
Towards the Prioritization of System Test Cases
Hema Srikanth1, Laurie Williams1, Jason Osborne2

1 Department of Computer Science, North Carolina State University, Raleigh, NC 27695
2 Department of Statistics, North Carolina State University, Raleigh, NC 27695

Email: {hlsrikan, lawilli3, jaosborn}@ ncsu.edu

Research Area: Software Testing and Reliability, Software Quality, Value-Based Testing

Abstract

During software development companies are frequently faced with lack of time and

resources, which limits their ability to effectively complete testing efforts. Often, the

engineering team is compelled to stop their testing efforts abruptly due to schedule

pressures. We build upon prior test case prioritization research and present a system-level,

value-driven approach to test case prioritization called the Prioritization of Requirements

for Test (PORT). PORT involves analyzing and assigning value to each requirement based

on four factors: requirements volatility, customer priority, implementation complexity, and

fault proneness. System test cases are prioritized for execution based on the assigned

priority value of the requirements they originate from such that the test cases for

requirements with higher priority are executed earlier during system test. We applied

PORT to four student team projects in an advanced graduate software testing class. Our

results show that PORT prioritization at the system level improves the rate of detection of

severe failures. Additionally, we found that customer priority was the most important

contributor towards improved rate of failure detection.

1. Introduction

In today’s changing business environment, time to market is a key factor to achieving

project success. For a project to be most successful, quality must be maximized while

minimizing cost and keeping delivery time short [14]. Quality can be measured by the

customer satisfaction with the resulting system based on the requirements that are

incorporated successfully in the system [14]. Boehm suggests that currently most of the

software engineering research and practice is done in a value-neutral setting whereby all

requirements, use cases, test cases, and defects are treated as equally important without

considering the business value provided to the customer. Boehm proposes a value-based

approach to software engineering that measures the value the system provides to the

prospective customers [4]. Value-based engineering involves the prioritization of development

activities, keeping in mind stakeholder value propositions. Value-based software engineering

practices are believed to improve user-perceived software quality. These practices are believed to

improve user-perceived software quality [3, 4]. This paper explores a value-driven

approach to prioritizing software systems by directing test efforts on requirements that are

of highest value to the customer, which is believed to improve user-perceived software

quality.

Software testing is a strenuous and expensive process [2, 6]. Research has shown that at

least 50% of the total software cost is comprised of testing activities [10, 33]. Companies

are often faced with lack of time and resources, which limits their ability to effectively

complete testing efforts. Prioritization of test cases in the order of execution in a test suite

can be beneficial. Test case prioritization (TCP) involves the explicit prior planning of the

execution order of test cases to increase the effectiveness of software testing activities by

improving the rate of fault detection earlier in the software process [24, 25].

To date, TCP has been primarily applied to improve regression testing efforts [7, 24, 25]

of white box, code-level test cases. Regression testing is the process of retesting of a system

or component to verify that changes made to the code have not caused unintended effects

and that the system is still compliant with the specified requirements [12]. Software

engineers save test cases developed for prior versions and re-run these test cases as

regression tests in later versions. Running the entire set of test cases on a revised version,

however, could be cost and time-prohibitive. Currently, regression TCP techniques use

structural coverage criteria to select the test cases [23]. Structural coverage techniques,

such as statement or branch coverage, are applicable at the code level [5].

We build upon the current code-coverage TCP techniques [7, 8, 24, 25] and propose a

black box approach called Prioritization of Requirements for Testing (PORT v 2.0) with the

objective of developing and validating a system-level test case prioritization scheme to

reveal severe failures earlier. PORT prioritizes system-level black box tests by considering

four factors: (1) customer-assigned priority of requirements; (2) developer-perceived

 2

implementation complexity; (3) requirements volatility; and (4) fault proneness of

requirements. PORT (v 1.0) [31] incorporated only three prioritization factors, PORT (v

2.0) incorporated the fourth factor: fault proneness.

PORT is an easy-to-use scheme wherein the factor values can be collected by the

engineering team during the design phase with minimal effort. Directing test efforts using

these four factors is believed to enable more efficient identification of severe failures earlier

in the software process. By focusing on customer-assigned priority, we aim to identify

requirements, which would increase customer-value, thus improving the overall business-

value provided to the customers. Our set of research goals is listed below.

G1: To develop and validate a method for identifying the most

severe failures earlier in system test.

G2: To determine the most effective PORT factors that contribute

to an improved rate of detection of severe failures.

Via our prioritization scheme, we aim to increase test efficiency by improving the rate of

failure detection, which is measured by the percentage of failures detected over the life of

the test suite.

To determine the effectiveness of PORT (v 1.0), an academic case study was conducted

on four similar student team projects developed in an advanced graduate software testing

class at North Carolina State University. The rest of this paper is structured as follows.

Section 2 discusses the background work. Section 3 presents the PORT scheme. Sections 4

and 5 present the PORT validation strategy and the case study. Section 6 presents the

sensitivity analysis. Section 7 presents comparison of PORT scheme with Musa’s Software

Reliability Engineered Testing (SRET) approach. Section 8 discusses summary and future

work.

2. Related Work

This section provides an overview of coverage-based TCP techniques; software

reliability engineered testing, and our earlier work that led to identification of the PORT

prioritization factors.

 3

2.1. Coverage-based Test Case Prioritization

 Coverage-based TCP techniques [7, 8, 24, 25] involve ranking test cases based on the

statement coverage they provide; test cases are ranked based on the number of statements

executed/covered by the test case such that the test case covering the maximum number of

statements would be executed first. For branch and function coverage techniques, tests are

prioritized based on the program branches or program functions covered, respectively.

