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ABSTRACT
Caches have become invaluable for higher-end architectures to hide,
in part, the increasing gap between processor speed and memory
access times. While the effect of caches on timing predictability of
single real-time tasks has been the focus of much research, bound-
ing the overhead of cache warm-ups after preemptions remains a
challenging problem, particularly for data caches.

This paper makes multiple contributions. First, we bound the
penalty of cache interference for real-time tasks by providing ac-
curate predictions of thedata cache behavior across preemptions,
including instruction cache and pipeline effects. For every task, we
derive data cache reference patterns for all scalar and non-scalar
references. We show that, when considering cache preemption, the
critical instance doesnot occur upon simultaneous release of all
tasks.

Second, we develop analysis methods to calculate tight upper
bounds on the number of possible preemption pointsfor each job
of a task and consider the worst-case placement of these preemp-
tion points. Partial timing of a job is performed up to a preemption
point using the cache reference patterns. The effects of cache in-
terference are then analyzed using a set-theoretic approach, which
identifies the number and location of additional misses due to pre-
emption. A feedback mechanism provides the means to interact
with the timing analyzer, which subsequently times anotherinter-
val of a job bounded by the next preemption.

Significant improvements in tightening bounds of up to an order
of magnitude over two prior methods and up to half a magnitude
over a third prior method are obtained by experiments for (a)the
number of preemptions, (b) the WCET and (c) the response timeof
a task. Overall, this work contributes (1) by formulating a new crit-
ical instance under cache preemption, (2) by proving a new anal-
ysis method to derive bounds on the number of preemptions and
(3) by determining actual preemption points when calculating the
preemption delay under consideration ofdata caches.

1. INTRODUCTION
In most modern systems, data caches have become an integral

part of the architecture. They provide immense savings in terms
of latency. However, they have one inherent complexity, namely,
the latency of memory references become unpredictable. In real-
time systems, timing predictability is a central need and hence, this
unpredictability due to data caches causes additional complexity of
analysis.

Characterization of data cache behavior for a task is complex
and has been the focus of much research. In a preemptive system,
this complexity increases further. In such a system, a task with
higher priority may preempt a task with lower priority at anytime.
This implies that some cache blocks that the lower priority task was
using may now be evicted and would need to be reloaded when the
task resumes execution. In recent work [19], we propose a method
to bound the delay caused due to preemptions for data caches and

∗This work was supported in part by NSF grants CCR-0208581,
CCR-0310860 and CCR-0312695.

to derive an upper bound for the response time of a task.
The issues addressed in that work are similar to those studied for

instruction caches [20, 21], namely:

1. Preemption delay: Given the preempted task, the set of pos-
sible preempting tasks, and the preemption point, calculate
the preemption delay that is incurred.

2. Number of preemptions: Calculaten, the maximum number
of times a task can be preempted when it is executed as part
of a given task set.

3. Worst-case scenario: Identify the placement of then preemp-
tion points in the iteration space such that the worst-case total
delay / preemption cost is obtained.

In this paper, we first show that the critical instance doesnot
occur when all tasks are released simultaneously if we consider
preemption delays. Second, we propose a new method to tightly
bound the maximum number of preemptions possible for a given
task. Finally, we propose a method to derive a realistic worst-case
preemption scenario. The second and third contributions help us
significantly tighten the WCET estimate for a task by tightening
the preemption delay incurred by it.

The remainder of this paper is organized as follows. Section3
discusses related work. Section 4 discusses the effect of consid-
ering data cache related preemption delay on the critical instance.
Section 5 gives a more detailed overview of our recent work. Sec-
tion 6 explains in detail the techniques used in this paper. We then
present experimental results in Section 7. Section 8 summarizes
the contributions of this work.

2. TASK MODEL
In our work, we consider a periodic real-time task model with

period equal to the deadline of a task. The notation used in the
remainder of this paper is described here. A taskTi has character-
istics represented by the 7 tuple (Φi, Pi, Ci, ci, Bi, Ri, ∆j,i). Φi

represents the phase of the task,Pi represents the period of the task
(equal to deadline),Ci represents the worst-case execution time of
the task,ci represents the best-case execution time of the task,Bi

represents the blocking time of the task,Ri represents the response
time of the task and∆j,i represents the preemption delay caused
on the task due to a higher priority taskTj . Jij represents thejth
instance (job) of taskTi.

3. RELATED WORK
Several methods have been proposed in the past to bound data

cache behavior for a single task without taking into account, the
effects that other tasks may have on the behavior ([13], [8],[12],
[25], [15]). They use methods like data flow analysis, staticcache
simulation, etc. for this purpose.

Analytical methods for predicting data cache behavior havebeen
proposed. They include the Cache Miss Equations by Ghoshet al.
[7], a probabilistic analysis method proposed by Fraguellaet al.
[6] and another analytical method by Chatterjeeet al. [4]. The



common idea behind these methods is to characterize data cache
behavior by means of a set of mathematical equations. In prior
work [18], we have extended the cache miss equations framework
to produce exact data cache patterns for references.

Techniques that make data caches more predictable and can be
applied in preemptive systems are cache partitioning [17] and cache
locking [14, 5]. Both methods lead to a significant loss in perfor-
mance in order to gain predictability.

