
Enforceability vs. Accountability in Electronic Policies

Travis D. Breaux and Annie I. Antón

North Carolina State University
Raleigh, North Carolina, USA

{tdbreaux, aianton}@eos.ncsu.edu

Clare-Marie Karat and John Karat
IBM TJ Watson Research Center

Hawthorne, New York, USA
{ckarat, jkarat}@us.ibm.com

Abstract: Laws, regulations and standards are
increasing the requirements complexity of software
systems that ensure information resources are both
available and protected. To accommodate these
requirements and demonstrate compliance, we extend
accountability in software systems to include personnel
responsibilities as they interact with access control and
authorization mechanisms. To this end, we distinguish
between enforceable and accountable security policies
and show the value of both in achieving compliance.
We propose a policy model that leverages resource
ownership to build accountability across permissions
and obligations. The model accounts for the authorized
delegation of permissions and obligations as well as
the decisions made by authorized personnel when they
interpret and refine high-level goals into permissions
and obligations that satisfy those goals. Regulators and
compliance officers can use the model to determine
both how and why a particular resource is used to
evaluate risk and increase security. We motivate our
proposed model by analyzing security program,
technical issue and system policies and standards from
the ISO and NIST and U.S. regulations governing
healthcare and finance.

1. Introduction
Risk and compliance are providing new motivation

for incorporating personnel responsibilities and non-
functional requirements into electronic policies that
govern software systems. Risk is the possibility that an
organization will suffer harm or loss while compliance
is the ability to hold a defensible position in a court of
law. Risk and compliance require a broader definition
of accountability beyond the traditional scope of access
control and authorization. In the broader definition,
organizations must demonstrate what restrictions are in
place to protect resources, as well as how and why
resources are used in an organization. This information
is typically captured in software requirements
documents and elaborated in software design. Using
electronic policies similar to those proposed by Moffett
and Sloman [25], this information can be integrated
with an access control and configuration management
framework to ensure compliance and accountability.

This paper proposes an enterprise-wide policy
model that addresses accountability through ownership,

permissions and obligations. Ownership allows those
primarily responsible for resources to delegate
responsibility for managing resources without
delegating accountability for those resources. Where
permissions describe what people and systems are
permitted to do, obligations describe what people and
systems must do, including personnel responsibilities
that are typically not part of software system design.
Laws, regulations and standards require that these
obligations be accountable in the context of access
control and authorization but current software systems
exhibit limited support for this. In this work, we
address policies in system administration and not
policies governing the software development process.

The remainder of the paper is organized as follows:
Section 2 provides the background and motivation for
this work; Section 3 provides a review of related work
in policy models and frameworks; Section 4 presents a
scenario to contextualize remaining sections; Section 5
presents the main definitions in our policy model
distinguishing between enforceable and accountable
policies; Section 6 defines constraints motivated by our
analysis; in Section 7 we discuss related work; and,
finally, in Section 8 we discuss our model in the
context of four categories of personnel responsibilities.

2. Background and Motivation
To develop an understanding of the relationship

between organizational security policies and federal
law, regulations and standards, we analyzed such
documents to identify policy objects, e.g.
responsibilities and access control rules. Guided by the
Introduction to Computer Security: The NIST
Handbook (SP-800-12), we compared laws, regulations
and standards according to their policy influence in
Program Policies (P), Issue Policies (I), and System
Policies (S); Table 1 shows checkmarks where each
document influences these three policy scopes.
Program policies (P) define high-level security goals,
security personnel, and personnel responsibilities
needed to implement a security program. Issue policies
(I) are high-level policies that address a single legal or
technical security issue such as properly handling
financial or health information, contingency planning,
patch-management or remote connectivity. System

policies (S) are low-level technical policies that
describe how to configure specific systems and
applications.

The laws, regulations and standards we reviewed
(see Table 1) contain several notable overlaps. For
example, the U.S. Federal Information Security
Management Act (FISMA), the Introduction to
Computer Security: The NIST Handbook (SP-800-12)
and the ISO standard Code of Practice for Information
Security Management (ISO 17799) all provide policy
guidance to security programs. However, we observed
the influences on issue policies from regulations to be
domain-sensitive; for example, privacy requirements
for information sharing practices in healthcare
(HIPAA) and finance (GLBA, SOX). Notably, HIPAA
affects all policy scopes and requires organizations to
use role-based access control (RBAC) in systems.
Finally, the Common Criteria (ISO 15408) and
Engineering Principles for Information Technology
Security (SP-800-27) govern the software development
process rather than policies in system administration.

Policy Scope

P I S
FISMA
SOX
GLBA

Laws and
Regulations

HIPAA
ISO 15408/CC
ISO 17799
NIST 800-12

Standards

NIST 800-27

Table 1: Policy Influence from Laws, Regulations,
Standards

In addition to the aforementioned laws, regulations
and standards, we analyzed three organizational
security policies from large organizations in finance,
government and technology. Two of these policies
have been promoted as best-of-breed policies; the
government policy by NIST [37] and the technology
policy by a security consulting service owned by a
Fortune 500 company. Each policy contains over 500
pages that cover program, issue, and system policy
scopes. We chose to analyze the technology policy in
detail since it serves the largest of the three
organizations and it is actively used in security
consulting services. From this policy, we categorized
individual statements describing personnel
responsibilities into the following four categories:

• Classification: Responsibilities to classify people

and resources. Classes include roles for users,

confidentiality for information flows, or valid
purposes for data and application use.

• Notification: Responsibilities to notify personnel
of security-related events such as new or existing
vulnerabilities.