The benefits of code coverage-based TCP strategies were measured using a weighted

Average Percentage of Faults Detected (APFD) [24] metric. The APFD value is a measure

of how quickly the faults are identified for a given test suite set. The APFD values, range

from 0 to 100 and are monitored during test suite execution. The APFD values represent the

area under the curve by plotting percentage of faults detected on the y-axis of a graph, and

percentage of test suite run on the x-axis. We analyze a similar validation metric to assess

the efficacy of PORT, Weighted Percentage of Failures Detected (WPFD), as will be

discussed in Section 4.

If all faults are not equally severe, severity-neutral TCP strategies and associated APFD

metric can provide misleading information [9]. As a result, Elbaum et al. incorporate fault

severity in a cost-cognizant TCP strategy [9]. Instead of representing Test Suite Fraction in

the horizontal axis (as done for APFD), Percentage of Total Test Case Cost Incurred

(APFDc) is represented. Additionally, instead of representing Percent Faults Detected on

the vertical axis (as for APFD), Percentage Total Fault Severity Detected (APFDc) is

represented. The APFDc measures the unit-of-fault-severity-detected-per-unit-test-cost [9].

The use of APFDc is can be used to assess the prioritization orders post hoc, i.e. when the

severity and cost values are known, and cannot be used for predicting cost and severity

values. In the validation of the APFDc metric, Elbaum et al. use six levels of severity to

assign severity values to the faults in the program. We follow a similar approach of

assigning severity values to the failures, which is discussed in Section 4.

2.2. Software Reliability Engineered Testing

Musa prioritizes system tests using Software Reliability Engineered Testing (SRET) [19], a

business value-based approach. Test planning using SRET involves estimating the relative

 4

customer use of the functions in a software product via an operational profile. An

operational profile is a set of operations and their probabilities of occurrence [19] where an

operation is a task that the system performs. Operational profile estimation is done

collectively by testers, system engineers, architects and customers. Once the operational

profile has been estimated, testers determine the total number of test cases that can be

written and executed according to budgetary and resource constraints. Then, the number of

test cases written for each operation is a relative proportion of the total number of test cases

based upon the use percentage for that operation in the operational profile. Once the tests

have been written, they are executed in a random order. SRET was applied extensively at

AT&T. One particular project at AT&T, International Definity, showed that the use of

SRET in one product release resulted in increased reliability and customer satisfaction

when compared with the previous release of the same product. Additionally, product sales

increased by a factor of 10, system costs decreased by a factor of two, total project

development time decreased by 30%, and maintenance costs were reduced by a factor of 10

[20].

We use a similar approach in test planning in that we consider customer-assigned priority

in our prioritization scheme where we determine which requirements are more important to

the customer and apply the obtained information in our TCP scheme. Despite the positive

business results from applying SRET, some consider the creation and maintenance of the

operational profile to be resource intensive and propose non-operational [34] techniques.

PORT is a non-operational profile system test case prioritization scheme.

2.3. Case Study to Identify Prioritization Factors

A postmortem analysis was conducted on an industrial project that was comprised of 152

thousand lines of code (KLOC) [27-30]. The goal was to determine the developmental

factors that resulted in increased number of severe failures. The findings of this study were

factored in the determination of our PORT prioritization factors.

For this industrial project, a total of 1,030 failures were identified in system test: 16 of

them were classified as Severity 1, 259 as Severity 2, 608 as Severity 3, and 157 as Severity

4 failures. For this case study, we identified (1) the percentage of the total failures that were

 5

identified during beta test, and (2) the most prevalent factors that caused some modules to

have higher failure density than others. Thirteen percent of Severity 1 and 23% of the

Severity 2 failures were found during beta testing. The company’s goal for future releases

is to reduce the detection of severe failures during beta testing to less than 5%.

The failures were analyzed and mapped back to eight modules that comprised the

system. Our results show, that 78% of the Severity 1 and Severity 2 failures were found in

25% of the modules; these modules were reported by the engineering team as the most

volatile and complex modules, motivating requirements volatility and implementation

complexity to be considered in our system-level prioritization scheme.

3. Prioritization of Requirements for Test (PORT)

This section presents the PORT factors and the reasoning behind the factor selection.

Also the factor collection process and the algorithms used to prioritize test cases using

PORT scheme is discussed.

3.1. PORT Factors

3.1.1. Requirements volatility (RV) is based on the number of times a requirement has been

changed in the development cycle. Requirements volatility is an assessment of the

requirements change once the implementation begins [15].

Reasoning: Roughly 50% of all faults identified in a project are errors introduced in the

requirements phase [16]. On average severe defects that escape into the field can cost 100

times more to fix after delivery than correcting the same problem in the requirements phase

[26]. Studies conducted by the Standish Group report that 30% of all projects are cancelled

before completion, and 70% of the remaining projects fail to deliver the required system

functionality. The most significant factor to cause these project failures were attributed to

changing requirements [32]. Other studies show the cause for project failures to be lack of

user input, and changing or incomplete requirements [13, 16, 21]. Roughly 25% of the

requirements for an average project change before project completion [21], and volatile

requirements tend to make the testing activities difficult and cause the software to contain

high defect density [15]. Changing requirements result in re-design, and often an increase

 6

in the fault density in the program [15] which is also the true in the case study conducted

and discussed in Section 2.3 [27-30].

3.1.2 Customer-assigned priority (CP) is a measure of the importance of a requirement to

the customer. The customer assigns a value for each requirement ranging from 1 to 10

where 10 is the requirement with the highest customer priority.