There are also several techniques that have been proposed specif-
ically to calculate preemption delay and analyze schedulability in a
multi-task preemptive system. These techniques do not specifically
analyze data cache behavior, but provide a more generic solution
applicable to a cache, including specific solutions for instruction
caches.

Early on, Basumallicket al. conducted a survey of cache related
issues in real-time systems [2]. This survey discussed someini-
tial work related to the calculation of preemption delay. Busquets-
Mataix et al. proposed a method to incorporate the effect of in-
struction caches on response time analysis (RTA) [3]. They com-
pared cached RTA with cached Rate Monotonic Analysis (RMA)
and concluded that cached RTA outperforms cached RMA. Leeet
al. proposed and enhanced a method to calculate an upper bound
for cache related preemption delay in a real-time system [9,10].
They used cache states at basic block boundaries and data flow
analysis on the control flow graph of a task to analyze cache be-
havior and calculate preemption delay.

Another approach by Tomiyamaet al. calculates cache related
preemption delay for the program path that requires the maximum
number of cache blocks [22]. This path is determined by an inte-
ger linear programming technique. In this paper, an empty cache
is assumed at the beginning of every job and hence, each preemp-
tion is analyzed individually. Effects of multiple preemptions are
not considered. Negiet al. combined the techniques proposed by
Tomiyamaet al. [22] and by Leeet al. [9, 10] to develop an en-
hanced framework [16]. Once again, however, multiple preemp-
tions are not considered in their work since an empty cache isas-
sumed at the beginning of a task.

The work by Leeet al. was enhanced by Staschulatet al. [20,
21]. The authors propose a complete framework for the calcula-
tion of response time for tasks in a given task set. They address
the three issues enumerated in the Section 1, namely calculation of
the maximum number of preemption points, identification of their
placement and calculation of the delay at each point. However,
their focus is not on data caches, but on instruction caches.

In their work, Staschulatet al. discuss the concept of indirect
preemptions [21]. Figure 1 illustrates the concept for a task set
closely resembling their example with phaseΦ, periodP , WCET
C and preemption delay∆ for tasksT1 to T4. For simplicity,∆
is assumed to be fixed per task,i.e., incurred when inflicted by any
higher priority task. Response times are determined as

Ri = Ci + Bi + Σ
j=1..i−1

(⌈
Ri

Pj

⌉ ∗ Cj) + ∆j,i(Ri))

where the blocking time,Bi, is not considered in the example
and∆j,i(Ri) is the overhead incurred by higher priority tasks pre-
empting the current one. In Figure 1, execution is depicted by
shaded boxes, the preemption delay is shown black boxes. They
argue that several indirect preemptions affect lower priority tasks
only once. For example, in the figure, althoughT2 could be af-
fected by every invocation ofT1, T3 is actually only affected by the
first invocation shown since, after being preempted once, itis not
scheduled at all untilT2 completes execution. Thus, the response
time of R3 is 10.5 units. However, we will show in this work that
the method employed by Staschulatet al. produces pessimistic re-

Φ P C ∆
T1 2 3 1 0
T2 1 15 5.125 0.125
T3 0 20 1.25 0.75
T4 0 25 1.25 0.25
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Figure 1: Preemption under WCETs, Phasing
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Figure 2: Preemption with Shorter Execution
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Figure 3: Preemption with WCET, Φi = 0

sults.

4. PREEMPTION DELAY AFFECTS THE
RESPONSE TIME

Prior work often assumes that the worst-case response time oc-
curs at the theoretical critical instance for fixed-priority scheduling,
i.e., upon simultaneous release of all tasks. However, this is not
necessarily the critical instance when preemption delays are con-
sidered. Consider Figure 3. The response time ofT3 (11.375 units)
exceeds that of prior examples while the response time ofT4 (12
units) is shorter that that of Figure 2 with 12.25 units.

In general, the critical instance under preemption delay isa sched-
ule with releases in reverse priority order such that theΦi of task
Ti is one unit of time (one cycle) short of the preemption delay
∆i of the same task. This theoretic result is, however, very re-
strictive. In practice, the hyperperiod of tasks is often a relatively
small number. Hence, releases of tasks can occasionally coincide
and are otherwise separated by some minimum time interval (typi-
cally 1 ms). For this reason, we consider in our workall jobs of a
task within a hyperperiod. We calculate the number of preemptions
per job and then determine the cache-related preemption delay for



the respective job and, subsequently, the response time of this job.
This also enables us to considerranges of executionwhere preemp-
tion points can occur within the code. Such job-level analysis can
yield more accurate results than calculation of preemptiondelays
per task. This helps us provide a significantly tighter estimate of
the number of preemptions and, hence, the response times of jobs.

5. PRIOR WORK
In previous work [18], we enhanced a method by Veraet al. [23,

24] that statically analyzes data cache behavior of a singletask us-
ing Cache Miss Equations [7]. This data cache analyzer was inte-
grated into the static timing analysis framework describedin prior
work. [19]

The data cache analyzer produces data cache access patterns, in
terms of hits and misses, for every scalar and non-scalar memory
reference in a given task. It is applicable in loop nest oriented code
that adheres to certain constraints as specified elsewhere [18].