• Review/Audit: Responsibilities to review
permissions and obligations to ensure minimal
access to resources and evaluate compliance.

• Documentation: Responsibilities to document
security-related decisions, such as granting
permissions and assigning or implementing
obligations.

The detailed classification of responsibilities from the
analyzed document included only the program policy
portion which accounts for less than 11% of the whole
organizational security policy; the remaining 89%
includes only issue and system policies. Our analysis
suggests that program policies define an organization’s
security program from high-level goals and obligations
that are delegated down a management hierarchy (e.g.,
from managers to subordinates) and are incrementally
refined and implemented along the way as system
policies. Issue policies are defined by specialists on a
per-issue or per-regulation basis and distributed across
departments in an organization. Where security reduces
risk through obligations, an organization’s business
needs require flexibility through increased access. To
accommodate the scope of organizational security
policies in the context of laws, regulations and
standards, we propose a policy model that emphasizes
accountability by integrating ownership and personnel
responsibilities with permissions.

3. Policy Models and Frameworks
Research in policy models and frameworks has

been shifting focus to include broader issues in
organizational management. We see evidence for this
shift in both access control frameworks limited to
permissions [8, 26, 27, 31] and more progressive
approaches that also include obligations and delegation
[16, 20, 23, 28]. Permissions describe what people and
systems are permitted to do while obligations describe
what people and systems must do given certain
restrictions or constraints. In delegation, a person
delegates their authority or responsibility to another
person; the latter person acts on behalf of the former.

Role-based access control (RBAC) is a popular
framework in which a role is defined as a job function
and permissions are associated with roles [31]. Recent
work shows RBAC with delegation [26, 27] and
temporal constraints [7, 8] necessary to integrate
aspects of management hierarchy and business context
from large organizations. However, the relationship
between roles, obligations and permissions is not clear.

A role is defined as a job function yet popular
examples show roles as job titles [8, 26, 27, 31], which
arguably represent collections of job functions or
obligations. Our analysis in security policies and
legislative requirements in HIPAA [35], however,
require that permissions be assigned based on specific
obligations. These obligations are not sufficiently
distinguished by unique job titles. In addition, role
hierarchies are insufficient to model management
hierarchies since they do not distinguish between
authority and mandate, as we do in Section 6.

Several policy languages represent obligations.
Moffett and Sloman present a definition for delegating
permissions and obligations [25] implemented in the
Ponder language [15, 16]. The delegated responsibility
fulfills a broader purpose, justification or cause implied
by the act of delegation. While this relationship is
consistently found in delegation, it also appears in
situations when a person refines or implements their
own obligations. We expand upon this distinction
called instrumentation in Sections 6. Ponder does not
represent requirements per say, but Moffett has since
championed the need to include requirements in the
scope of obligations [24]. In our analysis, we observed
that modeling both system requirements and personnel
responsibilities are necessary to ensure compliance.
Finally, the EPAL language associates data access with
intended use or purpose (e.g., marketing, payment, etc.)
as a precondition or obligation [20]. The policy
languages KAoS [33], REI [19] and P3P [14] model
obligations but focus on concerns in web infrastructure
and do not address administrative aspects of
obligations.

Cholvy et al. define responsibility (obligation) as
avoiding penalty states or providing notification or an
account for one’s actions [13]. We observed both
distinctions in our analysis and incorporate them into
our policy model. Minsky and Ungureanu define
penalties as sanctions in the LGI model that involve
actions performed after the expiration of a deadline
[23]. The UCONABC model by Park and Sandhu is
limited to system requirements yet includes
consequences if requirements are violated [28]. We
observed that both accounting for unsatisfied
obligations and imposing penalties are prescribed in
organizational security policies, standards and law.

Rees et al. describe an information security
framework called PFIRES that combines policy
assessment and review to mitigate risk in
organizational security [29]. The framework does not
address policies as system objects, per se. However,
they propose improving security by passing messages
between personnel to communicate obligations and
monitor compliance; these messages could be
structured policy objects for accountability.

4. Policy Scenario
Consider a scenario where the Chief Security

Officer (CSO) has been assigned the high-level
security goal (a non-functional requirement) NFR1 =
“to ensure that information is secure.” The CSO
implements NFR1 by assigning several new non-
functional requirements including NFR2 “ensure
internal communications are confidential” to their IT
security manager in charge of network security. The IT
security manager responds by identifying all modes of
“internal communications” relevant to satisfying their
new obligation. As a result, the manager identifies
internal web and e-mail servers among others that use
TCP/IP network connections to share information
between internal systems. The manager, with both
authority over who administers these servers and
knowledge of available security mechanisms in these
systems, implements their obligation by assigning new
functional requirements including FR1 “ensure web
servers use SSL for internal connections” and FR2
“ensure mail servers use TLS for internal connections”
to only relevant system administrators in different
departments. One system administrator responsible for
a mail server running Linux receives FR2 and
implements the requirement with a series of
configuration directives which they apply to their
system: FR1 = “install latest OpenSSL libraries,” FR2 =
“compile and configure Sendmail with TLS support”,
FR3 = “generate X.509 certificates for Sendmail,” etc.

At each level in the delegation hierarchy of
obligations, the manager knows what goal their
subordinate must achieve but may not have the
technical knowledge to know how the subordinate will
achieve this goal. Each person who creates an
obligation owns that obligation and the decisions to
implement an obligation by creating new obligations
(or permissions) are called instrumentations. Tracing
permissions and obligations through ownership,
instrumentation and delegation are necessary to quickly
identify how and why vulnerabilities are addressed to
reduce risk and ensure compliance.