Reasoning: Approximately 45% of the software functions are never used, 19% are rarely

used, and only 36% of the software functions are always used [17]. A fault that lies along

the path of normal execution results in frequent failures, and the majority of the effort

should be spent in finding these faults [18, 19]. A focus on customer requirements for

development has been shown to improve customer-perceived value and satisfaction [3, 4,

14]. By identifying and more thoroughly testing the fraction of requirements that would be

of highest importance to the customer earlier in testing, we aim to increase the business

value generated to the customer. If the testing efforts were shortened due to schedule

pressures, the requirements of highest value to the customer would have been tested early

and thoroughly.

3.1.3. Developer-perceived implementation complexity (IC) is a subjective measure of

how difficult the implementation of a requirement is perceived to be by the development

team. Each requirement is analyzed to assess the anticipated implementation complexity

and is assigned a value ranging from 1 to 10; the larger value indicates higher complexity.

IC is a prioritization factor for requirements being implemented for the first time or for all

requirements in the first release.

Reasoning: Several studies indicate that requirements with high complexity (examined

post hoc) tend to have a higher number of faults. Amland [1] conducted a case study to

find that the functions with high number of faults were the functions with higher McCabe

complexity [1]. Twenty percent of the system modules result in 80% of the faults [1, 26,

30, 35], and roughly 50% of the modules are defect free [26]. To date, no studies have

related pre-development developer-perceived complexity and fault proneness; we will

examine this relationship in our work.

3.1.4. Fault proneness of requirements (FP) allows the development team to identify the

requirements which have had customer-reported failures in the previous release. As the

 7

system evolves into several versions, the developers can use the data collected from prior

versions to identify requirements that are likely to be error prone. FP is based on the

number of field failures found in the code that implements a requirement. FP is not

considered for new requirements, only for those requirements that have already been in a

released product.

Reasoning: Ostrand et al. has shown that test efficiency can be improved by focusing on

the functionalities that are likely to contain higher number of faults [22]. The functionalities

that contain higher number of faults in one release are more likely to be troublesome in the

future releases as well.

3.2. PORT Prioritization Factor Collection Process

The process for collection and updating the PORT factors is shown in Figure 1.

-Description
-Customer Priority
-Requirements Volatility
-Implementation Complexity (new requirement)
-Fault Proneness (maintenance)

Requirement

-Requirement(s)
-Description

Test Case
-Test Case
-Description

Test Defect

-traceable

-increment fault proneness

-traceable

-Requirement
Field Defect

-increment fault proneness

-traceable

Tester-write -report failed test caseRequirements Analyst

Developer

-document

Customer

-state requirement, priority, changes

Maintenanace Engineer

-report product failure
-record & rix failure

-assess complexity

Figure 1: PORT Prioritization Factor Collection Process

An open source tool, ReBaTe1 (Requirements Based Testing), supports the PORT

scheme to the software development. ReBaTe allows users to automatically update PORT

factors like requirements volatility and fault proneness as requirements change and failures

are reported. The tool (ReBaTe) increments requirements volatility when a requirement is

1 http://sourceforge.net/projects/rebate/

 8

changed and increments fault proneness when failure is reported. In the absence of a tool,

these values can be tracked manually. ReBaTe also displays the PORT-computed ordering

of system test cases.

There are five stakeholders in the process; the stakeholder roles are defined below:

• The customer states the system requirements, the priority for the each

requirement, and any additions or changes to the requirements throughout

development. The customer also reports field failures after product delivery.

• The requirements analyst records the requirements and associated priorities and

any changes to requirements.

• The maintenance engineer fixes defects when field failures are reported and maps

the failure back to the requirement(s) that were impacted by the failure.

• The developer/architect provides a subjective assessment of how complex a

requirement is to implement.

• The tester writes test cases for each requirement, mapping the requirement to its

test case(s), and runs the test cases. Test case failures are reported, mapping the

test case failure to the test case that revealed the failure.

Figure 2 presents a flow chart to represent the PORT structure.

Requirements

Implementatio
n Complexity

(IC)

Figure 2: High level PORT Overview

Prioritization Factor Value (PFV)

Ranks the
execution of the

test cases

Weighted
Priority
(WP)

Customer
Priority

(CP)

Customer
Priority

(CP)

Requirements
Volatility

 (RV)

 9

The four factor values are used to compute the Prioritization Factor Value (PFV), which

is then used to produce a ranked list of test cases. Factor values are assigned during the

design analysis phase, and evolve continually during the software process. Based on project

and customer needs, the development team assigns weight to the prioritization factor such

that the assigned total weight (1.0) is divided among the four factors. Factor weight, which

is unique for each project, allows the PORT user to customize the priority of each factor for

a particular project. For e.g. if the requirements for a project have been stable, then the

engineering team might assign RV a relatively smaller portion of the total weight. A default

value can be assigned, giving each factor equal weight. Sensitivity analysis was performed

to determine an effective way to allocate factor weights, as discussed in Section 6.

3.3.PORT Algorithm

For every requirement, Equation 1 is used to calculate a Prioritization Factor Value

(PFV) for that requirement.

)*(
4

1
∑

=

=
j

jiji htFactorWeigeFactorValuPFV (1)

In Equation 1, PFVi represents the prioritization factor value for requirement i, which is

the summation of the product of factor value and the assigned factor weight for each of the

factors. FactorValueij represents the value for factor j for requirement i, and FactorWeightj

represents the factor weight for jth factor for a particular product. PFV is a measure of the

importance of testing a requirement. A matrix representation of the dependence of the PFV

vector P on the value vector V and the weight vector w is shown in Equation 2 below.