These patterns give us an accurate estimate of the number of data
cache misses that the task incurs and their positions in the reference
stream. In this work, since we only dealt with a single task, it
was sufficient to provide the number of misses instead of the actual
pattern of misses and hits to the static timing analyzer described in
the earlier work [18].

While the above work analyzes single tasks with respect to data
caches, it does not take multi-task preemptive systems intoaccount.
In such a system, a task may be interrupted by higher priority
tasks at arbitrary points during its execution. We considernon-
partitioned data caches in our work. Hence, cache lines may be
shared across tasks resulting in the eviction of a subset of exist-
ing memory lines from cache by preempting tasks. Assuming that
all cache blocks brought in by the preempted task are evictedfrom
cache due to preemption (i.e., the cache is effectively empty after
every preemption point) leads to a significant overestimation of the
data cache delay. Hence, schedulability of task sets may be ad-
versely affected so that deadlines may be missed.

In more recent work [19], we present a method to incorporate
data cache delay during WCET calculation itself. Furthermore, we
make the calculation of the delay as accurate as possible by con-
sidering only the intersection of the cache blocks that are useful
to the preempted task once it is restarted and those that are poten-
tially used by preempting tasks. In this work, we use response time
analysis [11, 1] to determine the schedulability of a task-set. We
assume a fixed-priority periodic task set where the deadlineof a
task is equal to its period.

The method we employ in this work has two basic phases. In the
first phase, every task in a given task set is individually analyzed
to produce data cache miss/hit patterns for its references.The tim-
ing analyzer is used to calculate a base WCET for every task (not
including delay due to data caches).

In the second phase, the data cache analyzer and the timing an-
alyzer interact to calculate the worst-case execution time(WCET)
of the task in a multi-task preemptive system. This involvesthree
fundamental calculations.

1. Calculation of the delay incurred by the task due to preemp-
tion at a particular point;

2. Calculation of the maximum number of possible preemptions
for a given task ; and

3. Identification of the positions of these preemption points

For the second item, we calculate a pessimistic upper-boundfor
the number of possible preemptions. To identify preemptionpoints

and to calculate the preemption delay at a point, we use a method
that involves the construction of data cache access chains.

All the data cache reference patterns of the task are merged,
maintaining the order of accesses. All memory references inthis
consolidated pattern that access the same cache set are connected
together to form a chain. Since the pattern maintains the access
order, this chain accurately indicates reuse.

We identify points in the iteration space where a preemption
would result in the largest cost,i.e., by cutting the maximum num-
ber of distinct cache line chains. Then cuts with the largest cost are
identified wheren is the maximum number of preemption points in-
curred by the current task, as calculated in phase 1. The delays at
these points are added to the WCET of the task and used in the
response time analysis equations for the task set.

6. METHODOLOGY
We have described the method for calculating the WCET of a

task with preemption delay in a multi-task preemptive system in
Section 5. In that work, for the second and third steps, we use
simplified methods that lead to overestimation of the preemption
delay and, hence, the WCET of tasks.

The formula used to calculate the maximum possible number of
preemptions for a task is based on the number of jobs of higher
priority tasks that are released in the period of the lower priority
task and the amounts of time they each take to execute. This leads
to the consideration of several infeasible preemption points either
because the lower priority job has not been scheduled at all and,
hence, cannot be preempted, or because it has already finished ex-
ecuting. Further, we use the largestn preemption delays (wheren
is the maximum number of preemption points for the task) while
calculating the WCET.

In this paper, we propose methods to calculate tight estimates of
the maximum number of preemptions for a task and a safe method
to identify the worst-case placement of the preemption points that
is realistic.

6.1 A Tight Bound on Preemption Points
The WCET of a task is calculated with preemption delay incor-

porated during its calculation. Since we showed in Section 4that
the critical instance does not occur when all tasks are released at
the same time, we calculate the WCET for each job of a task within
a hyperperiod. Our approach handles tasks with different phases.
However, in the examples in this paper, the first job of every task is
assumed to be released at the same time due to current implemen-
tation constraints, which will be lifted in the future.

For the above calculation, we require the WCET and the BCET
of all higher priority tasks. Further, for every task, we first calcu-
late a base WCET that does not consider preemption delay. Since
the highest priority task cannot be preempted, WCET and BCET
values are calculated by simply using the static timing analyzer
framework. For the other tasks, preemptions have to be considered
as well.

In this section, we explain the method to eliminate infeasible
preemption points without explicitly adding the preemption delay
at every stage for the sake of simplicity. We discuss the calculation
of preemption delay and the placement of preemption points in the
iteration space of the task under consideration in the next section.

Let us discuss the methodology to eliminate infeasible preemp-
tion points through an example. Consider a three-task set with char-
acteristics as shown in Table 1. For our calculations, we consider
all jobs within ahyperperiod, which in this case is200.

The timeline for tasksT1 andT2 are shown in Figures 4 and 5,
respectively. The arrows represent release points of higher priority
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Figure 4: Timeline for Task T1
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Figure 5: Timeline for Task T2

Task Period WCET BCET
= deadline

T0 20 7 5
T1 50 12 10
T2 200 30 25

Table 1: Task Set Characteristics

jobs and, hence, potential preemption points for the jobs oftask un-
der consideration. Preemption points are numbered consecutively.
The preemption points that get eliminated by the analysis below are
circled. BCETs of higher priority tasks (e.g.,jobs of taskT0 in the
timeline for taskT1) are laid out on top, and the WCETs of higher
priority tasks are below the time axis. The dark and gray rectangles
show jobs of tasksT0 andT1 respectively.

