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ABSTRACT to derive an upper bound for the response time of a task.
The issues addressed in that work are similar to those sttioiie

Caches have become invaluable for higher-end architectatgde, . ;
instruction caches [20, 21], namely:

in part, the increasing gap between processor speed and nmemo

access times. While the effect of caches on timing predidtabf 1. Preemption delay: Given the preempted task, the set ef pos
single real-time tasks has been the focus of much reseasangb sible preempting tasks, and the preemption point, caleulat
ing the overhead of cache warm-ups after preemptions revain the preemption delay that is incurred.
challenging problem, particularly for data caches.

This paper makes multiple contributions. First, we boung th 2. Number of preemptions: Calculatethe maximum number
penalty of cache interference for real-time tasks by priogjdac- of times a task can be preempted when it is executed as part
curate predictions of thdata cache behavior across preemptions, of a given task set.

including instruction cache and pipeline effects. For giask, we
derive data cache reference patterns for all scalar andsoalar
references. We show that, when considering cache preemttie
critical instance doegsot occur upon simultaneous release of all

3. Worst-case scenario: ldentify the placement ofitheecemp-
tion points in the iteration space such that the worst-catse t
delay / preemption cost is obtained.

tasks. In this paper, we first show that the critical instance dnes
Second, we develop analysis methods to calculate tightruppe occur when all tasks are released simultaneously if we densi
bounds on the number of possible preemption pdintseach job preemption delays. Second, we propose a new method toytightl
of a task and consider the worst-case placement of thesenpree  pound the maximum number of preemptions possible for a given
tion points. Partial timing of a job is performed up to a prexion task. Finally, we propose a method to derive a realistic woase
point using the cache reference patterns. The effects dfecae preemption scenario. The second and third contributiofs tie
terference are then analyzed using a set-theoretic afdprodsgch significantly tighten the WCET estimate for a task by tiglien
identifies the number and location of additional misses dyme- the preemption delay incurred by it.
emption. A feedback mechanism provides the means to interac  The remainder of this paper is organized as follows. Seion
with the timing analyzer, which subsequently times anothter- discusses related work. Section 4 discusses the effectrsicso
val of a job bounded by the next preemption. ering data cache related preemption delay on the criticaairce.

Significant improvements in tightening bounds of up to areord  Section 5 gives a more detailed overview of our recent wosc-S
of magnitude over two prior methods and up to half a magnitude tion 6 explains in detail the techniques used in this papertiven

over a third prior method are obtained by experiments forttfa) present experimental results in Section 7. Section 8 suizesar
number of preemptions, (b) the WCET and (c) the responsedime  the contributions of this work.

atask. Overall, this work contributes (1) by formulatingeawcrit-
ical instance under cache preemption, (2) by proving a nealran 2. TASK MODEL
ysis method to derive bounds on the number of preemptions and ™~

(3) by determining actual preemption points when calcotpthe Ir_1 our work, we consid(_er a periodic real-time ta_sk model _vvith
preemption delay under considerationdata caches. period equal to the deadline of a task. The notation useden th

remainder of this paper is described here. A tédskas character-
istics represented by the 7 tupl.( P;, C;, ¢;, Bi, Ri, Aj;). ®;
1. INTRODUCTION represents the phase of the taBkrepresents the period of the task
In most modern systems, data caches have become an integra{equal to deadline);; represents the worst-case execution time of
part of the architecture. They provide immense savings limge the taskc; represents the best-case execution time of the fask,
of latency. However, they have one inherent complexity, elsggm represents the blocking time of the tagk, represents the response
the latency of memory references become unpredictableedh r  time of the task and\; ; represents the preemption delay caused
time systems, timing predictability is a central need amtleethis on the task due to a higher priority taSk. J;; represents thgth
unpredictability due to data caches causes additional ety of instance (job) of tasi;.
analysis.
Characterization of data cache behavior for a task is cample 3. RELATED WORK
and has been the focus of much research. In a preemptiversyste
this complexity increases further. In such a system, a tagk w
higher priority may preempt a task with lower priority at atnye.
This implies that some cache blocks that the lower prioggktwas
using may now be evicted and would need to be reloaded when the
task resumes execution. In recent work [19], we propose aadet
to bound the delay caused due to preemptions for data caoldes a

Several methods have been proposed in the past to bound data
cache behavior for a single task without taking into accotim
effects that other tasks may have on the behavior ([13],[1&],

[25], [15]). They use methods like data flow analysis, ste¢iche
simulation, etc. for this purpose.

Analytical methods for predicting data cache behavior Hzaen
proposed. They include the Cache Miss Equations by Ghbah

*This work was supported in part by NSF grants CCR-0208581, [7], a probabilistic analysis method proposed by Fraguetlal.
CCR-0310860 and CCR-0312695. [6] and another analytical method by Chatterggeal. [4]. The




common idea behind these methods is to characterize dat& cac
behavior by means of a set of mathematical equations. I prio
work [18], we have extended the cache miss equations frankewo
to produce exact data cache patterns for references.

Techniques that make data caches more predictable and can be

applied in preemptive systems are cache partitioning [@@]@ache
locking [14, 5]. Both methods lead to a significant loss infger
mance in order to gain predictability.

There are also several techniques that have been propasett sp
ically to calculate preemption delay and analyze scheditiaim a
multi-task preemptive system. These techniques do notfaely
analyze data cache behavior, but provide a more generiti@olu
applicable to a cache, including specific solutions forrimdion
caches.