)1*4(
)4*(

1111

)1*(

1

....

....

....

.

.

.

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

Rv

FP

RC

CP

n
FP
n

RV
n

IC
n

CP
n

FPRVICCP

nn
w
w
w
w

RRRR

RRRR

PFV

PFV

VwP

 (2)

The computation of PFV for a requirement is used in computing the Weighted Priority

(WP) of its associated test cases. WP of the test case is the PFV contribution of the

 10

requirement(s) the test case maps to as shown in Equation 3. Let there be n total

requirements for a product/release, and test case j maps to i requirements.

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

∑

∑

=

=
n

y
y

i

x
x

j

PFV

PFV

WP

1

1 (3)

WPj is an indication of the priority of running a particular test case. The test cases are

ordered for execution based on the descending order of WP values such that the test case

with the highest WP value is run first and so on.

4. PORT Validation Metrics

Refinement and validation of PORT will proceed via the analysis of the severity of

failures detected for a product. For analysis purposes, each failure is assigned a weighted

severity value (SV) as follows:

• Highly severe (Severity 1): Severity 1 is assigned to a failure when a customer

can no longer use the product and/or testing must cease until the defect causing

the failure is fixed. For Severity 1 failures, we assign a SV of 24.

• Medium severe (Severity 2): Severity 2 is assigned to a failure when there is a

work around for the failure and the product can be used with the work around.

For Severity 2 failures, we assign a SV of 23.

• Less severe (Severity 3): Severity 3 is assigned to a failure for which a fix can be

done in later versions. For Severity 3 failures, we assign a SV of 22.

• Least severe (Severity 4): Severity 4 is assigned to a failure for which a fix may

be done at later versions or not done at all. A SV of 21 is assigned to failures with

Severity 4.

The PORT validation approach involves computing Total Severity of Failures Detected

(TSFD) for the project. TSFD is the summation of severity values (SV) of all failures

identified for the product/release. Equation 4 shows TSFD for a product/release, where t

represents total number of failures identified for the product/release.

 11

 (4) ∑
=

=
t

l
lSVTSFD

1

The case study showing the use of TSFD is discussed in Section 5.

5. PORT Case Study

To measure the effectiveness of PORT (v 1.0), four similar projects with average size of

approximately 2500 lines of code (LOC) were analyzed. The projects were developed by

the students in an advanced graduate-level software testing class at North Carolina State

University. The class was divided into four pairs of students, and each team was given the

same 19 requirements to develop a TCP tool. For each project, the students assigned values

for RV and IC. The research team (who acted as the customer) assigned values for

customer priority (CP). FP was not applicable as the product was going through the first

release and field data was not available. The factor weights were assigned based on

discussion between the customer and students. The case study limitations and results are

discussed in Sections 5.1 and 5.2 respectively.

5.1. Case Study Limitations

We consider the following limitations of our case study:

• Construct validity or establishing measures that reflect the theory under test. Our

measures are defined in Section 3 to reflect our theories about utilizing four system-

level factors to identifying the most severe failures earlier in system test.

• Internal validity or the occurrence that all the potential factors that might influence the

data are controlled except the one under study. Internal validity is a strength of

academic studies, such as ours. Our case study involves analyzing multiple versions

of the same program all measured on the same criteria.

• External validity or how well the results of the study can be generalized to the world

outside the research situation. Conversely, external validity is a weakness of academic

studies. The programs involved in this case study are not as complex and volatile as

industrial programs.

 12

• Experimental reliability, which assesses whether another investigator would get

similar results by following the experimental procedures with the same case study.

The procedures outlined in this paper would enable another researcher to get similar

results. As will be discussed in Section 5.2, we utilized a random selector, which

would inhibit direct duplication of our results. However, we ran a sufficient number

of trials to feel confident that a replication would produce similar results.

5.2. Case Study Results

In the case study, the PORT scheme was compared with a random prioritization strategy

towards testing student projects. As an extra credit assignment, the students created a faulty

version of their project by injecting 20 failures. The students were instructed that for each

project, at least 50% of the injected failures were to be of Severity 1 and 2, and the other

50% comprised of Severity 3 failures. To test these four student projects, approximately 50

system test cases were written without any knowledge of the injected failures. The test

cases were written to test at least one success condition and one failure condition for each

requirement. At least one fourth of the test cases mapped to multiple requirements. The test

cases were run and the test failures were recorded. The test results were then analyzed to

investigate the differences due to ordering of test cases. The goal was to identify the

effectiveness of PORT in improving the rate of detection of severe failures when compared

with random prioritization approach. For each of the four projects, the following two

factors were determined for both prioritization approaches:

• Rate of detection of severe failures.

• Contribution of prioritization factors towards the effectiveness of PORT

The experimental setup and the results for each of these two factors are discussed below.

5.3.1. Rate of Detection of Severe Failures

Goal: This section involves identifying the effectiveness of PORT scheme in improving

the rate of detection of severe failures by testing four faulty applications.

Setup: Using the values and weights for the prioritization factors provided by the students

and the research team, the PFV for the 19 requirements was computed. The WP for the

system test cases was computed. The PORT scheme involves execution of the test cases in

 13

the descending order of the WP value. The random strategy involved a random ordering of

test cases for execution.

The four faulty applications were tested by running the test cases to find the injected

failures in the application. The failures found were mapped to their respective requirements.

The TSFD was computed for all four projects. After executing each case, the test case

status was noted: Pass/Fail. If a test case failed, the SV of the failure identified was noted.

As discussed in Section 4, a Severity 1 failure was assigned a SV of 24, followed by

Severity 2 failure with SV of 23, Severity 3 failure with SV of 22, and Severity 4 failure

with SV of 21.