5. Security, Risk and Compliance
Security should be commensurate with risk.

Increasing security reduces risk and reduces
independence to conduct transactions in an
organization. While transactions which make systems
vulnerable are undesirable, those transactions which
include innovation and crisis management are highly
desirable yet unforeseeable. Consequently, policies
must evolve to accommodate an organization’s need
for security and autonomy in a dynamic environment.

From our analysis, we identified three types of
policy elements that support this evolution: obligations,
recommendations and permissions (see Figure 1).

Obligations describe the actions principals must
perform and are distinguished in two ways: an
obligation is called a requirement if the principal is a
system or process; otherwise, the principal is a person
and the obligation is called a responsibility.
Requirements are implemented using configuration
directives implemented by changing parameters in a
configuration file or database table, manipulating
controls in a user interface or recompiling components
from source code. Legacy systems have fixed
requirements causing these systems to dictate policy to
an organization. In general, obligations are used to
establish baseline or minimal security since all
principals are expected to comply with obligations. If a
principal is non-compliant, then a penalty is imposed
on the principal to compel compliance or to limit their
non-compliant behavior. Obligations without penalties
are called recommendations. Recommendations are
implemented at the discretion of principals to increase
baseline security while offering principals flexibility in
unusual circumstances. Finally, permissions define
allowable actions to facilitate organizational practices.

We formally define obligations, recommendations
and permissions by rules expressed as triples 〈C, xT, xF〉
for a set C of constraints and if every constraint in C is
satisfied execute the action xT , otherwise execute the
action xF. Rules are evaluated using an application
context E containing evidence from past and present
system states in the form of key, value pairs (k, v). The
values for each key may be obtained by executing non-
trivial functions. Constraints in C are defined by the
triple 〈k, f, K〉 for a key k, Boolean function f, and set K
of constants. The constraint evaluates to true if f(V, K)
is true for V = {v | (k, v) ∈ E}. For example, a role-
based mechanism defined by the constraint (role, frole,
K) where K = {c} for a role constant c is evaluated as
follows: obtain the set of roles R = {r | (role, r) ∈ E}
for a principal’s application context E; evaluate f(R, K)

by searching roles r ∈ R and return true if the role
constant c is equivalent to role r or its parent roles in
the transitive closure of the role hierarchy, otherwise
return false.

Accountable Enforceable

Permissions
Obligations (reactive)

Recommendations

Responsibilities

Requirements
Obligations
(preemptive)

Figure 1: Policy Elements

It is important to note that principals may be
indirectly assigned permissions and obligations using
constraints. Our previous work shows that these
constraints have deep structures that require abstract
mechanisms [9, 10, 11]. These constraints specify
when, how, or why a principal is executing an action
regardless of who the principal is. Alternatively, an
object may be indirectly referenced by its attributes
which may be shared by multiple objects. In both
regards, these permissions and obligations are
dynamically assigned to principals based on evidence
in a specific context. For example, a role-based
permission directly identifies only an authorized role
and indirectly users who may change roles
periodically. For this reason, we use the terms assign
and create for permissions and obligations
interchangeably; recognizing that assignment is
abstract and may only be realized given a specific
application context.

5.1 Permissions
Permissions are rules that determine when a

principal is permitted to perform an action on an
object. Formally, a permission P = 〈C, xT, xF〉 for a set

C of constraints that, when all are satisfied, cause the
action xT to execute authorizing the principal p to
perform an action a on an object o (see Figure 2). The
action xF denies permission. Evaluating a permission
requires an application context E to minimally contain
the intention, evidenced by {(principal, p), (action, a),
(object, o)} ⊆ E. We assume a principal is denied the
ability to perform an action if no permission granting
the ability exists. Finally, the permission pool P*
contains all permissions within a single policy scope.

C
true

false

xT

Figure 2: Anatomy of a Permission

Example actions and objects include: a principal
reads or writes to a file in a classified directory; selects,
inserts or deletes a record from a database table; or
routes data through a specific gateway. Alternatively,
the objects may be permissions or obligations to be
delegated or instrumented as described in section 6.

5.2 Obligations and Recommendations
Obligations are rules that require a principal to

maintain or achieve a state within a software system.
Presumably, the principal will perform or avoid
performing certain actions to satisfy an obligation.
Formally, an obligation is defined by three rules 〈C, xT,
xF〉, 〈A, aT, aF〉, 〈S, sT, sF〉 for a condition set C of
constraints (pre-conditions), which when all are
satisfied, the action xT is executed causing the principal
to become obligated; an achievement set A of
constraints that must be satisfied (maintained or
achieved) while the principal is obligated; and a
penalty set S of constraints that when all are satisfied
executes the action sT imposing a penalty on the
principal. For convenience, we define an obligation O
= 〈C, A, S〉 summarizing the constraint sets of the three
rules. Valid constraints include temporal constraints
between events or the effects of unspecified actions. If
the events are actions performed by the principal
within the scope of the system, the principal must have
permissions to perform those actions in order to satisfy
the obligation. Finally, O* contains all the obligations
defined within a single policy scope.

Obligations may be maintenance or achievement
goals [1] (see Figure 3). Maintenance goals require

principals to maintain properties within a system
demonstrated by continually satisfying the constraints
in achievement set A for an obligation O. Maintenance
goals include monitoring performance within runtime
limits (e.g., number of errors, data loss, downtime, or
unauthorized disclosures) as part of a broad security
overview. Formally, for a maintenance goal O, there is
an unsatisfied constraint in the achievement set A if and
only if all constraints in the penalty set S are satisfied.
Notably, aF = sT in a maintenance goal. On the other
hand, achievement goals require principals to perform
actions to achieve a system state. The penalty set S

contains constraints that are satisfied by passing a
virtual or physical limit such as a deadline or resource
quota.