Early on, Basumalliclet al. conducted a survey of cache related
issues in real-time systems [2]. This survey discussed doime
tial work related to the calculation of preemption delay.sBuets-
Mataix et al. proposed a method to incorporate the effect of in-
struction caches on response time analysis (RTA) [3]. They-c
pared cached RTA with cached Rate Monotonic Analysis (RMA)
and concluded that cached RTA outperforms cached RMA .dtee

al. proposed and enhanced a method to calculate an upper bound T3

for cache related preemption delay in a real-time systeni(9,

They used cache states at basic block boundaries and data flow

analysis on the control flow graph of a task to analyze cache be
havior and calculate preemption delay.

Another approach by Tomiyamet al. calculates cache related
preemption delay for the program path that requires the mawi
number of cache blocks [22]. This path is determined by agint
ger linear programming technique. In this paper, an empthea
is assumed at the beginning of every job and hence, each preem
tion is analyzed individually. Effects of multiple preergts are
not considered. Negit al. combined the techniques proposed by
Tomiyamaet al. [22] and by Leeet al. [9, 10] to develop an en-
hanced framework [16]. Once again, however, multiple pfgem
tions are not considered in their work since an empty caclas-s
sumed at the beginning of a task.

The work by Leeet al. was enhanced by Staschuétal. [20,
21]. The authors propose a complete framework for the cailcul
tion of response time for tasks in a given task set. They addre
the three issues enumerated in the Section 1, namely cédout
the maximum number of preemption points, identificationteit
placement and calculation of the delay at each point. Howeve
their focus is not on data caches, but on instruction caches.

In their work, Staschulagt al. discuss the concept of indirect
preemptions [21]. Figure 1 illustrates the concept for & tet
closely resembling their example with phaBeperiod P, WCET
C and preemption delay\ for tasksT; to Ty. For simplicity, A
is assumed to be fixed per tasle,, incurred when inflicted by any
higher priority task. Response times are determined as

b))

j=1..i—1 ([%W *Cj) + Ay (Ri)

where the blocking timepB;, is not considered in the example
andA; ;(R;) is the overhead incurred by higher priority tasks pre-
empting the current one. In Figure 1, execution is depicted b
shaded boxes, the preemption delay is shown black boxesy The
argue that several indirect preemptions affect lower fisidasks
only once. For example, in the figure, althou@h could be af-
fected by every invocation df1, T3 is actually only affected by the
first invocation shown since, after being preempted onas, ribt
scheduled at all until; completes execution. Thus, the response
time of R3 is 10.5 units. However, we will show in this work that
the method employed by Staschuttital. produces pessimistic re-

Ri=Ci+ Bi +

P | C A
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Figure 3: Preemption with WCET, ®; =0

sults.

4. PREEMPTION DELAY AFFECTS THE
RESPONSE TIME

Prior work often assumes that the worst-case response time o
curs at the theoretical critical instance for fixed-prigstheduling,
i.e, upon simultaneous release of all tasks. However, this is no
necessarily the critical instance when preemption delagscan-
sidered. Consider Figure 3. The response timésof11.375 units)
exceeds that of prior examples while the response timg,dfL2
units) is shorter that that of Figure 2 with 12.25 units.

In general, the critical instance under preemption delaysished-
ule with releases in reverse priority order such thatdheof task
T; is one unit of time (one cycle) short of the preemption delay
A, of the same task. This theoretic result is, however, very re-
strictive. In practice, the hyperperiod of tasks is ofterelatively
small number. Hence, releases of tasks can occasionaligidei
and are otherwise separated by some minimum time interyail (t
cally 1 ms). For this reason, we consider in our watkjobs of a
task within a hyperperiod. We calculate the number of pre@np
per job and then determine the cache-related preemptiay det



the respective job and, subsequently, the response tinfésgbb.
This also enables us to considanges of executiowhere preemp-
tion points can occur within the code. Such job-level arialgan
yield more accurate results than calculation of preemptielays
per task. This helps us provide a significantly tighter eatamof
the number of preemptions and, hence, the response timelsof j

5. PRIOR WORK

In previous work [18], we enhanced a method by \etral. [23,
24] that statically analyzes data cache behavior of a stagle us-
ing Cache Miss Equations [7]. This data cache analyzer was in
grated into the static timing analysis framework descrilvegrior
work. [19]

The data cache analyzer produces data cache access patterns
terms of hits and misses, for every scalar and non-scalaranem
reference in a given task. It is applicable in loop nest dadrtode
that adheres to certain constraints as specified elsewh@}e [

These patterns give us an accurate estimate of the numbateof d
cache misses that the task incurs and their positions irefeeance
stream. In this work, since we only dealt with a single task, i
was sufficient to provide the number of misses instead of thesh
pattern of misses and hits to the static timing analyzerritsest in
the earlier work [18].

While the above work analyzes single tasks with respectta da
caches, it does not take multi-task preemptive systemsgtgount.

In such a system, a task may be interrupted by higher priority
tasks at arbitrary points during its execution. We consiolen-
partitioned data caches in our work. Hence, cache lines neay b
shared across tasks resulting in the eviction of a subsetist-e
ing memory lines from cache by preempting tasks. Assumiag th
all cache blocks brought in by the preempted task are evicoed
cache due to preemptiond,, the cache is effectively empty after
every preemption point) leads to a significant overestiomatif the
data cache delay. Hence, schedulability of task sets maydbe a
versely affected so that deadlines may be missed.