After all test cases were executed and all the induced failures were identified and their

SV noted, analysis was done to measure the rate of failure detection. The rate of failure

detection is computed using a metric called Weighted Percentage of Failures Detected

(WPFD), which is the area represented under the curve when plotting a graph with

percentage of TSFD against fraction of test suite executed. We compare the WPFD for

PORT against the WPFD for a random prioritized set. Twenty unique random prioritization

sets for each of the four projects were generated to allow for statistical comparison. The

mean WPFD values for the 20 random different orderings are compared against the WPFD

achieved for the PORT scheme. Statistical analysis was done to determine the effectiveness

of PORT in comparison to 20 different sets of randomly prioritized test cases.

Results: For each team, percentage of TSFD was determined at different stages of test

suite execution: after executing one-fourth, one-half, three-fourths and all the test cases.

The results of the WPFD for both a random TCP and PORT strategy for all four projects

are graphed in Figure 3. For the purposes of depicting the results graphically, the mean

WPFD for 20 random permutations was compared with the WPFD for PORT.

As the Figure 3 shows, the WPFD achieved via PORT for all four projects is higher than

mean WPFD for 20 random permutations.

 14

0

25

50

75

100

0 0.25 0.5 0.75 1

Fraction of Test Suite Run

%
ag

e
of

 T
SF

D

Figure 3a: Project 1

0

25

50

75

100

0 0.25 0.5 0.75 1

Fraction of Test Suite Run

%
ag

e
of

 T
SF

D

Figure 3b: Project 2

0

25

50

75

100

0 0.25 0.5 0.75 1

Fraction of Test Suite Run

%
ag

e
of

 T
SF

D

Figure 3c: Project 3

0

25

50

75

100

0 0.25 0.5 0.75 1

Fraction of Test Suite Run

%
ag

e
of

 T
SF

D

Figure 3d: Project 4

RandomPORT

Figure 3: Comparison of PORT and Random

Table 1 provides WPFD for 20 different random TCP sets and one set of PORT scheme

for all four projects. The mean WPFD values for Random TCP (for n=20) are also listed.

The null and alternative hypotheses to determine the effectiveness of PORT over Random

TCP set (for n = 20) are as follows:

H0: WPFD for PORT = Mean WPFD for Random TCP

Ha: WPFD for PORT > Mean WPFD for Random TCP

We find statistically significant results in favor of Ha, PORT is better than random

prioritization (p < 0.01). The results indicate that PORT strategy leads to improved rate of

severe failure detection for all four projects.

 15

Table 1: WPFD for 20 Random Sets of TCP and PORT TCP
Random TCP Set # Project 1:

WPFD
Project 2:
WPFD

Project 3:
WPFD

Project 4:
WPFD

1 40.29 30.55 47.52 49.24
2 52.21 11.30 59.07 43.70
3 35.88 28.94 45.52 48.60
4 38.97 80.80 53.20 46.44
5 36.97 66.44 57.72 45.34
6 36.77 57.63 56.91 48.93
7 36.77 55.53 32.72 59.07
8 41.77 57.48 52.73 47.26
9 43.29 52.52 60.53 53.86

10 43.81 48.13 51.73 50.03
11 18.43 34.67 55.17 53.47
12 30.38 39.33 55.32 56.54
13 33.97 45.32 53.20 48.42
14 36.83 50.04 49.39 48.39
15 45.79 58.59 48.77 45.62
16 49.93 52.08 50.95 45.71
17 53.85 54.58 51.01 52.92
18 40.06 53.95 41.03 45.13
19 85.57 64.27 53.70 55.93
20 68.25 77.85 46.55 48.78

MEAN WPFD-Random TCP 43.49 51.00 51.14 49.67
of Times PORT is better than

Random order
18 20 20 17

PORT TCP: WPFD 66.71 83.5 64.12 54.43
Test Statistic 4.99 8.48 8.84 7.49

p value < 0.001 < 0.001 < 0.001 < 0.001
Sign Statistic 18 20 20 17

sign-test p-value =0.0002 <0.0001 <0.0001 =0.0013

Alternatively, the sign test may be used to investigate the null hypothesis that the WPFD

for PORT is no better than that for a randomly chosen prioritization. The sign test is a

simple nonparametric procedure that makes no assumptions about the distribution of

WPFD. For example, in the 20 randomly chosen prioritizations for Project 1, PORT was

observed to have a better WPFD 18 times. Using the binomial distribution, the probability

of observing 18 or more successes under the null hypothesis of equivalence is p = 0.0002, a

highly significant result indicating that the WPFD with PORT is higher than the median of

all permutations. The last row of Table 1 gives the results for a sign-test for all four

projects.

 16

5.3.2 Analysis of PORT Factors

Goal: This section involves identifying the mean contribution of the prioritization factors

towards the PFV of the requirements.

Setup: For all four projects, the contribution of each of the three prioritization factors

towards the PFV for each of the nineteen requirements was computed. Also, for all

projects, the mean contribution of the three prioritization factors towards all project

requirements was computed.

Results: This section discusses the results of the effectiveness of the prioritization factors

in the PORT scheme. Figure 4 shows the mean contribution of the three prioritization

factors towards the PFV of the requirements for all four projects.

0
10
20
30
40
50
60
70
80

Fa
ct

or
 C

on
tr

ib
ut

io
n

Project 1 Project 2 Project 3 Project 4

CP
IC
RV

Figure 4: Contribution of PFs for Four Projects

The CP was ranked as the biggest contributor for all four projects, followed by IC and

RV. On average, the CP contribution was at least 55% of the total PFV for all four projects.