Recommendations are like obligations but without
penalties imposed on principals who do not maintain or
achieve recommended states. Recommendations are
defined by two rules 〈C, xT, xF〉 and 〈A, aT, aF〉 for a
condition set C of constraints (pre-conditions) that
when all are satisfied executes the action xT assigning
the recommendation to a principal and an achievement
set A of constraints that should be satisfied (maintained
or achieved) to comply with the recommendation.

5.3 Enforceable vs. Accountable Policies
An enforceable policy requires a pre-emptive

mechanism to irrefutably constrain or compel a
principal’s actions. Permissions are always enforceable
while obligations are enforceable if they satisfy two
conditions: 1) the satisfaction of the obligation is a
constraint in a permission and 2) the performance of
the action governed by the permission is the only
means to violate the obligation. For example, a
principal is obligated to classify resources by level of
confidentiality before they are permitted to share those
resources. The obligation “to classify resources” is a
constraint in the permission “to share resources” that is
violated only if the obligated principal shares
unclassified resources. Formally, an obligation O is
enforceable if there exists a permission P such that A ⊆
C for A ∈ O and C ∈ P and the constraints in the
penalty set S ∈ O are satisfiable only by executing the
governed action a for (action, a) ⊆ E.

C A S

aT sT

true

true false ruefalse

false

An accountable policy, on the other hand, only
requires a reactive mechanism to determine if a
principal is compliant. While penalties often compel
principals to satisfy their obligations, they do not
guarantee principals will do so. In fact, obligations are
at least accountable since at the moment a principal is
penalized the system is already in an undesirable state.
Despite this fact, penalties may include revoking
permissions from principals to limit the impact of their
non-compliance. Furthermore, recording instances of
non-compliance provides important documentation that
may be used to motivate restructuring accountable
policies into enforceable policies or acquiring new
technology to implement enforceable policies.

Achievement Goal

Figure 3: Anatomy of Obligations

C A S

aF sT

true

false false truetrue

false

Maintenance Goal

In some instances, the lack of available preemptive
mechanisms to replace reactive mechanisms is only a
technological limitation. For example, consider a quota
policy governing a principal with permission to create
files and write data to files in a file system. The intent
of the policy is to limit the principal’s ability to write
data in excess of a pre-specified limit or quota using an
obligation. Some file systems enforce this policy by
tracking the principal’s disk usage and coupling it with

a constraint in the principal’s write permission.
However, in other file systems, the access control
framework does not support such constraints. In this
situation, a maintenance obligation that uses a reactive
mechanism may compel a principal to keep their disk
usage under quota. The obligation is achieved when the
principal is under quota and the penalty involves
revoking the principal’s write permission after their
usage has exceeded quota. Another action must be
executed to reinstate the principal’s write permission
when they recomply with the obligation. Obligations
should be used when the technology to enforce policies
cannot be adapted to legacy software systems.

Obligations including non-functional requirements
or personnel responsibilities outside the scope of
software systems are accountable through testimony.
Non-functional requirements are properties in a
software system to be achieved that, unlike constraints,
are not testable. Regardless, these obligations may still
have satisfiable constraints to detect violations and
penalize the principal. For this type of obligation, a
principal satisfies all constraints in the achievement set
A by providing structured testimony such as a strategy
described in Section 6. If the obligation is violated, a
regulator or compliance officer may compare the
strategy with best-practices. On the other hand, if the
obligation is a personnel responsibility outside the
system scope, the testimony may be a single Boolean
constraint satisfied by user feedback; for example,
when a user accepts Terms and Conditions (TOC)
before using a service or logging into a system.
Electronically documenting these types of obligations
is necessary to challenge a principal’s implementation
to improve security or assign liability after a non-
compliance event has already occurred.

6. Management and Accountability
Ensuring accountability requires documenting and

maintaining all personnel decisions and relevant
information used to allow or restrict access to
resources. Permissions and obligations must be tightly
coupled so that access to resources is traceable through
personnel responsibilities and the authority to delegate
those responsibilities. We propose several properties
that must be preserved across the lifecycle of principals
and objects. These properties allow users to determine
which resources are accessed by whom and for what
purpose. We address these properties in three
management areas: ownership, instrumentation, and
delegation. After defining these areas and relevant
terms, we discuss these properties in delegation.

Ownership refers to the principal who is solely
accountable and at least initially responsible for the
proper management and security of objects they own.
Ownership begins with the creation and ends with the
destruction of an object. We define the ownership set

N* containing pairs (n, o) for principal owner n and
object o. When an object is created, the system assigns
the owner a set of maintenance permissions minimally
including the permission to destroy the object. The
system owns maintenance permissions and is
responsible for destroying these permissions when an
object is destroyed. The object type (e.g., permission,
obligation, resource, etc.) determines how the object is
maintained and which other maintenance permissions
are assigned to the owner. Transferring ownership of
an object to another principal requires transferring
ownership of associated permissions and obligations
governing that object and created by the owner. We do
not consider the non-trivial downstream dependencies
in instrumentation and delegation that occur when a
principal destroys an object, however.

