of these technologies is likely to happen
in the near future. More importantly, there will a great number
of applications from medical device manufacturers, to the FDA,
for their products to be reviewed. Since safety of these medical
devices is FDA’s priority, researchers within FDA have been
looking for formal-methods based solutions to the problem of
swiftly reviewing applications for manufacturing medical devices,
and to carry out reviews once a device has been placed in the
field. In this paper, we propose one possible approach for carrying
out both pre-deployment (or initial) review and post-deployment
review of software in a medical device.

Our proposed approach can be characterized as a model-based
approach. In the pre-deployment stage a model can be easily
obtained from a design of the medical device. However, for
post-deployment review models have to be constructed from
implementations. We propose that the technique of abstract
interpretation [5] be used to this end. In particular, we propose
that abstraction techniques available in software model-checkers
such as BLAST [8], CWolf [6] and SLAM [3] be used in this
context. Our proposed approach has the advantage of being able to
relate designs and implementations from a device manufacturers
perspective, thus making it possible for them to relate their
implementation to device-specific safety standards published
by regulatory agencies. Furthermore, it would allow regulatory
agencies, such as FDA, to treat an implementation under review as
a white-box; this would be in strong contrast to current practice of
treating an implementation as a black-box.

Formal-methods based researchers have produced a number of tools
(including Concurrency Workbench, SLAM, SMV etc). But are
they usable in our proposed approach? And are they effective
enough? These are some of the questions that need to be answered
before our proposed approach can be adopted. In general, two sets
of issues need to be addressed:

• Is there a general scheme that can be used by FDA and
by medical device manufacturers to the mutual benefit of
everyone involved? We detail a potential path in Section 2.

• Technical issues relating to the effectiveness of abstraction in
establishing meaningful properties of systems using software
model-checkers. In Section 4 we present a case study on a
generic infusion pump. Our results, presented in Section 5,
show that abstractions provided by CWolf [6] are effective
enough to construct reasonable models of an implementation.

Road Map. In Section 2 we discuss our methodology, in Section 3



we survey notions and tools needed from work on formal methods,
in Section 4 we present the design of a generic infusion pump, as
available from FDA, in Section 5 we discuss the results of applying
several tools that are currently available to carry out both pre-
deployment and post-deployment

2 Methodology

In this section, we detail the proposed approaches to pre-
deployment and forensic analyses based on formal methods.

Pre-deployment Analysis

Pre-deployment analysis is based upon the concept of verifying user
requirements against the system/design specifications. Figure 1
depicts the general scheme used in our approach to pre-deployment
analysis. The specifications, once defined, are used to build a
formal state-based model (or automaton) for the system. Traditional
model checking techniques can then be used to verify this model,
encoding user requirements as temporal properties and verifying
them against the automaton.

Figure 1. The Pre-deployment analysis process

Another approach for verifying the model is to derive a suite of
exhaustive test cases from the model, ensuring that all states are
sufficiently covered. Thus, each test case in the suite corresponds
to a distinct execution path in the model while the suite itself
comprises of the set of all possible execution paths. Guided
simulation can then be used to ascertain that all test cases are
satisfied, i.e., all paths in the model are correctly executed.

Using pre-deployment analysis to enforce standards:

Pre-deployment analysis is well suited for the early stages of
the SDLC, and thus could be quite useful for medical device
manufacturers. However, most manufacturers do not perform
rigorous formal analysis, attributing it to the high degree of
complexity and effort involved in the use of formal methods.
Moreover, the success of the analysis depends on the accuracy of
the model in capturing the system specifications. Even a slight
error in the model could undermine weeks of effort.

As a solution to these problems, and to encourage the use of formal
methods, we propose to have pre-deployment analysis incorporated
as a part of the FDA safety standards and regulations. To achieve
this, a formal model incorporating a common set of properties
and safety requirements would be defined and analyzed rigorously

using formal methods based techniques. Once this model is
ascertained to be complete and correct, it would be included as part
of the safety standards and made available publicly to all device
manufacturers. The manufacturers could then use this standardized
model as their base design and extend it to incorporate additional,
more specific features.