In more recent work [19], we present a method to incorporate
data cache delay during WCET calculation itself. Furtheemae
make the calculation of the delay as accurate as possiblety c
sidering only the intersection of the cache blocks that aeful
to the preempted task once it is restarted and those thabtea-p
tially used by preempting tasks. In this work, we use respdinse
analysis [11, 1] to determine the schedulability of a task-d\Ve
assume a fixed-priority periodic task set where the deadiina
task is equal to its period.

and to calculate the preemption delay at a point, we use aatieth
that involves the construction of data cache access chains.

All the data cache reference patterns of the task are merged,
maintaining the order of accesses. All memory referencahim
consolidated pattern that access the same cache set aectamhn
together to form a chain. Since the pattern maintains thesscc
order, this chain accurately indicates reuse.

We identify points in the iteration space where a preemption
would result in the largest coste., by cutting the maximum num-
ber of distinct cache line chains. Theuts with the largest cost are
identified wheren is the maximum number of preemption points in-
curred by the current task, as calculated in phase 1. Thg<sala
these points are added to the WCET of the task and used in the
response time analysis equations for the task set.

6. METHODOLOGY

We have described the method for calculating the WCET of a
task with preemption delay in a multi-task preemptive syste
Section 5. In that work, for the second and third steps, we use
simplified methods that lead to overestimation of the praamp
delay and, hence, the WCET of tasks.

The formula used to calculate the maximum possible number of
preemptions for a task is based on the number of jobs of higher
priority tasks that are released in the period of the lowéorjiy
task and the amounts of time they each take to execute. Tdds le
to the consideration of several infeasible preemption tsagither
because the lower priority job has not been scheduled andll a
hence, cannot be preempted, or because it has already @rezhe
ecuting. Further, we use the largespreemption delays (where
is the maximum number of preemption points for the task) avhil
calculating the WCET.

In this paper, we propose methods to calculate tight estisnait
the maximum number of preemptions for a task and a safe method
to identify the worst-case placement of the preemption fgdimat
is realistic.

6.1 A Tight Bound on Preemption Points

The WCET of a task is calculated with preemption delay incor-
porated during its calculation. Since we showed in Sectidinad
the critical instance does not occur when all tasks are setbat
the same time, we calculate the WCET for each job of a taskinvith
a hyperperiod. Our approach handles tasks with differeases.
However, in the examples in this paper, the first job of evasktis
assumed to be released at the same time due to current impleme

The method we employ in this work has two basic phases. In the tation constraints, which will be lifted in the future.

first phase, every task in a given task set is individuallylyaresd

to produce data cache miss/hit patterns for its referentes.tim-
ing analyzer is used to calculate a base WCET for every task (n
including delay due to data caches).

For the above calculation, we require the WCET and the BCET
of all higher priority tasks. Further, for every task, we ficalcu-
late a base WCET that does not consider preemption delage Sin
the highest priority task cannot be preempted, WCET and BCET

In the second phase, the data cache analyzer and the timing anvalues are calculated by simply using the static timing yareal

alyzer interact to calculate the worst-case execution {(MIEET)
of the task in a multi-task preemptive system. This involtrese
fundamental calculations.

1. Calculation of the delay incurred by the task due to preemp
tion at a particular point;

2. Calculation of the maximum number of possible preemgtion
for a given task ; and

3. Identification of the positions of these preemption point

For the second item, we calculate a pessimistic upper-btamd
the number of possible preemptions. To identify preemppioimts

framework. For the other tasks, preemptions have to be deresil
as well.

In this section, we explain the method to eliminate infelasib
preemption points without explicitly adding the preemptidelay
at every stage for the sake of simplicity. We discuss theutation
of preemption delay and the placement of preemption pointise
iteration space of the task under consideration in the remtian.

Let us discuss the methodology to eliminate infeasibleppee
tion points through an example. Consider a three-task shtoliar-
acteristics as shown in Table 1. For our calculations, wesiciem
all jobs within ahyperperiod which in this case i200.

The timeline for taskgy and7:; are shown in Figures 4 and 5,
respectively. The arrows represent release points of higierity



lTl iTl lTl lTl lTl
(I I U TS T B S R S
0 1 2 3 4 5 6 7 8 9 10 11 12
BEST CASE |
ool T T T h k k k K K
0 20 40 60 80 100 120 140 160 180 200
Figure4: Timelinefor Task T
sz sz
lTl iTl lTl lTl lTl
lTo TO lTO ‘R‘ To lTo iTO lTo ‘Fo‘ l TO l T
0 1 2 3 4 5 6 7 8 9 10 11 12

BEST CASE
WORST CASE

100 120 140 180 200

Figure5: Timelinefor Task 15

0 20 40 60 80
Task Period WCET | BCET
=deadline
To 20 7 5
T 50 12 10
T 200 30 25

Table 1: Task Set Characteristics

jobs and, hence, potential preemption points for the joliask un-
der consideration. Preemption points are numbered cotigelgu
The preemption points that get eliminated by the analydisiare
circled. BCETSs of higher priority task®(g.,jobs of tasklj in the
timeline for task) are laid out on top, and the WCETSs of higher
priority tasks are below the time axis. The dark and grayaegies
show jobs of task§, andT} respectively.