Consider the timeline for taskT1. To check whetherJ10 can ex-
ecute before preemption point 1, we use the BCET ofJ00. Since
there is idle time after placing the BCET ofJ00 (5 units),J10 could
be scheduled before point 1. Next, we determine whether the exe-
cution ofJ10 may exceed point 1. For this purpose, we consider the
sum of the WCETs ofJ00 andJ10, namely, 7 and 12, respectively.
Since this does not exceed point 1,J10 is guaranteed to finish in this
interval. SinceJ10 has completed execution, we determine that the
maximum number of preemptions for the first job ofT1 is 0.

For the next release ofT1, i.e., job J11, consider the interval
between preemption points 3 and 4. During this interval, in the best
case, we have to consider the entire execution of the new job of T1,
namelyJ11, that is released at point 3. Hence, for this interval,we
see that jobJ11 could indeed be scheduled. Further, we see that
job J11 is not guaranteed to finish before point 4 in the worst case.
Hence, point 4 is a potential preemption point forJ11. Proceeding
in this way, we calculate the number of preemption points forJ11

to be 1. This example also shows that the response time for thefirst
job (which is released at the critical instance) is not necessarily the
worst possible one.

In a similar fashion, we calculate the number of preemptionsfor
jobs of taskT2, the timeline for which is shown in Figure 5. In
the case of taskT2 , there are two higher priority tasks to consider,

namelyT0 andT1.
ForJ20, preemption point 1 is counted as a potential preemption

point since there is a possibility ofJ20 being scheduled before this
point, yet it does not finish before this point. For the interval be-
tween points 1 and 2, we have to consider a new job ofT0, namely
J01, and, in the best case, no execution ofJ10. Hence, once again,
J20 could be scheduled between points 1 and 2. In the worst case,
we require 7 units forJ01 during this interval. Hence, a maximum
of 13 units may be used byJ20. Point 2 is therefore a potential
preemption point forJ20. Proceeding this way, we consider every
preemption point and test it for feasibility. We eliminate points 4
and 10 since they are not feasible preemption points for jobJ20.
Since we have reached the end of the hyperperiod of the task-set,
we stop here. The upper bound forT2, hence, is 7 preemptions.
Using our original method for calculation, we obtain a boundof 9.

In summary, the method is as follows. Consider a set of tasksT0,
...,Tn. Let Ji0, ...,Jik represent the jobs of taskTi. Let us assume
that taskT0 has the highest priority and that taskTn has the lowest
priority using a static priority scheme.

For every taskTi, we construct a timeline starting from 0 up to
the hyperperiod of the task-set. On this timeline, all job releases of
higher priority (instances of tasksT0 to Ti−1) are marked. Each of
these points represents a potential preemption point for jobs ofTi.

In order to test the feasibility of a certain preemption point (say
point x) for a jobJij , we use the BCETs of all higher priority
tasks. If the sum of these times exceeds the interval of time between
points x-1 and x, the jobJij has no chance of being scheduled dur-
ing this interval and, hence, point x is not a feasible preemption
point forJij .

If a point x is determined to be a feasible preemption point for
taskJij , we need to calculate the maximum time thatJij can be
scheduled for in the interval between x-1 and x in order to deter-
mine the remaining execution time forJij . For this purpose, to
maintain safety of the analysis, we consider the sum of the WCETs
of all higher priority jobs. The time remaining in the current inter-
val after subtracting this sum, if any, is the maximum time available
for Jij .

Similar calculations are performed for every interval between
potential preemption points until a job completes and, hence, in-



n: number of tasks
releasepoints: array of release points
timeline: array containing tasks released at every releasepoint
interval: time interval between two preemption points
bcet rem: array 1..n of remaining BCET (init val = 0)
wcet rem: array 1..n of remaining WCET (init val = 0)
bcet sum: variable to accumulate BCET within an interval
wcet sum: variable to accumulate WCET within an interval
done, nowork done, nocount, restart: boolean (init val = false)
current task: task for which # preemptions is calculated
num p: maximum number of preemptions calculated
task num p: array w/ maximum number of preemptions

for every job of current task
job: task instance number (init val = 0)
t rem: WCET of the current task

for every release point rp in{releasepoints}
up to the hyper-period of the task-set{

tasks← timeline[releasepoints[rp]]
interval← releasepoints[rp+1] - releasepoints[rp]
for all elements of array of tasks released at current point{

if (element = currenttask){
job← job + 1
t rem← wcet of current task
restart← true
}
bcet rem[task]← bcet[task]
wcet rem[task]← wcet[task]
}

bcet sum← 0
wcet sum← 0
no count← false
no work done← false

for every higher priority task hptask in task set{
bcet sum← bcet sum + bcetrem[hptask]
if (bcet sum≥ interval){

no count← true
bcet rem[hptask]← bcet sum - interval
}
else

bcet rem[hptask]← 0
wcet sum← wcet sum + wcetrem[hptask]
if (wcet sum≥ interval){

wcet rem[hptask]← wcet sum - interval
no work done← true
}
else

wcet rem[hptask]← 0
}
if (restart = true and nowork done = false){

// in the worst-case, part of curr job is executed
if (t rem> (interval - wcetsum))

t rem← t rem - (interval - wcetsum)
else{

t rem = 0
no count← true
}

if (no count = false) // release rp is preemption point
if (restart = true)

num p← num p + 1
if (restart = true and trem = 0){ // exec of this job done

task num p[job]← num p
num p← 0
restart← false
}
}

Figure 6: Algorithm to Eliminate Infeasible Preemption Points

feasible preemption points are eliminated.This calculation is per-
formed for every job within a hyperperiod. An algorithm for this
method is presented in Figure 6.