The safety standards would also include a set of test cases
derived from the standardized model that could be used by the
manufacturers to validate their implementations. This suite would
include a comprehensive set of test cases that must always be
satisfied (corresponding to safety properties), optional test cases
that would correspond to features that are desirable but not
mandatory (best practices), and test cases that must never hold
true (error conditions). Using these test cases for validation would
ensure that (at least) the minimum safety guidelines would be
satisfactorily met.

The advantages that such a scheme of pre-deployment analysis
in conjugation with safety guidelines would provide the FDA are
manifold. They include the following:

1. It would ensure that the minimum safety standards are
satisfied.

2. It would save effort and minimize errors associated with the
model building process.

3. It would facilitate and aid the post-deployment/forensic
analysis process, as the results and safety properties
established during pre-deployment analysis could be used to
evaluate the models extracted from the implementation as
well.

Post-deployment Analysis

Post-deployment or forensic analysis is the process of verifying
the software implementation (i.e., the source code) against user
requirements. The verification is performed, as in pre-deployment
analysis, against a formal model of the software. The model used
in forensic analysis, however, is abstracted from the source code
rather than derived from system specifications. Figure 2 depicts the
general scheme for post-deployment analysis.

Figure 2. The post-deployment analysis approach

The critical part in this scheme is the extraction of an abstract



model from the source code. It is important to note however, that
the abstracted model is not the same as the specification-based
model used in pre-deployment analysis. The abstract model here is
obtained by mapping statements in the concrete program domain to
states in the abstract model domain. The semantics for this mapping
are defined using the abstraction criteria, as illustrated by Figure 2.

Two popular strategies for extracting abstract models from source
code are data abstraction and predicate abstraction. The basic idea
of data abstraction is to evaluate data variables in the program
over a smaller abstract domain, while still preserving the existential
behaviors of the program execution. Predicate abstraction [14] on
the other hand, encodes concrete states using the truth evaluation of
a set of predicates present therein. Thus, any concrete states sharing
the same assignment to all of the predicates are abstracted into the
same representation in the abstract state.

Potential Problem with Proposed Methodology

A major problem with abstraction is that the extracted model may
not accurately depict the behavior of the software. The abstraction
may be too coarse or too fine; resulting in a model that either
produces spurious errors, or is not detailed enough to detect all
the errors in the software. A precise abstraction should be able
to determine the slightest change in the source code and produce a
model that can be distinguished from the model generated before
modifying the code.

We assess the precision of the abstraction in our approach by
comparing models extracted from original code to those extracted
after an error is fixed. The Concurrency Workbench of the
New Century (CWB-NC) [13] is used to detect whether the two
models are semantically equivalent. If the CWB-NC is unable
to distinguish between the two models, it would mean that the
abstraction used is too coarse. This comparison between models
also helps assess the impact of the error correction and ensures that
the changes made during error correction do not have any negative
impact on the software.

3 Background

Formal methods are based on a mathematical representation of
software and are used to verify system specifications through an
exhaustive search across the system domain. We used concepts
from model checking and abstraction for the analysis of the generic
infusion pump in our case study. In this section we give a brief
introduction to these concepts and the tools used to implement these
functionalities.

Model Checking

Model checking [9] is based on the abstract-check-refine paradigm:
build an abstract model, then check the desired property, and if
the check fails, refine the model and start over. Central to this
process is the concept of a software model. The model can be either
functional, object-oriented or automata-based and can be derived
either from the system specifications or automatically abstracted
from the implementation (code). This model can then be used
to check system requirements (as temporal properties), generate
automated test cases to ensure coverage, or produce counter-
examples that can be used to prove undesired behavior.

Abstraction

Model abstraction is based on the idea of viewing the analysis of a
program as an abstraction of the program’s behavior. The concept
for abstraction derives from model checking and can be defined as
the process of formally extracting the semantics of a program from
the source code. Figure 3 shows the general scheme for model
abstraction. The abstraction process, as shown in the figure, uses
a set of predefined abstract interpretations (AIs) to convert a given
program to an abstract model, or a Kripke structure, based on the
(abstraction) criteria defined. Abstract interpretation is a framework
for executing a program, using values from an abstract domain in
place of the original concrete values [5]. The model generated by
the abstraction process, usually represented as a labeled transition
system (LTS), can be used to verify a temporal propertyφ and
ascertain the validity of the program, or generate an error trace as a
counter-example.