Consider the timeline for task;. To check whethey;o can ex-
ecute before preemption point 1, we use the BCET®@f Since
there is idle time after placing the BCET &, (5 units),.J1o could
be scheduled before point 1. Next, we determine whetherxbe e
cution of J1o may exceed point 1. For this purpose, we consider the
sum of the WCETSs ofloo and.J10, namely, 7 and 12, respectively.
Since this does not exceed point/ly is guaranteed to finish in this
interval. SinceJio has completed execution, we determine that the
maximum number of preemptions for the first job&fis 0.

For the next release df1, i.e. job Ji1, consider the interval
between preemption points 3 and 4. During this intervalheliest
case, we have to consider the entire execution of the newfjd@h,o
namelyJi1, that is released at point 3. Hence, for this interval,we
see that joh/;1 could indeed be scheduled. Further, we see that
job Ji; is not guaranteed to finish before point 4 in the worst case.
Hence, point 4 is a potential preemption point fai . Proceeding
in this way, we calculate the number of preemption pointsJiar
to be 1. This example also shows that the response time fdirshe
job (which is released at the critical instance) is not neagly the
worst possible one.

In a similar fashion, we calculate the number of preemptfons
jobs of taskT%, the timeline for which is shown in Figure 5. In
the case of task , there are two higher priority tasks to consider,

namelyTy andT;.

For J2o, preemption point 1 is counted as a potential preemption
point since there is a possibility oko being scheduled before this
point, yet it does not finish before this point. For the intérve-
tween points 1 and 2, we have to consider a new jdbyohamely
Jo1, and, in the best case, no execution/of. Hence, once again,
J2o could be scheduled between points 1 and 2. In the worst case,
we require 7 units fot/o; during this interval. Hence, a maximum
of 13 units may be used by,y. Point 2 is therefore a potential
preemption point fotjoo. Proceeding this way, we consider every
preemption point and test it for feasibility. We eliminateiqts 4
and 10 since they are not feasible preemption points forJjgb
Since we have reached the end of the hyperperiod of the &sk-s
we stop here. The upper bound f6s, hence, is 7 preemptions.
Using our original method for calculation, we obtain a boah@.

In summary, the method is as follows. Consider a set of tésks
woor I Lt Js0, ..., Jik, represent the jobs of tagk. Let us assume
that tasklp has the highest priority and that tagk has the lowest
priority using a static priority scheme.

For every taskl’;, we construct a timeline starting from O up to
the hyperperiod of the task-set. On this timeline, all jdleases of
higher priority (instances of taski to T;_,) are marked. Each of
these points represents a potential preemption point bs 57’

In order to test the feasibility of a certain preemption pdgay
point x) for a job J;;, we use the BCETs of all higher priority
tasks. If the sum of these times exceeds the interval of teheden
points x-1 and x, the job;; has no chance of being scheduled dur-
ing this interval and, hence, point x is not a feasible pre@mp
point for J;;.

If a point x is determined to be a feasible preemption point fo
task J;;, we need to calculate the maximum time thiat can be
scheduled for in the interval between x-1 and x in order tedet
mine the remaining execution time fof;. For this purpose, to
maintain safety of the analysis, we consider the sum of thé&sWC
of all higher priority jobs. The time remaining in the curténter-
val after subtracting this sum, if any, is the maximum timaikable
for Jij .

Similar calculations are performed for every interval beén
potential preemption points until a job completes and, bent-



n: number of tasks
releasepoints: array of release points
timeline: array containing tasks released at every relpas#
interval: time interval between two preemption points
bcetrem: array 1..n of remaining BCET (init val = 0)
wcetrem: array 1..n of remaining WCET (init val = 0)
bcetsum: variable to accumulate BCET within an interval
wcetsum: variable to accumulate WCET within an interval
done, nawork_done, nacount, restart: boolean (init val = false)
currenttask: task for which # preemptions is calculated
num.p: maximum number of preemptions calculated
tasknum.p: array w/ maximum number of preemptions

for every job of current task
job: task instance number (init val = 0)
t_rem: WCET of the current task

for every release point rp ifreleasepoints}
up to the hyper-period of the task-set
tasks— timeline[releasepoints[rp]]
interval — releasepoints[rp+1] - releasgoints[rp]
for all elements of array of tasks released at current ppint
if (element = currentask){
job—job+1
t_rem <« wecet of current task
restart— true

bcetrem[task]«— bcet[task]
wcetrem[task]«— wcet[task]

bcetsum« 0
wcetsum«— 0
no_count« false
no_.work_done« false

for every higher priority task hptask in task get
bcetsum« bcetsum + bcetrem[hptask]
if (bcetsum> interval) {
no.count« true
bcetrem[hptask]— bcetsum - interval

else
bcetrem[hptask]— O
wcetsum«— wecetsum + weetrem[hptask]
if (wcet.sum> interval) {
wcetrem[hptask]— wcetsum - interval
no_work_done« true
}
else
wcetrem[hptask]— 0

if (restart = true and navork_done = false){
/l'in the worst-case, part of curr job is executed
if (t_rem> (interval - wcetsum))
t_rem« t_rem - (interval - wcetsum)
else{
trem=0
no_count« true

if (no_count = false) // release rp is preemption point

if (restart = true)
nump < nump + 1

if (restart = true and_tem = 0){ // exec of this job done
task num.p[job] «<— nump
nump — 0
restart— false

}

}

Figure 6: Algorithm to Eliminate I nfeasible Preemption Points

feasible preemption points are eliminatdthis calculation is per-
formed for every job within a hyperperiodAn algorithm for this
method is presented in Figure 6.