Instrumentation is the act of documenting both how
and why permissions and obligations are assigned to
principals. Obligations are instrumented with
permissions and other obligations, called instruments,
which answer how the instrumented obligation will be
satisfied. The instrumented obligation answers why the
instruments are assigned to principals. For example, in
our scenario NFR2 in part answers how NFR1 will be
satisfied while NFR1 answers why NFR2 has been
assigned to the manager. We define the instrumentation
set I* containing pairs (O, I) for an obligation O
instrumented by an instrument I which is either a
permission or obligation. When a principal creates an
obligation, the maintenance permission to instrument
that obligation is assigned to the owner.

Obligations which are non-functional goals are not
testable; however, they may be refined or partitioned
by an instrument set called a strategy. Principals who
develop strategies are documenting their assumptions
with permissions and obligations which they claim
satisfy the instrumented obligation. Strategies are
tightly coupled with the obligations they instrument, so
that satisfying the strategy satisfies the instrumented
obligation. For an obligation O satisfied by a strategy IS
= {I | (O, I) ∈ I*}, the achievement set A ∈ O is
satisfied if every achievement set AI ∈ I is satisfied for
all I ∈ IS and the penalty set S ∈ O is satisfied if any
one penalty set SI ∈ I is satisfied for all I ∈ IS.

Delegation is the act by which a principal
(delegator) assigns permissions and obligations to other
principals (delegatees). When a principal creates a
resource, they receive a maintenance permission to
create permissions for that resource. In some cases, it
may be necessary for principals to allow other
principals to create resource permissions by delegating
the “permission to create permissions” to the other
principals. We define the delegation set D* containing
permission pairs 〈P, D〉 for the permission P to create a
permission which the delegator n assigns to the

delegatee as the new permission D. For the system s,
we distinguish ownership by {(s, P) , (n, D)} ⊆ N*.

Principals exercise both their authority and their
mandate when they delegate obligations. We
distinguish authority, defined by the permission to
delegate permissions and obligations, from mandate,
defined by the valid obligation which a principal must
instrument when delegating an obligation to their
subordinate. We define the management set M*
containing the triples 〈m, s, M〉 for a principal manager
m, principal subordinate s (person or system) and the
set M of obligations such that the manager m is
permitted to assign obligations to their subordinate s
only by instrumenting obligations in M. The delegation
of permissions and obligations are governed by
separate management sets. We leave the complex
semantic issues in determining whether a delegated
obligation satisfies a particular mandate to the
principals involved in the delegation.

To ensure accountability, we maintain properties in
delegation that involve ownership and instrumentation.
We separately consider properties when principals are:
1) delegating permission to access objects or delegating
permission to create permissions; and 2) delegating
obligations that are responsibilities or requirements.
We assume that principals who instrument obligations
have permission to do so.

6.1 Delegating Permissions
When a principal delegates a permission governing

an object, we must ensure three properties: 1) the new
permission instruments an existing obligation, 2) the
permission is restricted to objects owned by the
delegator and 3) the delegated permission may only
narrow the scope of access. The first property is
required in a fully accountable policy while the second
and third properties result from using an abstract
constraint mechanism.

In fully accountable policies, permissions are
assigned to satisfy an obligation of the delegator,
delegatee or another principal. The instrumentation set
can account for this relationship; however, we enforce
it by requiring that all permissions contain a constraint
satisfied only if the instrumented obligation exists.
When an obligation is revoked from a principal (e.g.,
destroyed), this constraint will no longer be satisfiable
ensuring the permission becomes ineffective. Tightly
coupling obligations with their instrumenting
permissions supports least privilege and increases
security in the event of ephemeral obligations. For each
permission P, we define the constraint 〈k, f, K〉 where
(k, O) ∈ E for all (O, P) ∈ I* where obligation O is
instrumented by the permission P; the constraint
constants K = {O′} for an obligation O′ that the

permission P must instrument; and f(V, K) returns true
if O′ ∈ V, otherwise it returns false.

Recall that in our rule-based approach, abstract
mechanisms evaluate constraints in permissions, which
permits defining permissions using classes of
principals and objects. Since a permission can be
defined for a class of objects, we ensure the scope of
objects is limited to a specific owner. We define the
constraint 〈object, f, K〉 where constraint constants K =
{n} for a principal owner n; the value set V = {o |
(object, o) ∈ E}; and f(V, K) returns true only if (n, o)
∈ N* for o ∈ V. The constraint must persist for the
lifetime of the permission. If the permission is
delegated, then the new permission assigned to the
delegatee must include the unedited constraint. If the
permission is transferred to another owner, say as part
of transferring ownership for the governed object, the
constraint constant n must be updated for the new
owner, accordingly.

When a principal delegates a permission P to create
permissions for objects, the delegatee must only be
permitted to narrow the scope of access in the
permissions they create. For example, a delegator may
wish to ensure that the delegatee creates permissions
with a set of constraints C1. In addition, the delegatee
may wish to narrow the scope of access by adding
permissions C2. Ultimately, each permission created by
the delegatee has the set C of conditions such that C1 ⊆
C. We define the constraint 〈k, f, K〉 where (k, c) ∈ E
for all constraints c ∈ C in the permission P; the
constraint constants K contains the minimal set of
constraints for the new permission; and f(V, K) is true
only if K ⊆ V.

6.2 Delegating Obligations
When a principal delegates an obligation to a

delegatee, we must ensure two properties: 1) the new
obligation instruments an existing obligation within the
delegator’s mandate and 2) the principal owners of
systems including applications and processes are
obligated to satisfy requirements on those systems.