Figure 3. The model abstraction process

Formal Analysis Tools

A number of different software tools were used to assist in the
analysis process. A brief introduction to these tools is given here.

Matlab [11] is a commercial software package developed
by Mathworks for numeric computation, technical graphics
and visualization, and an intuitive programming language for
applications in engineering and science. Matlab provides a family
of add-on application-specific solutions called toolboxes that
extend the MATLAB environment to solve particular classes
of problems. Simulink is one such toolbox that provides an
interactive system for the nonlinear simulation of dynamic
systems. Simulink is a graphical program that allows systems
to be modeled as real-time or discrete systems. It is often used
in conjunction withStateflow, another toolbox used to visually
model and simulate complex reactive systems based on finite state
machine theory. Stateflow is an interactive design and simulation
tool for event-driven systems that provides language elements
to describe complex logic in state transition and flow diagram
notations.

Reactis [2] is an embedded-software design automation (ESDA)
tool suite developed by Reactive Systems. It is based on the
Simulink/Stateflow modeling paradigm, and can be used to test,
simulate and validate Matlab models.

Reactis consists of three main components: a Tester, a Simulator,
and a Validator. The Reactis Tester automatically generates test
suites from Simulink/Stateflow models. The test suites provide
comprehensive coverage of different test-quality criteria, and while
at the same time minimizing redundancy in tests. The Reactis
Simulator enables users to visualize model execution in a manner
similar to those of traditional debuggers. The Reactis Validator
performs automated searches of models for violations of user-
specified requirements, returning a test case as a counter-example
in case a violation is detected.

Uppaal [4] is a tool suite for modeling and verification of real-time



systems, based on constraint-solving, and on-the-fly techniques,
developed jointly by the Design and Analysis of Real-Time
Systems group at Uppsala University, Sweden and Basic Research
in Computer Science at Aalborg University, Denmark. UPPAAL
provides a graphical interface to define system descriptions as
networks of timed automata and uses Linear Temporal Logic (LTL)
formulae to verify the specified model.

Figure 4. Architecture of CWolf

CWolf [7] is a tool developed at NC State University for
automatically generating data-abstracted finite models of C
programs. The front end for CWolf consists of a compiler (cwcc),
which reduces a C program to an intermediate representation,
known as the CWolf Intermediate (CWI) format. The back-end is
a model generator component (cwmb), which is built around an
abstract virtual machine used to execute abstracted C programs.
The model generator operates on three input files. The first is
the CWI file containing a compiled C program. The second is an
abstraction map file, which describes abstractions for each variable
in the input program. The third is a label map file, a text file
describing the labels for the transitions of the generated model.
The output of the model generator is either a graph with labeled
states and edges for viewing by the user in a format readable by the
CWB-NC. A simplified system architecture reflecting this view of
CWolf is shown in Figure 4.

The Concurrency Workbench of the New Century (CWB-NC)
is a verification tool that provides the user with a facility to
verify automata-based models using model checking and semantic
equivalence techniques. The model can be defined in a number
of system-design notations, including CCS, CSP and LOTOS, and
verified againstµ-calculus or GCTL* properties [13]. Similarly,
different equivalences can be used to assess the behavior of the
model, including pre-order checking and bisimulation equivalences
[10].

4 Case Study: Infusion Pump.

Our case study was based on requirement specifications and an
implementation of a Generic Patient Controlled Analgesic (GPCA)
infusion pump. The GPCA infusion pump is a standardized
medical device system being developed at the Center for Devices
and Radiological Health (CDRH), FDA. The specifications for the
GPCA infusion pump software are defined with respect to a set of
possible situations that the pump could be in and a corresponding
set of input events.