The algorithm is invoked for every task in a given task-set. It
consists of a loop that iterates over all job release points in the hy-
perperiod of a task-set. In every iteration, we consider an interval
between two preemption points. We accumulate the BCETs and
WCETs of all higher priority jobs executing in this intervalin the
loop that traverses all higher priority tasks. Once the higher priority
job executions are placed in the interval, if we find idle timein the
best case, we consider the preemption point ending the interval as
a potential preemption point. If we determine that the current job
will not finish within the interval in the worst-case, we count the
preemption point for the job under consideration. The algorithm
proceeds to calculate the maximum number of feasible preemption
points for every job of the current task in a hyperperiod of the task-
set.

6.2 Correctness of Analysis
Consider a task set withn tasks,T0, ..., Tn−1. Let us assume

that the tasks are in decreasing order of priority. LetC0, ...,Cn−1

be the WCETs of the tasks andc0, ..., cn−1 be their BCETs. The
WCET and BCET are safe upper and lower bounds, respectively,
on the longest and shortest possible execution time of a task.

Preemption of a task can only occur when it is currentlyrunning.
Furthermore, the positions of potential preemption pointsfor a task
are fixed since they are thereleasepoints of a task with higher
priority.

Let us consider the interval between twoconsecutivepreemption
points,p−1 andp. Let us assume that there are jobsJ0,k0

, ...,Ji,ki

have been released at some prior point and have not yet completed
execution. Let us assume thatJi,ki

is the task for which we need
to calculate the maximum number of preemptions possible.

Letx be the length of the interval between preemption pointsp−1

andp. We have three cases to consider.

Case 1:
Pi−1

j=0
cj,kj

< x,
Pi

j=0
Cj,kj

> x. AssumeJi,ki
can-

not be preempted atp, i.e., it cannot be running at time p.
However, ∃

j=0..i−1

ej,kj s.t. cj,kj
≤ ej,kj

≤ Cj,kj
and

p−1 +
Pi−1

j=0
ej,kj

< p andp−1 +
Pi

j=0
ej,kj

> p, i.e.,
Ji,ki

is running atp. Contradiction. Hence,p is a feasible
preemption point.

Case 2:
Pi−1

j=0
cj,kj

< x,
Pi

j=0
Cj,kj

< x. AssumeJi,ki
can be

preempted atp, i.e., it may be running at time p. Hence,
∃

j=0..i−1

ej,kj s.t. cj,kj
≤ ej,kj

≤ Cj,kj
and p−1 +

Pi−1

j=0
ej,kj

< p and p−1 +
Pi

j=0
ej,kj

> p. However,
Pi

j=0
Cj,kj

< x impliesp−1 +
Pi

j=0
ej,kj

< p. Contra-
diction. Hence,Ji,ki

cannot be running atp, andp is not a
feasible preemption point.

Case 3:
Pi−1

j=0
cj,kj

> x. AssumeJi,ki
can be preempted atp, i.e.,

it may be running at time p. Hence, ∃
j=0..i−1

ej,kj s.t.

cj,kj
≤ ej,kj

≤ Cj,kj
and p−1 +

Pi−1

j=0
ej,kj

< p and

p−1 +
Pi

j=0
ej,kj

> p. However,
Pi−1

j=0
cj,kj

> x implies

p−1 +
Pi−1

j=0
ej,kj

> p. Contradiction. Hence,Ji,ki
cannot

be running atp, andp is not a feasible preemption point.



Hence, preemptions can only occur under Case 1, which is the
condition checked by our algorithm (see Figure 6) with the sum-
mations of WCET and BCET in the for loop and the check imple-
mented in the subsequent conditions.

6.3 Calculation of the Preemption Delay
While the above method determines the potential preemption

points, nothing has been mentioned about theactual preemption
delay that occurs at every point that is not eliminated. This delay
would, at every stage, be added to the WCET of the current task
and, hence, change the amount of time remaining for the current
task.

As an example, let us once again consider the task-set with char-
acteristics shown in Table 1. Consider the interval betweenpoints
0 and 1 on the timeline for taskT2 shown in Figure 5. To calculate
the delay thatJ20 incurs due to preemption at point 1, we need to
identify the iteration point withinJ20 that corresponds to the time
at which this preemption occurs. Since we do not know the actual
execution times of the higher priority jobs (in this case,J00 and
J10), we cannot be sure of exactly by how much the execution of
J20 proceeds in this interval. However, we may obtain upper and
lower bounds for the time available forJ20 by using the BCETs
and WCETs, respectively, of higher priority tasks executing in this
interval. In this example, subtracting the BCETs ofJ00 andJ10,
namely, 5 and 10 units, from the interval time of 20 units, we get an
upper bound of 5 units. The lower bound, calculated by subtracting
the WCETs ofJ00 andJ10 from the interval time, is 1 unit.