To ensure an obligation instruments an existing
obligation, we can employ a constraint mechanism
similar to the one in section 6.1 in the constraints of the
delegated obligation. However, mandates further
restrict such authority and require the instrumented
obligation exists within a limited set called the
mandate. For a manager m delegating an obligation I to
a subordinate s under the mandate set M, we define the
constraint 〈principle, f, K〉 where the constraint
constants K = {m, I} for the manager m and obligation
I; the value set V = {p | (principal, p) ∈ E}; and f(V, K)
returns true only if there exists (O, I) ∈ I* such that O
∈ M for 〈m, p, M〉 ∈ M*. If the instrumented obligation
is revoked or the mandate for the subordinate changes

and no longer includes the instrumented obligation, the
delegated obligation will become ineffective.

System owners are initially responsible for
implementing requirements, although in some cases,
they may delegate these obligations to subordinates.
The responsibility of a principal to achieve or maintain
a requirement is defined by the same achievement set A
and penalty set S for the requirement O. However, the
condition set C for the responsibility obligates the
owner of the system, whereas the requirement’s
condition set obligates the system, itself. We define the
constraint 〈principle, f, K〉 where the constraint
constants K = {s} for a system s; the value set V = {p |
(principal, p) ∈ E}; and f(V, K) returns true if (p, s) ∈
N*, otherwise it returns false. If ownership is
transferred to a new principal, the obligation to
implement the requirement will obligate the new
owner, accordingly.

7. Related Work
Several concepts in our policy model have

previously appeared in requirements engineering and
goal-based methods, access control in distributed
systems, runtime and compile time configuration
management, and policy compliance in general.

In requirements engineering, Antón et al. show how
non-functional requirements can be implemented
through functional requirements; a notion we capture in
our definition of instrumentation in section 6 [2].
Mylopolous et al. propose the Secure Tropos
framework for modeling ownership and delegation that
defines obligations as trust in execution [17]. Secure
Tropos models delegating permissions on condition of
satisfying an obligation (enforceable obligations) and
includes a design pattern for monitoring accountable
obligations. Bandara et al. propose goal
operationalization which includes delegation and
instrumentation to refine high-level goals (obligations)
using Event Calculus [3].

Permissions have received much attention in
distributed systems as we now discuss. Delegating
permissions generally means delegating the ability to
create permissions. Barka and Sandhu extend this
definition with the notion of permanence which we call
transferring ownership, totality or the scope of access
in delegated permissions, and cascading revocation in
transitive delegation [5], which we do not address. Park
et al. consider classification as a constraint in the
context of role-based access control [27]. Bandmann et
al. address delegating the ability to create permissions
without delegating access to the resource [4] to ensure
least priviledge. Park and Sandhu in the UCONABC
model identify obligations associated with
consequences and obligations that precondition

permissions [28], which we distinguish as enforceable
obligations.

Review, audit and notification are emphasized in
the broader context of policy and compliance. Schaad
and Moffett formalize the t37 of review for delegated
obligations [32]. Ryutov and Neumann describe the
need for conditional actions to include event
notifications [30]. Conditional actions are more general
than permissions and obligations since they lack proper
modality. In our experience, notifications are defined
as obligations, but they may be expressed as
conditional actions. Madigan et al describe a case study
showing how combining obligations with procedures to
implement those obligations improves policy
compliance [21].

8. Discussion and Summary
Our policy model defines accountability through

ownership, instrumentation and delegation and
supports classification, notification, review/ audit and
documentation as found in organizational security
policies, regulations and standards.

Managers and resource owners are responsible for
ensuring their subordinates and resources are properly
classified. For example, principals are classified by the
functions they perform (e.g., obligations), called roles
[31, 36, 38]. Applications and data are classified by
confidentiality, business need or intended purpose [35,
38]. Hosts, services and client applications are
classified by vulnerability [22]. Constraint mechanisms
use classes to restrict permissions and obligations.
When the classification for principals or resources is
changed, corresponding permissions and obligations
are revoked or assigned based on the satisfiability of
class-based constraints.

Security programs include obligations assigned to
managers and resource owners to notify others of
events including isolated security incidents or known
vulnerabilities. Obligations can be used to monitor
security requirements for incidents and send incident
reports to resource owners and managers. Vulnerability
announcements sent by third parties such as CERT or
NIST can be conditionally assigned to managers and
resource owners as new obligations.

Organizational security policies require that
principals periodically review permissions to ensure
that other principals have least priviledge to perform
their job functions. Over time, the principal’s job
functions will change. For example, the principal
completes a short-term project or the principal transfers
to a new employee position. Regardless of the cause,
the change in the principal’s job function is evidence
for restructuring their permissions. Instrumentation and
mandates provides mechanisms to tightly couple
permissions and obligations so that adding or removing

an obligation to/ from a principal immediately grants or
revokes associated permissions (instruments).

Our model provides a multi-viewpoint solution to
review and audit in security policies. At any moment, a
principal in our model can view their obligations and
identify the manager whose authority and mandate
justifies the obligation. Resource owners can trace
permissions on their resources to principals with access
and the obligations of those principals that justify
access. Managers can trace obligations they delegated
to subordinates and evaluate the implementing strategy
employed by those subordinates. The strategy can be
compared with best-practices to improve security.
Managers can also trace the permissions they delegated
to other principals to evaluate the use of those
permissions to balance risk with business needs. By
highlighting ownership, authority and mandate, our
model improves the ability of principals to review and
audit policies in the security program.

The improved ability to audit the security program
also satisfies the documentation requirement.
Integrating non-traditional elements such as
recommendations, responsibilities, and requirements
with permissions in the access control framework
provides documentation that is directly aligned with the
runtime state of systems. Decisions to expose resources
through permissions and protect resources through
obligations are all documented and traceable between
resources and principals. Cause, purpose or business
needs as high-level responsibilities are directly mapped
to low-level permissions and requirements.