A situation represents the configuration of the pump and its
peripherals at a given instant of time. For example, the situation
‘On/Cold/Alarming’ indicates that the pump is switched on, is
currently dormant (cold), and has the alarm set off due to some
malfunction. Events are used to model inputs provided by a human
user or the system environment. For example, a human input could
be pressing a button or administering a dose, while environment

events could include timeouts at intervals of 1 hour and 4 hours
respectively. Table 1 gives a list of all possible events for the
GPCA infusion pump.

Each event is associated with a probability value, indicating the
probability of occurrence for that event with regard to the current
situation. The probability of occurrence for each event can range
from a minimum value of 0 (indicating an impossible scenario) to
a maximum of 1 (indicating that the event is always possible). At
each situation, an event can be chosen non-deterministically (with
a higher probability event having a better chance of being selected).
Upon execution of the chosen event, the pump transitions to a new
situation, determined by a transition relationδ defined as

δ : Q× E× [0, 1]× Q

where,Q is the set of all situations that the GPCA pump could be
in, E is the set of events for the system (as given in Table 1), [0,
1] is the range of reals between 0 and 1 defining the probability of
occurrence for each event at a given situation.

The specifications for the GPCA pump were collected by
aggregating the behavior of various real-world PCA infusion
pumps and were consolidated using the Jumbl model builder
developed at the University of Tennessee [12]. The specifications
were provided to us in the form of tables and spreadsheets listing
the observations for each situation.

The code for the GPCA pump was in the C language, and
implemented the various situations and events defined.
Supplemental code relating to specific pump functionality
was added to facilitate source compilation and to ensure a more
complete implementation. In all, the code comprised of 23 files,
consisting of approximately 20,000 lines of code (20 KLOC).

To verify the correctness and completeness for the GPCA software,
it was not enough to merely detect errors and anomalies in the
generated models. Instead we had to ensure the correct operation
of the pump for all possible combinations of situations and events
defined by the specifications. To achieve this, a number of
global properties were defined that when completely satisfied
would ensure conformance for each and every situation and event
in the GPCA pump system. This set of global properties consisted
of the following:

1. All possible situations must be reachable.

2. All valid events must be executable (follows trivially from 1).

3. There must be no deadlocks in the system.

4. There must be no livelocks of length|Q | in the system, where
Q is the set of all situations.

5. The combined probability for all events for a given situation
must always be equal to 1.

6. If the probability for an event is zero for a given situation, then
that event must never be executed.

7. If the probability for an event is non-zero for a given situation,
then it must be possible to execute that event.

8. The event ‘malfunction’ must always trigger the alarm (i.e., it
must always result in a situation labeled ‘Alarming’).



Event # Event Source
1 Switch pump on User Input
2 Switch pump off User Input
3 Start delivery User Input
4 Stop delivery User Input
5 Set correct dose User Input
6 Set incorrect dose User Input
7 Set correct mode User Input
8 Set incorrect mode User Input
9 Insert correct vial medication / concentration User Input
10 Insert incorrect vial medication / concentration User Input
11 Correct connection of a correct administration set User Input
12 Incorrect connection of a correct administration set User Input
13 Timeout - one hour System Environment
14 Timeout - four hours System Environment
15 Malfunction System Environment
16 Correct review and error correction User Input
17 Incorrect dose review User Input
18 Incorrect mode review User Input
19 Incorrect vial review User Input
20 Incorrect administration set review User Input
21 End use (includes terminate power supply, disconnect patient, and remove pump)User Input

Table 1. Input Events for the GPCA Software

Modeling the GPCA Pump

The GPCA model was defined using the Stateflow toolbox of
Mathworks Simulink, which is a part of the Matlab tool suite.
Matlab was chosen as a modeling tool owing to its support for state
transition notation and numerical computations.

Figure 5 shows the front-end interface for the GPCA infusion pump
software designed in Simulink. The pump is modeled as a closed
loop system with the input events being sent to the model at fixed
step discrete time intervals of 0.5 seconds.