The algorithm is invoked for every task in a given task-sdt.
consists of a loop that iterates over all job release pomtke hy-
perperiod of a task-set. In every iteration, we considemaerval
between two preemption points. We accumulate the BCETs
WCETSs of all higher priority jobs executing in this intenial the
loop that traverses all higher priority tasks. Once the aigiriority
job executions are placed in the interval, if we find idle timehe
best case, we consider the preemption point ending thevaitas
a potential preemption point. If we determine that the aurjeb
will not finish within the interval in the worst-case, we cauhe
preemption point for the job under consideration. The atgor

proceeds to calculate the maximum number of feasible préemp

points for every job of the current task in a hyperperiod & task-
set.

6.2 Correctness of Analysis
Consider a task set with tasks, 7y, ..., 7,—1. Let us assume

that the tasks are in decreasing order of priority. Cet ..., C\,—1
be the WCETSs of the tasks amg, ..., c,—1 be their BCETs. The

have been released at some prior point and have not yet ctadple
execution. Let us assume that, is the task for which we need
to calculate the maximum number of preemptions possible.

I Letx be the length of the interval between preemption pgints

andp. We have three cases to consider.

ar@ase 1:3 " cin;, < @, 3. Cyr, > x. Assumel, can-

not be preempted at, i.e., it cannot be running at time p.

However, 3 ejkj Stocje; < ejr; < Cyk, and
j=0..i—1

P+ Yoeik, <pandp i+ Y ek, > p,ie,

Ji,k; is running atp. Contradiction. Hencep is a feasible

preemption point.

Case 2:3 g ¢in; < @, 3o Cjn; < . AssumeJyy, can be
preempted ap, i.e, it may be running at time p. Hence,
3 €;.kj s.t. Cjk; < €j.k; < Cngj andp,l +
j=0..i—1
E;;}J ejr, < pandpi+ 33 gejr, > p. However,
Z;_:O Cjr; < ximpliesp_i + Z;:_O ejk; < p. Contra-
diction. HenceJ; x, cannot be running g, andp is not a
feasible preemption point.

WCET and BCET are safe upper and lower bounds, respectively e 3:3 " ¢ . > 2. AssumeJ; s, can be preempted af i.e
2 =0 Cik; . ik; e,

on the longest and shortest possible execution time of a task
Preemption of a task can only occur when it is currentiyning
Furthermore, the positions of potential preemption pdiots task
are fixed since they are theleasepoints of a task with higher
priority.
Let us consider the interval between ta@nsecutivegreemption
points,p_1 andp. Let us assume that there are johss,,, ..., Ji,k,

it may be running at time p. Hence, 3

j=0..i—1
C]',k . S ej,k .

€5, kj S.t.

; ;< Chix; andp oy + 3" ( e, < pand
i i—1 H H
p-1+ ZFO ejk; > p. However,y '~ c; x; > x implies
p—1+ Z;;é ejk; > p. Contradiction. Hence/; x, cannot
be running ap, andp is not a feasible preemption point.



Hence, preemptions can only occur under Case 1, which is the ation points is added to the WCET of the current job. This pss¢

condition checked by our algorithm (see Figure 6) with theisu

starting from the calculation of preemption delays for psiim the

mations of WCET and BCET in the for loop and the check imple- access chain, is repeated for the next preemption poini thetie

mented in the subsequent conditions.

6.3 Calculation of the Preemption Delay

are no more preemption points to consider.

curr_job: current job being considered
done: bool // calculation of WCET complete?

While the above method determines the potential preemption curr_preemptindex: current preemption point considered

points, nothing has been mentioned about db&ial preemption
delay that occurs at every point that is not eliminatddhis delay

would, at every stage, be added to the WCET of the current tas

and, hence, change the amount of time remaining for the miurre
task.

As an example, let us once again consider the task-set wath ch
acteristics shown in Table 1. Consider the interval betwsgnts
0 and 1 on the timeline for task: shown in Figure 5. To calculate
the delay that/> incurs due to preemption at point 1, we need to
identify the iteration point within/zo that corresponds to the time
at which this preemption occurs. Since we do not know theshctu
execution times of the higher priority jobs (in this casgy and

chaininfo: array of delays incurred due to preemption
at every point in the access chain

K Maxpreempts: max. # preemptions for current job

min_iter_pt: earliest iteration point (IP) reached by
curr_job in a given time

maxiter_pt: latest IP reached by cujob
in a given time

min_exectime: BCET of curtjob

maxexectime: WCET of curtjob

wecet: array containing WCET of every job of a task

maxdelay: preemption delay calculated at every stage

curr_preemptindex < 0
while (done = false)

J1o0), We cannot be sure of exactly by how much the execution of {

Joo proceeds in this interval. However, we may obtain upper and

lower bounds for the time available foko by using the BCETs
and WCETSs, respectively, of higher priority tasks exeayfimthis
interval. In this example, subtracting the BCETs.Jf and Jio,
namely, 5 and 10 units, from the interval time of 20 units, wean
upper bound of 5 units. The lower bound, calculated by sabitrg
the WCETSs ofJyo and.Jy from the interval time, is 1 unit.

We provide each of these bounds as inputs to the static timing

analyzer framework, and, for each input, we obtain two tiera
points — one that represents the latest possible iteratamt that
may be reached in the given time (obtained from the besttoase
ing analysis of the task) and the other that represents tiiesta
iteration point that can be reached in the given time (olethiinom
the worst-case timing analysis of the task).