Future work includes:
1) Determining to what extent policy is best

implemented in an architecture vs. a policy language?
The variety of components (e.g., file systems,
databases, networks) that must interface to policies
presents a challenge for the policy community. Each
component dictates its own policy semantics governing
behavior; therefore, should each component be
designed to interface to a single policy language and
policy engine or should a policy architecture use a
pluggable design to configure otherwise naïve
components or both?

2) A generalized framework is needed to support
abstract constraint mechanisms. Many popular policy
languages make assumptions about the structure of
constraints (e.g., Boolean, temporal, nested structures)
based on the scope of policies they address. However,
the heterogeneity and momentum in developing new
constraint mechanisms to accommodate new domain-
specific problems requires increased flexibility during
constraint specification in policies.

3) The relationship between requirements, policies
and implementations shows that some requirements are
realized as configurable parameters during runtime
while others are realized as configurable components

during compile time. The work done by Beigi et al. [6],
Burgess and Ralston [12] and van der Hoek et al. [18]
provides insight into policy-based configuration
management, yet more work is needed to integrate
requirements with configuration management and
determine which approach is preferable in software
architecture and design.

4) We are presently validating our policy model
using HIPAA regulations. HIPAA delegates several
permissions and obligations to individuals and health
care managers and providers with constraints on events
entailing the delegation of new rights and obligations.
Using a request-for-services scenario between the
individual and provider, we intend to show how
ownership, instrumentation and delegation support
accountability and compliance under HIPAA.

Acknowledgements
The analysis leading up to this paper began as

collaboration between Travis D. Breaux, Clare-Marie
Karat and John Karat in summer 2005 at IBM Thomas
J. Watson Research Center. Discussion of that analysis
appears in Section 2 and motivates the scenario in
Section 3 and definitions in Section 4. The technical
details in Section 5 and Section 6 for the policy model
were later developed by Travis D. Breaux and Annie I.
Antón at NCSU and funded by the NSF grant ITR:
Encoding Rights, Permissions and Obligations:
Privacy Policy Specification and Compliance (NSF
#032-5269).

References
[1] A.I. Antón, “Goal Identification and Refinement in the

Specification of Software-Based Information Systems.”
Ph.D. Thesis, Georgia Institute of Technology, Atlanta,
GA, USA, 1997.

[2] A.I. Antón, W.M. McCracken, C. Potts. “Goal
Decomposition and Scenario Analysis in Business
Process Engineering.” Advanced Information Systems
Engineering, 6th International Conference Proceedings
(CAiSE `94), Utrecht, Netherlands, pp. 94-104, 6-10,
1994.

[3] A.K. Bandara, E.C. Lupu, J. Moffett, A. Russo, "A Goal-
based Approach to Policy Refinement." In Proc. Policies
for Dis. Sys. and Nets, Yorktown Heights, NY, USA, pp.
229-239, 2004.

[4] O. Bandmann, M. Dam, B.S. Firozabadi, “Constrained
Delegation.” In Proc. IEEE Symp. on Security Privacy,
pp. 131-140, 2002.

[5] E. Barka, R. Sandhu, “Framework for Role-based
Delegation Models.” In Proc. 16th Annual Conf. on
Computer Security Applications, pp. 168-176, 2000.

[6] M.S. Beigi, S. Calo, D. Verma, “Policy Transformation
Techniques in Policy-based Systems Management” In
Proc. IEEE 5th Workshop on Policies for Distributed
Systems and Networks, Yorktown Heights, NY, pp. 13-
22, 2004.

[7] E. Bertino, P.A. Bonatti, E. Ferrari, “TRBAC: A
Temporal Role-Based Access Control Model” ACM
Trans. on Info. and Sys. Sec., 4(3), pp. 191-233, 2001.

[8] R. Bhatti, A. Gafoor, E. Bertino, J.B.D. Joshi, “X-
GTRBAC: An XML-based Policy Specification
Framework and Architecture for Enterprise-wide Access
Control.” ACM Trans. Info. Sys. Security, 8(2), pp. 187-
227, 2005.

[9] T.D. Breaux, A.I. Antón, “Deriving Semantic Models
from Privacy Policies.” In Proc. IEEE 6th Workshop on
Policies for Distributed Systems and Networks,
Stockholm, Sweden, pp. 67-76, 2005.

[10] T.D. Breaux, A.I. Antón, “Analyzing Goal Semantics for
Rights, Permissions, and Obligations.” In Proc. IEEE 13th
Requirements Engineering Conference, Paris, France, pp.
177-186, 2005.

[11] T.D. Breaux, A.I. Antón, “Mining Rule Semantics to
Understand Legislative Compliance.” In Proc. ACM
Workshop on Privacy in Electronic Society, Alexandria,
Virginia, USA, pp. 51-54, 2005.

[12] M. Burgess, R. Ralston, “Distributed Resource
Administration using Cfengine.” Software-Practice and
Experience, 27(9), pp. 1083-1101, 1997.

[13] L. Cholvy, F. Cuppens, C. Saurel, “Towards a Logical
Formalization of Responsibility.” In Proc. 6th Int’l Conf.
on Aritficial Intelligence and Law, Melbourne,
Australia, pp. 233-242, 1997.

[14] L. Cranor, M. Langheinrich, M. Marchiori, M.
Pressler-Marshall, J. Reagle, “The Platform for
Privacy Preferences 1.0 (P3P1.0) Specification”,
W3C Recommendation, 2002.