The model can be viewed as comprised of three subsystems, labeled
INPUT, STATECHART and FEEDBACK respectively. The INPUT
subsystem is used to model events to the GPCA state machine.
The input to this module is simply an integer value between 1 and
21, representing one of the events described in Figure 5. In all,
the Stateflow chart consists of 292 states and approximately 3500
transitions. A customized parsing tool was used to automatically
extract the model from the specifications provided in order to
improve the efficiency and minimize errors during the model
building process. The Stateflow API was used to code the states
and transition behavior.

The ‘GPCA state machine’ block has 21 inputs corresponding to
each of the input events possible, and three outputs - current state,
an integer indicating the current configuration the state machine is
in; alarm, a boolean flag set when the system is in an alarming state;
and prob, an array listing the probability for all possible transitions
for the current state. The function call generator f() is used to trigger
a new transition in the state machine every 0.5 seconds.

The FEEDBACK subsystem is used primarily to display the
status of GPCA state machine and to select a next valid transition
as input to complete the feedback loop in the model. The
block ProbabilisticChooser uses a Matlab function to non-
deterministically select a transition using the values in the array
prob (a higher probability value translates into an increased chance
of that transition being selected). The chosen transition index,

an integer between 1 and 21, is then re-entered to the INPUT
subsystem at the next 0.5 second discrete interval, and the loop
continues over the next cycle.

Pre-deployment Analysis

To verify the model described above, the Reactis and Uppaal tools
were used. The tools were used to ensure that the global properties
listed earlier in this section were covered satisfactorily.

Verification using Reactis.

The Reactis tool uses program flow analysis to automatically
generate exhaustive test case suites for a Matlab model. These
test cases can then be used to verify the behavior of the model.
This verification is usually performed against a set of assertions
and user-defined targets. Any undesirable property that is satisfied
during model execution results in an assertion violation. On the
other hand, a user-defined target must be reachable to ensure that a
desired property is satisfied.

In order to verify the GPCA infusion pump model using Reactis, a
couple of changes needed to be made to the model:

1. Reactis does not support a closed-loop model; thus the
feedback loop was replaced by an equivalent open-loop input
module. The inputs were chosen at random with an equal
probability distribution, and configured randomly to generate
an integer with a value between 1 and 21. The Matlab
block ‘ProbabilisticChooser’ was replaced by a state machine
emulating a human user.

2. Assertion blocks and user-defined targets were added to verify
properties for the model.

Figure 6 shows a snapshot during verification in Reactis. The (top)
left panel in the figure shows an assertion block with inputs defined
as the current state and probability values for each event. The
input probabilities are compared against the transitions active at



Figure 5. The GPCA model in Simulink

the current state. Any discrepancy between the two (e.g., a valid
transition with a null probability value) is detected by the Relational
Operator block and an assertion violation signaled.

The bottom panel in the figure shows the trace for a particular state
(state 61). The valid transitions active at the state are listed in row 2
(each valid transition is represented by a 1 in the 21 element array).
The corresponding probability values for the state are listed in row
3, and rounded off to the highest integer in row 4. The Relational
Operator block compares the values in row 2 and row 4. The output
of this block is listed in row 5. All ‘false’ entries in the list represent
an inconsistency between transitions and event probabilities, and
therefore correspond to an error in the system specifications.

Verification using Uppaal.

Reactis was very useful in detecting anomalies based on probability
values. However, the test suites generated did not cover all states in
the model. The best coverage achieved by a test suite generated by
Reactis was only about 82%. A number of test cases needed to be
input manually to ensure complete (100%) coverage. Moreover,
being an open-loop model, Reactis could not correctly ensure
reachability for all states in a closed loop mode. To compensate
for these limitations, Uppaal was used to verify reachability and
coverage properties for the GPCA infusion pump model.

The model defined in Uppaal was in essence similar to the ‘GPCA
state machine’ block in the Matlab model and captured the behavior
of the GPCA machine using states and transitions in a similar
manner. Uppaal does not support real numbers however, therefore
a simplification was made while assigning the probabilities for
transitions. Each valid transition (i.e., a transition with a probability
value greater than 0) was assumed equally likely. This assumption
did not affect the reachability of the states, since any transition with
a non-zero probability value must occur eventually.