Among the four iteration points obtained above, we consider
earliest and the latest points as marking the beginning addre-
spectively, of the range of iteration points that the curtask could

be at while it is preempted. We then choose the iterationtpoin

which would cause the highest preemption delay and takeathat
the worst-case delay at the preemption point being coresiddrhis
delay is added to the remainder of the execution time of theent

task, and the new value is used as the remaining WCET of the cur

rent task.

In the above example, let us assume that fashkas a loop with
100 iterations. The static timing analyzer performs a loeste anal-
ysis and determines that, in a time interval of 1 unit (loweuid
of time available forJx), J20 can reach at most iteration 7. By
performing worst-case analysis, it determines thiat is sure to
reach at least iteration 4 in 1 time unit. Similarly, it deténes that
Joo can reach at most iteration 13 and at least iteration 9 in B tim
units (upper bound of time available fdsy). Hence, the range of
iteration points that we need to consider is 4 to 13. Amongehe
iteration points, we choose the one that would produce sigbre-
emption delay and add this delay to the remaining executioa t
of Jo2o.

An algorithm for the calculation of the WCET bound by repéate
interaction with the static timing analyzer, depicted igiée 7, is
described below. For every job, the preemption delays atyeve
point in the access chains is first calculated. Next, therilgo to
calculate the number of preemptions for the current jobvsked.
The timing analyzer is then invoked to get the range of iterat
points that need to be considered for calculation of delaygiven
preemption point and the maximum delay in the given rangteof i

chaininfo < calcAccessChainWeights(cujob)
max preempts— calcMaxNumOfPreemptions(cujob)
min_iter_pt < getMinlterationPoint(minexectime)
max.iter_pt «— getMaxIterationPoint(maexectime)
max.delay<— maxdelay + calcWCDelaylnRange(miiter_pt,
maxiter_pt, chaininfo, curr_job)

if (curr_preemptindex > maxpreempts)

done« true
wcet[curcjob] «— wcet[curcjob] + maxdelay

}

Figure7: Bound WCET + Preemption Delays

6.4 Complexity of Analysis

For every task, the single task analysis is performed onieon
In this analysis, we walk through the iteration space of #skin
order to calculate the number and positions of data cachsesis
Hence, the time and space complexity for every task(is) where
nis the number of data references of the task.

To calculate worst-case preemption delay, first of all, wa-co
sider every job of a task within the hyperperiod separatétor
every job, calculation of the number of preemption points ha
time complexity ofO(hp) wherehpis the number of higher prior-
ity jobs released during the period of the job since we hauesob
every point for feasibility. For calculation of preemptidelay at a
point, we have a constant time complexity. This is becaussime
ply look up the weight of the access chain for the given jothet t
given point. In order to identify the worst-case placemdrat given
preemption point in the access space of a job, the time codityple
is O(n), i.e, we iterate over the range of possible iteration points
identified as potential positions for the preemption poaxplained
in Section 6.3) in order to find the one with maximum preemptio
cost. This is usually a small range since the maximum passibl
ecution time for a job within an interval is no larger than thyest
interval between potential preemption points.

7. RESULTS

In all our experiments, we use benchmarks from the DSPStone

benchmark suite [26], the details of which are describechitier
work [19]. We conducted experiments with several task sets ¢
structed using the DSPStone benchmarks with different data
sizes. We used tasks sets that have a base utilizatiorzétitin



40 }
—-HJ Bound l
n 35 -5 Old Method
g Staschulat 73 ﬁﬂ
S 30 -@- New Method / /
o
E 25 o |
2 [ / /
5 / 4
o 15
* 4 4
310 ~
= 5 /é /X
6 N N ._y.\././.
O . T T T T T T e T e\/._\.f. T T = T T T T T
1 123 12345 1234567
Task sets
(a) # Preemptions for U =0.5
300000 T —
--HJ Bound
-5 Old Method / \ f
250000 | 5 Rowethod / \ /
>
©
o 200000
3 / ¥
2 150000 i *
[
O 100000 / /\é
S 4 Vi\@f fﬁ
50000 ?/./
0 T T T T T T T T T T T T T T T T T T 1
1 1723 12345 1234567
Task sets
(c) WCET w/ delay for U =0.5
1000000 —-HJ Bound l’ {
900000 +—— -= 0Id Method , I
S u
o 800000 17— fo\ASICI\r/]Ieltitod 73 '
£ 700000 / s!z
-
P 600000 / / ﬁ
2 500000 /
S 400000 /qé 2
3 300000 g g/ A
& 200000 at ?/ A Pad
100000 - / }ﬁ )/
: * P

1 123 12345 1234567
Task sets
(e) Response Time for U =0.5

Max. # of preemptions

WCET with delay

Response Time

60 f
—-HJ Bound //
50 | Qe /
-@ New Method
40
30
20
10
0 -
1 123 12345 1234567 123456789
Task sets
(b) # Preemptions for U = 0.8
300000
—~—HJ Bound
250000 | - Staseholnt.
-@- New Method
200000
150000 A\
% J\E J\
100000 L \.
50000
1 123 12345 1234567 123456789
Task sets
(d) WCET w/ delay for U=0.8
2500000 '
——-HJ Bound
-5- Old Method j
2000000 | o New Method 5 /@
| I
1500000 / 75 }
1000000 & %'l/ f
500000 /f. d 2
(] i’j W
1 123 12345 1234567 123456789
Task sets