We provide each of these bounds as inputs to the static timing
analyzer framework, and, for each input, we obtain two iteration
points — one that represents the latest possible iteration point that
may be reached in the given time (obtained from the best-casetim-
ing analysis of the task) and the other that represents the earliest
iteration point that can be reached in the given time (obtained from
the worst-case timing analysis of the task).

Among the four iteration points obtained above, we considerthe
earliest and the latest points as marking the beginning and end, re-
spectively, of the range of iteration points that the current task could
be at while it is preempted. We then choose the iteration point
which would cause the highest preemption delay and take thatas
the worst-case delay at the preemption point being considered. This
delay is added to the remainder of the execution time of the current
task, and the new value is used as the remaining WCET of the cur-
rent task.

In the above example, let us assume that taskT2 has a loop with
100 iterations. The static timing analyzer performs a best-case anal-
ysis and determines that, in a time interval of 1 unit (lower bound
of time available forJ20), J20 can reach at most iteration 7. By
performing worst-case analysis, it determines thatJ20 is sure to
reach at least iteration 4 in 1 time unit. Similarly, it determines that
J20 can reach at most iteration 13 and at least iteration 9 in 5 time
units (upper bound of time available forJ20). Hence, the range of
iteration points that we need to consider is 4 to 13. Among these
iteration points, we choose the one that would produce highest pre-
emption delay and add this delay to the remaining execution time
of J20.

An algorithm for the calculation of the WCET bound by repeated
interaction with the static timing analyzer, depicted in Figure 7, is
described below. For every job, the preemption delays at every
point in the access chains is first calculated. Next, the algorithm to
calculate the number of preemptions for the current job is invoked.
The timing analyzer is then invoked to get the range of iteration
points that need to be considered for calculation of delay ata given
preemption point and the maximum delay in the given range of iter-

ation points is added to the WCET of the current job. This process,
starting from the calculation of preemption delays for points in the
access chain, is repeated for the next preemption point until there
are no more preemption points to consider.

curr job: current job being considered
done: bool // calculation of WCET complete?
curr preemptindex: current preemption point considered
chain info: array of delays incurred due to preemption

at every point in the access chain
max preempts: max. # preemptions for current job
min iter pt: earliest iteration point (IP) reached by

curr job in a given time
max iter pt: latest IP reached by currjob

in a given time
min exectime: BCET of currjob
max exectime: WCET of currjob
wcet: array containing WCET of every job of a task
max delay: preemption delay calculated at every stage

curr preemptindex← 0
while (done = false)
{

chain info← calcAccessChainWeights(currjob)
max preempts← calcMaxNumOfPreemptions(currjob)
min iter pt← getMinIterationPoint(minexectime)
max iter pt← getMaxIterationPoint(maxexectime)
max delay←max delay + calcWCDelayInRange(miniter pt,

max iter pt, chaininfo, curr job)
if (curr preemptindex≥ max preempts)

done← true
wcet[curr job]← wcet[curr job] + max delay
}

Figure 7: Bound WCET + Preemption Delays

6.4 Complexity of Analysis
For every task, the single task analysis is performed only once.

In this analysis, we walk through the iteration space of the task in
order to calculate the number and positions of data cache misses.
Hence, the time and space complexity for every task isO(n) where
n is the number of data references of the task.

To calculate worst-case preemption delay, first of all, we con-
sider every job of a task within the hyperperiod separately.For
every job, calculation of the number of preemption points has a
time complexity ofO(hp) wherehp is the number of higher prior-
ity jobs released during the period of the job since we have totest
every point for feasibility. For calculation of preemptiondelay at a
point, we have a constant time complexity. This is because wesim-
ply look up the weight of the access chain for the given job at the
given point. In order to identify the worst-case placement of a given
preemption point in the access space of a job, the time complexity
is O(n), i.e., we iterate over the range of possible iteration points
identified as potential positions for the preemption point (explained
in Section 6.3) in order to find the one with maximum preemption
cost. This is usually a small range since the maximum possible ex-
ecution time for a job within an interval is no larger than thelargest
interval between potential preemption points.

7. RESULTS
In all our experiments, we use benchmarks from the DSPStone

benchmark suite [26], the details of which are described in earlier
work [19]. We conducted experiments with several task sets con-
structed using the DSPStone benchmarks with different dataset
sizes. We used tasks sets that have a base utilization (utilization
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Figure 8: Experimental Results for Utilizations of 0.5 and 0.8



Benchmark Period WCET BCET # Jobs # Preempts # Preempts # Preempts # Preempts
New Method HJ Bound Old Method Staschulat

avg min max
200convolution 100000 14191 14191 40 0 0 0 0 0 0
300convolution 400000 20891 20891 10 0 0 0 4 4 1
500convolution 500000 34291 34291 8 0 0 0 7 7 2

300n-real-updates 800000 56538 47338 5 0.2 0 1 12 12 4
matrix1 1000000 59896 54015 4 1 1 1 17 16 6
600fir 2000000 54837 52537 2 0.5 0 1 34 33 8