The Uppaal model was ported directly from the Stateflow block
and consisted of the same number of states and transitions. The
coverage for the model was verified using Linear Temporal Logic
(LTL) formulae that were evaluated against the state machine
defined in the model. Figure 7 lists some typical LTL formulae
that were verified against the GPCA model.

Forensic Analysis

The post-deployment analysis of the GPCA pump software was
carried out as explained in Section 2. Errors in the implementation
were detected by extracting abstract models using CWolf and
verifying these models against temporal formulae in the CWB-
NC. Labeled Transition Systems (LTSs) were generated to visualize
these models in a human readable form, and to iteratively refine the
criteria for abstraction.



Figure 6. Verifying the GPCA model in Reactis

Figure 7. Sample LTL Formulae used in Uppaal

A major problem during this process was the large size of the LTSs
generated. Since the LTS represents the control flow for the entire
program, the number of states generated even for a moderately
sized program could be very large (often in the region of several
thousand states). Trying to comprehend and analyze such large
systems would have been quite cumbersome and time-consuming.
To overcome this problem, we made use of several optimizing
algorithms provided by CWolf to generate manageable, succinct
models. These algorithms included mainly variations of simulation
and peephole refinements [DuV02]. Further reductions in the size
of the LTS were achieved by using program slicing [15] on the
source code to eliminate statements that did not impact the specified
abstraction criteria.

Figure 8 shows an example LTS generated by CWolf optimized

using the aggressive peephole refinement strategy. The LTS shown
is abstracted with respect to the data variablecurrent state, as
shown by the abstraction criterion in the figure. The original (non-
optimized) LTS consisted of 47 states, which were refined to 8
states with 11 transitions.

5 Results and Observations

Errors Detected

A number of errors were uncovered through the pre-deployment
and forensic analyses of the GPCA pump system. Most of these
errors dealt with anomalies in the system specifications that were
propagated to the code as well. In all, 46 errors were detected in the
GPCA pump system. Five of these were found to be safety-critical
errors that could cause potential hazard situations. The other 41
were less severe, but could still adversely affect the performance
of the pump. Importantly, we were able to ensure that this list of
errors was comprehensive, and that the model was correct for all
other cases. The errors detected were classified in the following
four categories, with category 1 errors being the most severe and
category 4 errors the least severe:

1. Null probabilities. Four errors were detected due to null
probabilities assigned to valid transitions. This meant that
these events would never be executed, despite there being
an active transition between the respective source and
destination states.



Figure 8. An LTS generated by CWolf

2. Missing transitions. There was one error due to a missing
transition for a defined probability value. This could lead to
a potential deadlock whenever the event with the associated
probability would be executed.

3. Missing self-transition probabilities. There were 40 errors
due to missing self-transition probabilities. These errors were
more subtle, since they did not result in invalid transitions
or unreachable states. They did, however, translate to
exaggerated probabilities for other transitions originating at
the given state and could lead to incorrect system behavior in
the case of internally generated events such as timeouts at 1
hour and 4 hour intervals.

4. Unreachable states.One state was identified as unreachable.
This was essentially a superfluous state, with no transitions
leading to or from it to any other states.

All the errors uncovered in the system specifications during pre-
deployment analysis could also be traced to the source code with
the help of forensic analysis. This demonstrated that the two
analyses techniques were commensurate and that formal methods
based analyses could be used as an effective means for conformance
checking of medical device software.

Evaluating the abstraction

The usefulness of an abstraction can be measured by its ability to
produce distinguishable abstract models for subtle variations in the
source (i.e., in the concrete domain). We evaluated the abstraction
mappings used during forensic analysis of the GPCA software by
comparing the models used to detect bugs in the source code with
similar models generated from rectified code. The same abstraction
mappings were used to generate both sets of models.

The corrections made to the software to mitigate the errors either
introduced new events for existing structures, or modified existing
properties for these structure. Using the notion of bisimulation
equivalence available in the CWB-NC, we were able to distinguish
the corrected models from the original models in 39 of the 45, or
86%, of the corrections made. The changes that could not be traced
to the new models involved redundant transitions and states that
were never executed or which lay outside the scope of the abstract
interpretation defined (e.g., modification of existing floating point
values).