() Response Time for U =0.8

Figure 8: Experimental Resultsfor Utilizations of 0.5 and 0.8



Benchmark Period | WCET | BCET | #Jobs # Preempts #Preempts | #Preempts | #Preempts
New Method HJ Bound | Old Method | Staschulat
avg | min | max
200convolution | 100000 | 14191 | 14191 40 0 0 0 0 0 0
300convolution | 400000 | 20891 | 20891 10 0 0 0 4 4 1
500convolution | 500000 | 34291 | 34291 8 0 0 0 7 7 2
300n-real-updates 800000 | 56538 | 47338 5 02| O 1 12 12 4
matrix1 1000000| 59896 | 54015 4 1 1 1 17 16 6
600fir 2000000| 54837 | 52537 2 05| O 1 34 33 8
800convolution | 2000000 66191 | 54391 2 15| 1 2 35 34 14
900Ims 4000000| 158636 | 118536 1 4 4 4 71 67 20
Table 2: Preemptionsfor Taskset with U=0.5
Benchmark Period | WCET | BCET | #Jobs # Preempts # Preempts | #Preempts | #Preempts
New M ethod HJ Bound | Old Method | Staschulat
avg | min | max
n-real-updates | 100000 | 16738 | 16838 50 0 0 0 0 0 0
900convolution | 625000 | 76391 | 61091 8 0.75 0 1 7 7 1
matrix1 625000 | 59896 | 54015 8 1 1 1 8 8 3
1000convolution | 625000 | 87091 | 67791 8 0875 | 1 2 9 9 5
600convolution | 1000000| 45291 | 40991 5 04 0 1 16 15 7
300n-real-updates 1000000 56538 | 47338 5 0875 | 1 3 17 16 9
800fir 1250000 77037 | 69737 4 2.25 1 3 23 21 18
900Ims 1250000| 158636 | 118536 4 45 5 7 24 22
1000fir 2500000( 99237 | 86937 2 6 5 7 a7 41
500fir 5000000| 43937 | 43937 1 11 11 11 94 80
Table 3: Preemptionsfor Taskset with U=0.8
without considering preemption delays) of 0.5, 0.6, 0.7 argi 8. Results for 0.6 and 0.7 are similar and have been omittedalu
For each of these utilization values, we constructed tatkwgith space constraints. Each graph shows a different metric, W@t
2, 4, 6 and 8 tasks. We also constructed a set with 10 tasks&or 0 preemption delay, response time and maximum number of greem
utilization. tions, given a certain base utilization. The x-axis shovesvidrious

For the sake of comparison, we calculate the maximum number task sets with 2, 4, 6 and 8 tasks. The plots include all tasbespt
of preemptionsif) possible for a task using four different methods. the highest priority task in every task set, which was orditice
it cannot be preempted.

1. A higher-priority job bound (HJ Bound) is determined by In all our results, we see that our new method derives a much
simply counting the number of higher priority jobs foratask  (ighter estimate of the maximum number of preemptions farsk t
This method uses only the periods of tasks. and, hence, significantly tighter estimates of the WCET wéttay

and the response time of a task. In some of the results, tHeooet
used as comparison do not have response time values in thle gra
(e.g, task sets 3, 4 and 5 for 0.8 base utilization). This means
that the response time was, in those cases, greater thaeribd,p
3. We calculate the maximum number of methods considering hence making the task set unschedulable. Our method shaitys th

2. We calculate a tighter bound for the number of preemptions
using the old method proposed in prior work [19]. This
method uses the periods and WCETSs of tasks.

indirect preemption effects as proposed by Stascletlad. in reality, those task sets are schedulable. This underline po-
This method uses the periods and response times of tasks.tentially significant benefit of our new method. Further,fie tase
[21]. of the method proposed by Staschudaal., we calculate the maxi-

mum number of preemptions for a task based on its response tim
4. We calculate the maximum number of preemptions using the Hence, if the response time turns out to be greater than thedpe
range of execution times of higher priority jobs as proposed we do not report the value for maximum number of preemptions
in this paper. This method uses the periods, WCETs and for the task by this method.

BCETSs of tasks. We also observe that, within a task set, as we proceed towards
lower priority tasks, our method'’s effectiveness improvésis is
indicated by the widening gap between the other methods and o
new method as we go towards lower priority tasks (up to anrorde
of magnitude). This is because the lower priority tasks raueh
lower chances of getting scheduled in the initial intenz@sween
preemptions points. Hence, more preemption points are eéem
infeasible by our method, thus tightening the bounds of th&ios.