At least 22% of the total PFV contribution for all projects came from IC. The smallest

contribution came from RV, which was less than 10% for all four projects. The RV had a

lesser value, as the requirements for the project were very stable. Also, the project scope

was limited as it was a part of a graduate course curriculum, and the students had less than

10 weeks to finish the project.

 17

6. Sensitivity Analysis of PORT Factor Weights

In this section, we present sensitivity analysis conducted on strategies for assigning

factor weights. The purpose of this analysis is to determine whether the factor weights can

sway the prioritization provided by the PORT algorithm such that the software engineer is

misguided. Additionally, we aim to reduce subjectivity by providing a more repeatable and

objective process for assigning weights. For the sensitivity analysis, four possible

allocations for factor weights are considered. The PFV for the requirements are computed

for these four factor weight allocations for the four projects discussed in Section 5. The four

different allocations for factor weights are as follows:

• Team assigned weight: the factor weights are assigned by the research team and

students in the case study discussed in Section 5.

• Equal weight: the factor weights are equal. This approach is similar to having no

factor weights. We chose this as a reference point because it removes all subjectivity in

weighting the factors.

• Mean-based weight: the factor weights are allocated to correspond with the mean

value of each factor for the 19 requirements. Intuitively, factors that tend to have higher

weights might be more important to the analysis.

• Variance-based weight: the factor weights are assigned based on the variance of

factor values for each project. At one extreme, if the variance between factor values is zero,

this factor can be dropped from the analysis because there is no differentiation in this factor

among the requirements being analyzed. Intuitively, the greater the variance, the more a

particular factor can be used to differentiate the requirements.

• Relative to variance, for one trial we chose the ”contradictory” approach and

assign higher weights to factors with lower variance to assess whether

inappropriate weights lead to misleading information.

• We also allocated factor weights corresponding to the variance of the factor

values for each project.

The results of sensitivity analysis for the four case study projects are presented in Table

2. For all four projects, the WPFD achieved based on different possible allocations of factor

weights are displayed.

 18

Table 2: WPFD for Different Factor Weights Distribution

 WPFD Values for Various Factor Weights

 Equal
Weights

PORT
Weights

Mean-based
Weights

Variance-
based
Weights

Contradictory
Variance-based
Weights

Project 1 66.30 66.71 67.12 67.08 65.75

Project 2 78.57 83.49 85.13 70.68 69.18

Project 3 63.54 64.12 64.27 63.24 62.14

Project 4 49.08 54.43 56.38 50.34 49.02

The results show that a mean-based assignment of weights achieves the highest WPFD

for all four projects. Mean-based assignment involves allocating weights by computing the

mean factor value for all project requirements. The weights are allocated to the factors

proportionally based on the mean factor value. The contradictory variance-based approach

to assigning weights resulted in the lowest WPFD values for all four projects. The team-

assigned approach to allocating weights involves assigning weights based on discussion

amongst the customer and engineering team. The team-assigned weight has shown to be

better than the equal weight and the contradictory variance-based approach. The intuitive

variance-based weight is comparable to team-assigned weight in that it is better than equal

weight and contradictory variance-based approach. The team-assigned weight is better

than intuitive variance based weight for three out of four projects. However team-assigned

weight approach is not better than the mean-based approach. We will use mean-based

approach to assigning weights in our future projects as that approach has yielded the

highest rate of failure detection in comparison to the other four approaches.

We further investigated the contribution of the three PFs for each method of allocation of

factor weights. The factor contribution for all four projects for different allocations of factor

weights is shown in Table 3 below. The contribution is measured based on the average

contribution of the factors towards the PFV of all project requirements.

 19

Table 3: Factor contribution for different factor weights

 Project 1 Project 2 Project 3 Project 4

RV 12.79% 15.25% 30.43% 21.58%

IC 22.80% 39.09% 24.82% 33.69%

Equal Weights

CP 64.41% 45.66% 44.75% 44.73%

RV 2.72% 3.87% 9.66% 6.71%

IC 11.11% 39.95% 22.11% 34.20%

Mean-based Weights

CP 86.17% 56.18% 68.22 59.09%

RV 3.84% 3.94% 10.59% 6.80%

IC 37.59% 51.51% 44.07% 41.79%

Contradictory Variance-based
Weights

CP 58.57% 44.55% 45.34% 51.41%

RV 2.90% 3.86% 9.68% 6.75%

IC 15.71% 37.42% 22.65% 38.42%

Variance-based Weights

CP 81.39% 58.72% 67.67% 54.83%

RV 3.14% 3.87% 9.9% 6.72%

IC 21.49% 39.38% 28.47% 35.46%

Team-assigned Weights

CP 75.37% 56.75% 61.63% 57.81%

The results show that CP is the biggest contributor for all four projects for all factor

weight allocations except for one project (Project 2) of the contradictory variance-based

allocation technique in which the implementation complexity is the largest contributor. For

mean-based allocation of factor weights, customer priority has the highest contribution (at

least over 55%) in the overall PFV. The second highest contributor for mean-based weight

allocation is implementation complexity, followed by requirements volatility, which

contributed the least for this project. These results are in agreement with what we achieved

via PORT application (as discussed in Section 5.2). The equal weight approach also

showed customer priority to be the biggest contributor, followed by implementation

complexity. Based on these results, mean-based approach of factor weights results in the

highest rate of failure defection, and we will use the mean-based approach to factor weights

in our future case studies.