Effort Comparison

The major bottleneck in conventional model checking (and
correspondingly pre-deployment analysis) is the model building
process. Most of the effort spent during pre-deployment analysis
can be attributed to understanding the system specifications and
building a formal model based on them.

Forensic analysis, by virtue of automatically extracting abstract
models from the implementation does not suffer this bottleneck.
Deriving abstract models from software is much more efficient in
terms of effort spent per model. However, analyzing these abstract
models using formal methods is a far more intricate process and
requires considerable effort as opposed to model checking of pre-
deployment specification models.

It should be noted that the forensic analysis approach is an iterative
process, with abstract models being refined continuously with the
help of LTSs and abstraction maps. The larger the program being
analyzed, the higher the number of iterations would be. Using
slicing and optimization helps reduce the cost of analysis, but the
effort involved is still much greater than that for pre-deployment
analysis. For the GPCA pump system, an average of 6.2 iterations



were required to trace each bug to the software.

As a result of this elaborate analysis process, the effort expended
during forensic analysis is invariably much greater than that for pre-
deployment analysis. Figure 9 shows the effort distribution for the
GPCA case study spread over the entire analysis process. As can
be seen from the figure, more than 60% of the effort was spent
on modeling the GPCA system and refining of the abstract models.
The total effort spent on forensic analysis was 209.4 person months,
47% more than that for pre-deployment analysis.

Figure 9. Effort distribution for the analysis of the GPCA
system

It should be noted that the code used during forensic analysis for
the GPCA pump was only a prototype. The effort required for real-
world commercial software is expected to be even higher. However,
this would still be a significant improvement over ad hoc reverse
engineering and test-case analysis methods currently in use.

6 Conclusion and Future Work

We have proposed a methodology for carrying pre- and post-
deployment analysis on medical device applications. We believe
that a principled approach, based on construction of models from
designs and implementations, could lead to a faster review of
medical device applications. We have also provided experimental
evidence to show the viability of our approach. Most importantly,
our experimental evidence shows the technical approach of using
abstractions is effective for the task on hand. However, a general
acceptance of the proposed methodology by both FDA and by
device manufactures would depend upon a number of political
considerations, and great many studies that show the advantage of
using formal-methods based tools. Thus, we, the co-authors of this
paper, look upon this study as the first step in a long process of
convincing everyone in the Software Engineering community, the
FDA and device manufacturers of the potential of using formal-
methods based techniques. Some of the problems, in our view, that
need to be studied include the following (which is clearly not an
all-inclusive list):

Extending the GPCA model. One of the aims of developing
the GPCA pump model was to include it as part of a safety
standard, to be used as a reference for conformance checking
by all infusion pump manufacturers. Keeping this in mind, the
GPCA infusion pump specifications were derived from various
commercial infusion pump software. However, in order to make the
specifications as generic as possible, several events and situations
were abstracted and fit into the framework of 292 situations and 21
input events. The resulting model thus was too abstract to be of
much use to the manufacturers as anything apart from a high-level
design prototype.

To have a formal model as part of a more stringent standard,
we need to elaborate the system specifications and build a more
comprehensive model using these specifications as a basis. For
example, the current model abstracts all dose inputs as ‘correct
dose’ and ‘incorrect dose’. In a real-world situation however,
the dose would be a floating-point value set by the medic. The
GPCA pump model would need to be modified to reflect this and
would define different ranges for possible dose inputs. One way to
incorporate this with the current model would be to add an external
module representing the medic to non-deterministically generate
these dose ranges and interface this module with the existing model.
Similar modules could be added to reflect vial concentrations, bolus
settings, etc. Another example would be to decompose all ‘Alarm’
states into ‘Level 1’ and ‘Level 2’ alarm states with different silence
times associated with each.