The first three methods of calculating the number of preemngti
give us no idea about the actual placement of the preempiortsp
Hence, we aggregate the maximardelays possible for the given
task to obtain the worst-case data cache related preentyziag.
We present results of complete response time analysis $&f ta
sets using real benchmarks. The results of the experimentsif
lizations 0.5 and 0.8 are presented in the graphs shown uré&ig



Task | Period | WCET # Preempts #Preempts | #Preempts | #Preempts
1D New Method (Min/M ax/Avg) HJBound | Old Method | Staschulat
wB=1|WB=15| WB=2| WB=25| W/B=3
1 810000 | 16000 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1 8 8 2
2 100000 5000 | 0/1/0.25| 0/1/0.25 | 0/2/0.5 0/2/0.5 0/2/0.5 12 12 4
3 200000 | 30000 3/3/3 3/4/3.5 3/5/4 3/5/4 3/5/4 25 25 8
Table 4: Preemptionsfor Taskset with U=0.5 for Varying WCET/BCET (W/B) rations
Task | Period | WCET # Preempts #Preempts | #Preempts | # Preempts
1D New Method (Min/M ax/Avg) HJ Bound | Old Method | Staschulat
wB=1|WB=15| WB=2| WB=25| W/B=3
1 80000 | 20000 21212 21212 21212 21212 21212 8 8 3
2 100000| 12000 | 1/2/1.5 1/3/1.75 | 1/3/1.75 1/412 1/412 12 12 6
3 200000 | 50000 6/6/6 7/10/8.5 | 8/12/10 | 9/14/11.5 | 9/14/11.5 25 25 19

Table 5: Preemptionsfor Taskset with U=0.8 for Varying WCET/BCET (W/B) rations

The results with utilization 0.8 show a higher number of pnpe
tions than the one with utilization 0.5. At the higher uttion,

Finally, we performed a series of experiments with synthiatsk
sets where we vary the ratio of the WCET of a task to its BCET,

some tasks have a higher WCET and, hence, can be preemptednaintaining all other parameters. The results of theseraxpats

more frequently. Due to the increased number of preemptioes
also observe higher response times in this case.

Notice that the priority of a task is not significant in ternfdte
WCET bound, even when including the preemption delay, mostl
because the base WCET dominates the preemption delay ¢ast. T
is evident for task 6 in Figures 8(c) and 8(d), which has a towe
WCET with delay than its predecessor, task 5. In other watus,
ordering of tasks is rate-monotone, not necessary WCETetooe.

From the results, we make several observations about pgtr-m
ods. For the task with second highest priority in each taslsgece
there is only one task above it, we observe that the HJ bound, o
old method and the method proposed by Stasclhailat. give the
same result. However, as we proceed towards lower pricaiis
within a task set, our old method gives tighter results whem-c
pared to the HJ bound. This is because our old method takes int
account the WCET of a task and not just the period as the Hlboun
method does. The method proposed by Stascletilat produces
tighter results when compared to both our old method and the H
bound. This is because the Staschulat method considerd-the e
fects of indirect preemptions correctly. However, the neatmod
proposed in this paper produces tighter results than aktiprior
methods.

In order to show the variation in the maximum number of pre-
emptions obtained by our new method between the various jobs
of a task, we provide results for two task sets of differemesiin
Tables 2 and 3.

We observe that the new method always producgigmificantly
lower value than that produced by the previous methods. As we
proceed towards lower priority tasks, we observe diffeesnia the
minimum, maximum and average number of preemptions for dif-
ferent jobs. Further, it was observed during experimenitafnot
indicated in tables) that the maximum value for number oéprp-
tions was not always obtained for the first job of the taske@séd
at the same time as all higher priority jobs). This provesdiaém
we make in Section 4 about the critical instamz being the in-
stance at which jobs of all tasks are released at the samekiare
again, in the case of 0.8 utilization, we do not report the imamxn
number of preemptions obtained by the Staschulat methabfoe
tasks. This is because the task has a response time thaatergre
than its period and, hence, we cannot calculate the maximum n
ber of preemptions, which is based on the response time.

for utilizations 0.5 and 0.8 are shown in Tables 4 and 5, respe
tively. We obtained results for ratios of 1, 1.5, 2, 2.5 andoB f
each of the utilizations. The results indicate that the nemalf pre-
emptions calculated by our are significantly lower than fevjpus
methods. Furthermore, for our new method this metric ontyega
for low values of the WCET/BCET ratio. Ratios of 3 or higher
settle at a fixpoint for this task séte., if the BCET decreases any
further, it does not affect our calculation of the maximunmmu
ber of preemptions. Hence, we could calculate maximum numbe
of preemptions for various WCET/BCET ratios for a given task
Alternatively, if the preemption bound saturates at a lotiordahere

is no need to calculate the BCET for a task at all. Instead,ouédc
use a value of BCET=0.

8. CONCLUSION

This work provides a method to calculate cache related ppeem
tion delay. Itis specifically suited to data caches and hatieg with
past would in instruction cache and pipeline analysis. Weaane
a framework that was developed in prior work to calculatertutsu
for the preemption delay within data cache reference patésr
real-time tasks. Using these bounds to calculate tight&mates
of the WCET of tasks, we perform response time analysis on all
tasks in a task set to determine its schedulability.

The contributions of this paper are:

1. Determination of a new critical instance under cachempee
tion;

2. calculation of a significantly tighter bound for the maxim
number of preemptions possible for a given task; and

3. construction of a realistic worst-case scenario for taee
ment of preemption points.

A feedback mechanism provides the means to interact wittirthe
ing analyzer, which subsequently times another intervad tdsk
bounded by the next preemption.

Our results show that a significant improvement (of up to an or
der of magnitude over some prior methods and up to half arrorde
of magnitude over others) in bounds for (a) the number ofpgee
tions, (b) the WCET and (c) the response time of a task are ob-
tained. This work also contributes a methodology to integdata



caches into preemption delay determination under respimse
analysis and, in this context, considers a critical instanaf stag-
gered releases, both of which are novel, to the best of owvkno
edge. Future work will quantify the effect of phasing on bding
feasible preemption points.
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