 20

7. Comparison of SRET and PORT

In this section we compare PORT scheme to Musa’s SRET approach. We applied

Musa’s SRET approach of test selection to the same four student projects. SRET involves

choosing test cases corresponding to the operational profile and then executing the chosen

test cases in random order. The operational profile for the requirements was identified by

the students and the research team collectively during a class period. We modified the

existing test suite such that the number of test cases selected for execution for each

requirement is proportional to the operational profile for the requirement. For example, if the

requirement R1 had an operational profile of 5%, the number of test cases that mapped to

requirement R1 in a test suite of 100 test cases is five.

Once the new set of test cases was identified, we generated 20 random permutations of

this new set for statistical comparison. We computed the WPFD for each permutation.

Furthermore, we computed the WPFD by applying the PORT scheme towards this revised

(new) test set. We compared the WPFD for the 20 random permutations with the WPFD for

PORT scheme and the results are shown in Table 4.

A sign-test was applied to determine statistical significance. We find statistically

significant results in favor of PORT scheme in comparison to SRET (p < 0.001). A sign test

indicated that the median WPFD of all permutations of test cases chosen according to

SRET is less than the observed WPFD for the PORT scheme.

 21

Table 4: WPFD for 20 SRET Random Sets and PORT TCP

SRET Random Set # Team 1:
WPFD

Team 2:
WPFD

Team 3:
WPFD

Team 4:
WPFD

1 48.41 54.05 51.88 53.93
2 45.72 52.77 50.29 43.14
3 41.43 65.11 50.05 53.08
4 54.34 65.70 54.29 60.28
5 57.13 68.74 60.94 57.42
6 49.36 44.23 39.29 47.01
7 48.43 52.54 59.29 45.09
8 57.94 55.46 46.52 50.40
9 52.78 51.90 53.88 54.24

10 42.76 51.54 52.58 55.59
11 52.80 57.92 62.29 46.47
12 49.92 50.43 59.70 45.47
13 51.83 33.24 45.52 43.64
14 44.30 47.28 43.76 48.64
15 55.09 57.98 46.11 41.94
16 46.94 62.71 53.88 52.01
17 50.01 45.16 49.88 38.05
18 49.32 51.02 47.58 50.53
19 58.69 45.40 55.05 54.52
20 47.41 44.22 51.82 53.89

MEAN WPFD-Random TCP 50.23 52.87 51.73 49.77
of Times PORT is better than

Random order
20 20 19 17

PORT TCP: WPFD 61.68 73.09 62.21 54.15
Sign Statistic 20 20 19 17

sign-test p-value <0.0001 <0.0001 <0.0002 =0.0013

8. Summary

In this paper we propose the PORT scheme for prioritizing system level test cases to

improve the rate of detection of severe failures. We use three prioritization factors in our

PORT (v 1.0) scheme: requirements volatility, developer-perceived implementation

complexity and customer priority. PORT (v 1.0) was applied to four similar student team

projects that were developed in an advanced graduate software-testing course. In our next

version of PORT (v 2.0), we have incorporated fault proneness as the fourth factor where

fault proneness would apply to requirements that are currently in a release product.

 22

Our validation results for PORT (v 1.0) involved evaluating the effectiveness of PORT

scheme towards meeting our research goals: (1) improve the rate of detection of severe

failures, and (2) assess the contribution of prioritization factors. The results indicate that

PORT scheme leads to significant improvement in rate of detection of severe failures in

comparison to random ordering of test cases for the four projects. The results also show

that CP is the biggest contributor towards the effectiveness of PORT followed by IC. These

results suggest that the PORT scheme could improve the effectiveness of testing activities

by focusing on: (1) functionalities that are of highest value to the customer, and (2)

improving the rate of detection of severe failures. Rectifying severe failures earlier is

believed to improve customer-perceived software quality, thereby increasing the overall

business value provided to the customers. We conducted sensitivity analysis on factor

weights to analyze whether the factor weights can sway the prioritization provided by the

PORT algorithm such that the software engineer is misguided. We considered four possible

allocations for factor weights and the results indicated that the mean-based approach to

assigning weights yielded the highest WPFD. Additionally, Musa’s SRET approach of test

selection was applied to the same four student projects. The PORT scheme was compared

with 20 random permutations of test case ordering on the test suite selected based on SRET

technique. The WPFD for the 20 random permutations of test set selected via SRET was

compared with the WPFD for PORT scheme and the results were statistically significant in

favor of PORT scheme in comparison to SRET (p < 0.01).

Prioritization at the system level can also be beneficial because the PORT scheme

requires the team to conduct system analysis and to write concrete test cases. The act of

writing concrete test cases immediately after requirements specification can lead to the

identification of ambiguous and unclear requirements, allowing requirements errors to be

identified and rectified earlier. The PORT scheme allows the engineering team to monitor

the requirements covered in system test; the ability to monitor requirements covered in

system test is believed to be one of the challenges faced by the industry [11]. PORT is

being applied to industrial projects at companies including ABB, I-Cubed and Tekelec.

 23

References

1. S. Amland, "Risk Based Testing and Metrics," presented at 5th International
Conference EuroSTAR ’99, Barcelona, Spain, 1999.

2. B. Beizer, Software Testing Techniques. New York, NY: Van Nostrand Reinhold,
1990.

3. B. Boehm, "Value-Based Software Engineering," ACM Software Engineering
Notes, vol. 28, pp. 1-12, March 2003.

4. B. Boehm and L. Huang, "Value-Based Software Engineering: A Case Study,"
IEEE Computer, vol. 36, pp. 33-41, March 2003.

5. Y. Chen, R. Probert, and D. Sims, "Specification based Regression Test Selection
with Risk Analysis," presented at Conference of the Center for Advanced Studies on
Collaborative Research, Ontario, Canada, 2002.