Forensic analysis for commercial infusion pumps. The code
derived from the GPCA infusion pump model served to provide a
proof of concept for post-deployment analysis using abstraction.
Though the analysis was reasonably successful, to truly assess
the usefulness of the process, we need to perform similar
(forensic) analyses using production software for real-world
commercial infusion pumps. Error traces collected by end-users
and logs recorded during in-house testing could be used to
trace malfunctions to their source in the software. Moreover,
these analyses would need to be performed on various software
implemented in several different programming languages.

Automating the forensic analysis process.A major bottleneck
in the post-deployment analysis process is the iterative process of
manually inspecting the LTS and the refining the abstraction map.
Though the manual intervention cannot be completely eliminated,
the efficiency of the process could be greatly enhanced if this
refinement iteration were to be automated. One way to achieve this
automation would be to use automated program slicing techniques
to refine the LTS. A mapping could be provided to derive criteria
used for slicing from the abstraction criteria, while the slice itself
could be constructed from abstract models. An interactive GUI
could be provided to aid visualization and navigation through the
abstracted models, further expediting the analysis process.

7 References

[1] General principles of software validation; final guidance for
industry and fda staff, Jan 2002.

[2] Model-based testing and validation of control software with
reactis. Technical report, Nov 2003.

[3] Thomas Ball and Sriram K. Rajamani. The slam project:
debugging system software via static analysis. InPOPL,
pages 1–3, 2002.

[4] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul
Pettersson, and Wang Yi. UPPAAL — a Tool Suite for
Automatic Verification of Real–Time Systems. InProc. of
Workshop on Verification and Control of Hybrid Systems III,
number 1066 in Lecture Notes in Computer Science, pages
232–243. Springer–Verlag, October 1995.

[5] Patrick Cousot and Radhia Cousot. Abstract interpretation:
A unified lattice model for static analysis of programs by
construction or approximation of fixpoints. InPOPL, pages
238–252, 1977.

[6] Daniel C. DuVarney.Abstraction-Based Generation of Finite
State Models from C Programs. PhD thesis, 2002.



[7] Daniel C. DuVarney and S. Purushothaman Iyer. C wolf - a
toolset for extracting models from c programs. InFORTE
’02: Proceedings of the 22nd IFIP WG 6.1 International
Conference Houston on Formal Techniques for Networked
and Distributed Systems, pages 260–275. Springer-Verlag,
2002.

[8] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and
Gregoire Sutre. Software verification with blast. In
Proceedings of the Tenth International Workshop on Model
Checking of Software (SPIN), pages 235–239. Lecture Notes
in Computer Science 2648, Springer-Verlag, 2003.

[9] Stephan Merz. Model checking: A tutorial overview. In
F. Cassez et al., editor,Modeling and Verification of Parallel
Processes, volume 2067 of Lecture Notes in Computer
Science, pages 3–38. Springer-Verlag, Heidelberg, 2001.

[10] R. Milner. Communication and Concurrency. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1989.

[11] Cleve B. Moler. MATLAB user’s guide. Technical report,
University of New Mexico. Dept. of Computer Science,
November 1980. This describes use of Classic Matlab, the
prototype for the very-much expanded professional Matlab
from The MathWorks. Classic Matlab is no longer available.

[12] S. J. Prowell. Jumbl: A tool for model-based statistical
testing. InHICSS ’03: Proceedings of the 36th Annual Hawaii
International Conference on System Sciences (HICSS’03) -
Track 9, page 337.3, Washington, DC, USA, 2003. IEEE
Computer Society.

[13] R. Cleaveland and S. Sims. The NCSU concurrency
workbench. In Rajeev Alur and Thomas A. Henzinger,
editors,Proceedings of the Eighth International Conference
on Computer Aided Verification CAV, volume 1102, pages
394–397, New Brunswick, NJ, USA, / 1996. Springer Verlag.

[14] S. Graf and H. Saidi. Construction of abstract state
graphs with PVS. In O. Grumberg, editor,Proc. 9th
INternational Conference on Computer Aided Verification
(CAV’97), volume 1254, pages 72–83. Springer Verlag, 1997.

[15] M. Weiser. Program slicing. InProceedings of
the 5th International Conference on Software Engineering,
pages 439–449. IEEE Computer Society Press, 1981.