800convolution 2000000 66191 54391 2 1.5 1 2 35 34 14
900lms 4000000 158636 118536 1 4 4 4 71 67 20

Table 2: Preemptions for Taskset with U=0.5

Benchmark Period WCET BCET # Jobs # Preempts # Preempts # Preempts # Preempts
New Method HJ Bound Old Method Staschulat

avg min max
n-real-updates 100000 16738 16838 50 0 0 0 0 0 0
900convolution 625000 76391 61091 8 0.75 0 1 7 7 1

matrix1 625000 59896 54015 8 1 1 1 8 8 3
1000convolution 625000 87091 67791 8 0.875 1 2 9 9 5
600convolution 1000000 45291 40991 5 0.4 0 1 16 15 7

300n-real-updates 1000000 56538 47338 5 0.875 1 3 17 16 9
800fir 1250000 77037 69737 4 2.25 1 3 23 21 18

900lms 1250000 158636 118536 4 4.5 5 7 24 22
1000fir 2500000 99237 86937 2 6 5 7 47 41
500fir 5000000 43937 43937 1 11 11 11 94 80

Table 3: Preemptions for Taskset with U=0.8

without considering preemption delays) of 0.5, 0.6, 0.7 and0.8.
For each of these utilization values, we constructed task sets with
2, 4, 6 and 8 tasks. We also constructed a set with 10 tasks for 0.8
utilization.

For the sake of comparison, we calculate the maximum number
of preemptions (n) possible for a task using four different methods.

1. A higher-priority job bound (HJ Bound) is determined by
simply counting the number of higher priority jobs for a task.
This method uses only the periods of tasks.

2. We calculate a tighter bound for the number of preemptions
using the old method proposed in prior work [19]. This
method uses the periods and WCETs of tasks.

3. We calculate the maximum number of methods considering
indirect preemption effects as proposed by Staschulatet al.
This method uses the periods and response times of tasks.
[21].

4. We calculate the maximum number of preemptions using the
range of execution times of higher priority jobs as proposed
in this paper. This method uses the periods, WCETs and
BCETs of tasks.

The first three methods of calculating the number of preemptions
give us no idea about the actual placement of the preemption points.
Hence, we aggregate the maximumn delays possible for the given
task to obtain the worst-case data cache related preemptiondelay.

We present results of complete response time analysis for task-
sets using real benchmarks. The results of the experiments for uti-
lizations 0.5 and 0.8 are presented in the graphs shown in Figure

8. Results for 0.6 and 0.7 are similar and have been omitted due to
space constraints. Each graph shows a different metric, WCET with
preemption delay, response time and maximum number of preemp-
tions, given a certain base utilization. The x-axis shows the various
task sets with 2, 4, 6 and 8 tasks. The plots include all tasks except
the highest priority task in every task set, which was omitted since
it cannot be preempted.

In all our results, we see that our new method derives a much
tighter estimate of the maximum number of preemptions for a task
and, hence, significantly tighter estimates of the WCET withdelay
and the response time of a task. In some of the results, the methods
used as comparison do not have response time values in the graph
(e.g., task sets 3, 4 and 5 for 0.8 base utilization). This means
that the response time was, in those cases, greater than the period,
hence making the task set unschedulable. Our method shows that,
in reality, those task sets are schedulable. This underlines the po-
tentially significant benefit of our new method. Further, in the case
of the method proposed by Staschulatet al., we calculate the maxi-
mum number of preemptions for a task based on its response time.
Hence, if the response time turns out to be greater than the period,
we do not report the value for maximum number of preemptions
for the task by this method.

We also observe that, within a task set, as we proceed towards
lower priority tasks, our method’s effectiveness improves. This is
indicated by the widening gap between the other methods and our
new method as we go towards lower priority tasks (up to an order
of magnitude). This is because the lower priority tasks havemuch
lower chances of getting scheduled in the initial intervalsbetween
preemptions points. Hence, more preemption points are deemed
infeasible by our method, thus tightening the bounds of the metrics.



Task Period WCET # Preempts # Preempts # Preempts # Preempts
ID New Method (Min/Max/Avg) HJ Bound Old Method Staschulat

W/B = 1 W/B = 1.5 W/B = 2 W/B = 2.5 W/B = 3
1 810000 16000 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1 8 8 2
2 100000 5000 0/1/0.25 0/1/0.25 0/2/0.5 0/2/0.5 0/2/0.5 12 12 4
3 200000 30000 3/3/3 3/4/3.5 3/5/4 3/5/4 3/5/4 25 25 8

Table 4: Preemptions for Taskset with U=0.5 for Varying WCET/BCET (W/B) rations

Task Period WCET # Preempts # Preempts # Preempts # Preempts
ID New Method (Min/Max/Avg) HJ Bound Old Method Staschulat

W/B = 1 W/B = 1.5 W/B = 2 W/B = 2.5 W/B = 3
1 80000 20000 2/2/2 2/2/2 2/2/2 2/2/2 2/2/2 8 8 3
2 100000 12000 1/2/1.5 1/3/1.75 1/3/1.75 1/4/2 1/4/2 12 12 6
3 200000 50000 6/6/6 7/10/8.5 8/12/10 9/14/11.5 9/14/11.5 25 25 19

Table 5: Preemptions for Taskset with U=0.8 for Varying WCET/BCET (W/B) rations

The results with utilization 0.8 show a higher number of preemp-
tions than the one with utilization 0.5. At the higher utilization,
some tasks have a higher WCET and, hence, can be preempted
more frequently. Due to the increased number of preemptions, we
also observe higher response times in this case.