[15] N. Damianou, N. Dulay, E. Lupu, M. Sloman, “The
Ponder Policy Language.” In Proc. Work. Policies for
Dist. Sys. and Nets., Bristol, UK, pp. 29-31, 2001.

[16] N. Dulay, E. Lupu, M. Sloman, N. Damianou, “A Policy
Deployment Model for the Ponder Language” In Proc.
IEEE/IFIP Int’l Sym. on Intenerated Net. Mgmt. Seattle,
WA, USA, pp. 529-543, 2001.

[17] P. Giorgini, F. Massacci, J. Mylopoulos, N. Zannone,
“Modeling Security Requirements through Ownership,
Permission and Delegation.” In Proc. 13th IEEE Int’l
Reqs. Engr. Conf., Paris, France, pp. 167-176, 2005.

[18] A. van der Hoek, A. Carzaniga, D. Heimbigner, A.
Wolf, “A Testbed for Configuration Management Policy
Programming.” IEEE Trans. on Soft. Engr., 28(1), pp.
79-99, 2002.

[19] L. Kagal, T. Finn, A. Joshi, “A Policy Based Approach
to Security for the Semantic Web” In Proc. 2nd Int’l
Semantic Web Conf., Sanibel Island, FL, USA, pp. 402–
418, 2003.

[20] G. Karjoth, M. Schunter, M. Waidner, “Platform for
Enterprise Privacy Practices: Privacy-Enabled
Management of Customer Data” In Proc. 2nd Int’l Work.
on Privacy Enhancing Tech., San Francisco, CA, USA,
LNCS 2482, pp. 69–84, 2002.

[21] E.M. Madigan, C. Petrulich, K. Motuk, "The Cost of
Non-Compliance: When Policies Fail" In Proc. 32nd
ACM Conf. on User Services, Baltimore, MD, USA, pp.
47-51, 2004.

[22] P. Mell, T. Grance, “Use of the Common Vulnerabilities
and Exposures (CVE) Vulnerability Naming Schemes”.
NIST SP-800-51, Gaithersburg, MD, USA, 2002.

[23] N.H. Minksy, V. Ungureanu, “Law-Governed
Interaction: a Coordination and Control Mechanism for
Heterogeneous Distributed Systems.” ACM Trans. on
Soft. Engr. and Meth., 9(3), pp. 273-305, 2000.

[24] J.D. Moffett, “Requirements and Policies.” In Proc.
Policy Workshop, Bristol, U.K., 1999.

[25] J.D. Moffett, M.S. Sloman, “The Representation of
Policies as System Objects.” In Proc. Conf. on
Organizational Computing Systems, Atlanta, Georgia,
USA, pp.171-184, 1991.

[26] S. Oh, R. Sandhu. “Role Administration: A Model for
Role Administration Using Organization Structure.” In
Proc. 7th ACM Sym. on Access Control Models and
Tech., Monterey, CA, USA, pp. 155–162, 2002.

[27] J.S. Park, K.P. Costello, T.M. Neven, J.A. Diosomito,
“A Composite RBAC Approach for Large, Complex
Organizations.” In Proc. 9th ACM Sym. On Access
Control Models and Technologies, Yorktown Heights,
NY, USA, pp. 163-172, 2004.

[28] J.S. Park, R. Sandhu, “The UCONABC Usage Control
Model” ACM Trans. on Information and System
Security, 7(1), pp. 128–174, 2004.

[29] J. Rees, S. Bandyopadhyay, E.H. Spafford, “PFIRES: A
Policy Framework for Information Security.”
Communications of the ACM, 46(7), pp. 101-106, 2003.

[30] T. Ryutov, C. Neuman, “The Specification and
Enforcement of Advanced Security Policies” In Proc. 3rd
Int’l Work. on Policies for Dis. Sys. and Net., Monterey,
CA, USA, p. 128, 2002.

[31] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman,
“Role-based Access Control Models.” IEEE Computer,
29(2), pp. 38–47, 1996.

[32] A. Schaad, J.D. Moffett, “Delegation of Obligations.” In
Proc. IEEE 3rd Policies for Dis. Sys. and Net., pp. 25-35,
2002.

[33] A. Uszok, J. Bradshaw, R. Jeffers, “KAoS: A Policy and
Domain Services Framework for Grid Computing and
Semantic Web Services” In Proc. 2nd Int’l Conf. on
Trust Mgmt., Oxford, UK, pp. 16–26, 2004.

[34] “Evaluation Criteria for Information Technology
Security”, International Organization for Standards
(ISO), ISO/IEC 15408, 1999.

[35] “Standards for Privacy of Individually Identifiable
Health Information.” 45 CFR Part 160, Part 164 Subpart
E. In Federal Register, vol. 68, no. 34, February 20,
2003, pp. 8334 – 8381.

[36] “Standards for the Protection of Electronic Protected
Health Information” 45 CFR Part 164, Subpart C. In
Federal Register, 68(34), February 20, 2003, pp. 8334 –
8381.

[37] "Information Security Policies and Procedures,"
Overseas Private Investment Corporation, Washington,
D.C., USA, 2004.

[38] "An Introduction to Computer Security: the NIST
Security Handbook," NIST SP-800-12, Gaithersburg,
MD, USA, 1995.

	1. Introduction
	2. Background and Motivation
	3. Policy Models and Frameworks
	4. Policy Scenario
	5. Security, Risk and Compliance
	5.1 Permissions
	5.2 Obligations and Recommendations
	5.3 Enforceable vs. Accountable Policies
	6. Management and Accountability
	6.1 Delegating Permissions
	6.2 Delegating Obligations

	7. Related Work
	8. Discussion and Summary
	Acknowledgements
	References