Notice that the priority of a task is not significant in terms of its
WCET bound, even when including the preemption delay, mostly
because the base WCET dominates the preemption delay cost. This
is evident for task 6 in Figures 8(c) and 8(d), which has a lower
WCET with delay than its predecessor, task 5. In other words,the
ordering of tasks is rate-monotone, not necessary WCET-monotone.

From the results, we make several observations about prior meth-
ods. For the task with second highest priority in each task set, since
there is only one task above it, we observe that the HJ bound, our
old method and the method proposed by Staschulatet al. give the
same result. However, as we proceed towards lower priority tasks
within a task set, our old method gives tighter results when com-
pared to the HJ bound. This is because our old method takes into
account the WCET of a task and not just the period as the HJ bound
method does. The method proposed by Staschulatet al. produces
tighter results when compared to both our old method and the HJ
bound. This is because the Staschulat method considers the ef-
fects of indirect preemptions correctly. However, the new method
proposed in this paper produces tighter results than all three prior
methods.

In order to show the variation in the maximum number of pre-
emptions obtained by our new method between the various jobs
of a task, we provide results for two task sets of different sizes in
Tables 2 and 3.

We observe that the new method always produces asignificantly
lower value than that produced by the previous methods. As we
proceed towards lower priority tasks, we observe differences in the
minimum, maximum and average number of preemptions for dif-
ferent jobs. Further, it was observed during experimentation (not
indicated in tables) that the maximum value for number of preemp-
tions was not always obtained for the first job of the task (released
at the same time as all higher priority jobs). This proves theclaim
we make in Section 4 about the critical instancenot being the in-
stance at which jobs of all tasks are released at the same time. Here
again, in the case of 0.8 utilization, we do not report the maximum
number of preemptions obtained by the Staschulat method forsome
tasks. This is because the task has a response time that is greater
than its period and, hence, we cannot calculate the maximum num-
ber of preemptions, which is based on the response time.

Finally, we performed a series of experiments with synthetic task
sets where we vary the ratio of the WCET of a task to its BCET,
maintaining all other parameters. The results of these experiments
for utilizations 0.5 and 0.8 are shown in Tables 4 and 5, respec-
tively. We obtained results for ratios of 1, 1.5, 2, 2.5 and 3 for
each of the utilizations. The results indicate that the number of pre-
emptions calculated by our are significantly lower than for previous
methods. Furthermore, for our new method this metric only varies
for low values of the WCET/BCET ratio. Ratios of 3 or higher
settle at a fixpoint for this task set,i.e., if the BCET decreases any
further, it does not affect our calculation of the maximum num-
ber of preemptions. Hence, we could calculate maximum number
of preemptions for various WCET/BCET ratios for a given taskset.
Alternatively, if the preemption bound saturates at a low ratio, there
is no need to calculate the BCET for a task at all. Instead, we could
use a value of BCET=0.

8. CONCLUSION
This work provides a method to calculate cache related preemp-

tion delay. It is specifically suited to data caches and integrates with
past would in instruction cache and pipeline analysis. We enhance
a framework that was developed in prior work to calculate bounds
for the preemption delay within data cache reference patterns for
real-time tasks. Using these bounds to calculate tighter estimates
of the WCET of tasks, we perform response time analysis on all
tasks in a task set to determine its schedulability.

The contributions of this paper are:

1. Determination of a new critical instance under cache preemp-
tion;

2. calculation of a significantly tighter bound for the maximum
number of preemptions possible for a given task; and

3. construction of a realistic worst-case scenario for the place-
ment of preemption points.

A feedback mechanism provides the means to interact with thetim-
ing analyzer, which subsequently times another interval ofa task
bounded by the next preemption.

Our results show that a significant improvement (of up to an or-
der of magnitude over some prior methods and up to half an order
of magnitude over others) in bounds for (a) the number of preemp-
tions, (b) the WCET and (c) the response time of a task are ob-
tained. This work also contributes a methodology to integrate data



caches into preemption delay determination under response-time
analysis and, in this context, considers a critical instances of stag-
gered releases, both of which are novel, to the best of our knowl-
edge. Future work will quantify the effect of phasing on bounding
feasible preemption points.
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[23] X. Vera, J. Llosa, A. González, and N. Bermudo. A fast and
accurate approach to analyze cache memory behavior
(research note).Lecture Notes in Computer Science,
1900:194–198, 2000.

[24] X. Vera and J. Xue. Let’s study whole-program cache
behavior analytically. InInternational Symposium on High
Performance Computer Architecture. IEEE, Feb. 2002.

[25] R. T. White, F. Mueller, C. Healy, D. Whalley, and M. G.
Harmon. Timing analysis for data and wrap-around fill
caches.Real-Time Systems, 17(2/3):209–233, Nov. 1999.

[26] V. Zivojnovic, J. Velarde, C. Schlager, and H. Meyr.
Dspstone: A dsp-oriented benchmarking methodology. In
Signal Processing Applications and Technology, 1994.