6. R. Craig and S. Jaskiel, Systematic Software Testing. Norwood, MA: Artech House
Publishers, 2002.

7. S. Elbaum, A. Malishevsky, and G. Rothermel, "Prioritizing Test Cases for
Regression Testing," Proceedings of the ACM International Symposium on
Software Testing and Analysis, vol. 25, pp. 102-112, August 2000.

8. S. Elbaum, A. Malishevsky, and G. Rothermel, "Test Case Prioritization: A Family
of Empirical Studies," IEEE Transactions on Software Engineering, vol. 28, pp.
159-182, February, 2002.

9. S. Elbaum, A. Malishevsky, and G. Rothermel, "Incorporating Varying Test Costs
and Fault Severities into Test Case Prioritization," presented at 23rd International
Conference on Software Engineering, Ontario, Canada, May 2001.

10. M. Harrold, "Testing: A Roadmap," presented at International Conference on
Software Engineering, Limerick, Ireland, 2000.

11. P. Hsia, A. M. Davis, and D. C. Kung, "Status report: Requirements Engineering,"
IEEE Software, vol. 10, pp. 75-79, November 1993.

12. IEEE, "IEEE Standard 610.12-1990, IEEE Standard Glossary of Software
Engineering Terminology," 1990.

13. C. Jones, "Software Challenges: Strategies for Managing Requirements Creep,"
IEEE Computer, vol. 29, pp. 92 - 94, June 1996.

14. J. Karlsson and K. Ryan, "A Cost-Value Approach for Prioritizing Requirements,"
IEEE Software, vol. 14, pp. 67-74, Sep-Oct 1997.

15. Y. K. Malaiya and J. Denton, "Requirements volatility and defect density,"
presented at 10th Intl' Symposium on Software Reliability Engineering, Boca Ratan,
Florida, November 1999.

16. G. Mogyorodi, "Requirements-Based Testing: An Overview," presented at 39th
International Conference and Exhibition on Technology of Object-Oriented
Languages and Systems, Santa Barbara, California, August 2001.

17. F. Moisiadis, "Prioritising Use Cases and Scenarios," presented at 37th International
Conference on Technology of OO Languages and Systems, Sydney, NSW, 2000.

18. J. C. Munson and S. Elbaum, "Software reliability as a function of user execution
patterns and practice," presented at 32nd Annual Hawaii International Conference
of System Sciences, Maui, HI, 1999.

 24

19. J. Musa, Software Reliability Engineering. New York, NY: McGraw-Hill, 1999.
20. J. Musa, "Software-Reliability-Engineered Testing," IEEE Computer, vol. 29, pp.

61-68, November 1996.
21. J. O'Neal and D. Carver, "Analyzing the Impact of Changing Requirements,"

presented at IEEE International Conference on Software Maintenance, Los
Alamitos, California, 2001.

22. T. Ostrand, E. Weyuker, and R. Bell, "Where the Bugs Are," presented at
Proceedings of the ACM SIGSOFT International Symposium on Software Testing
and Analysis, Boston, MA, July 2004.

23. G. Rothermel and M. Harrold, "Selecting Tests and Identifying Coverage
Requirements for Modified Software," presented at ACM International Symposium
on Software Testing and Analysis, Seattle, WA, August 1994.

24. G. Rothermel, R. Untch, C. Chu, and M. Harrold, "Test Case Prioritization," IEEE
Transactions on Software Engineering, vol. 27, pp. 929-948, October, 2001.

25. G. Rothermel, R. Untch, C. Chu, and M. Harrold, "Test Case Prioritization: An
Empirical Study," presented at International Conference on Software Maintenance,
Oxford, UK, September 1999.

26. F. Shull, V. Basili, B. Boehm, W. Brown, P. Costa, M. Lindvall, D. Port, I. Rus, R.
Tesoriero, and M. Zelkowitz, "What We Learned about Fighting Defects,"
presented at IEEE Symposium on Software Metrics, Ottawa, Canada, June 2002.

27. H. Srikanth, "Requirements Based Test Case Prioritization," presented at Student
Research Forum in 12th ACM SIGSOFT Int’l Symposium on the Foundations of
Software Engineering, Newport Beach, California, 2004.

28. H. Srikanth and L. Williams, "Requirements Based Test Case Prioritization,"
presented at Poster Session and Ph. D Forum in Grace Hopper Celebration of
Women in Computing, Chicago, Illinois, 2004.

29. H. Srikanth, "Requirements-Based Test Case Prioritization," presented at Doctoral
Symposium in International Conference of Software Engineering, St. Louis, 2005.

30. H. Srikanth and L. Williams, "On Economic Benefits of System Level Test Case
Prioritization," presented at International Conference on Software Engineering, St.
Loius, MO, 2005.

31. H. Srikanth, L. Williams, and J. Osborne, "System Test Case Prioritization of New
and Regression Tests," presented at International Symposium of Empirical Software
Engineering, Noosa Heads, Australia, 2005.

32. Standish.Group, "CHAOS." http://www.standishgroup.com/chaos.htm.
33. L. Tahat, B. Vaysburg, B. Korel, and A. Bader, "Requirement-Based Automated

Black-Box Test Generation," presented at 25th Annual International Computer
Software and Applications Conference, Chicago, Illinois, 2001.

34. M. Vouk and A. T. Rivers, "Construction of Reliable Software in Resource-
Constrained Environments," in Case Studies in Reliability and Maintenance, W. R.
Blischke and D. N. P. Murthy, Eds. Hoboken, NJ: Wiley-Interscience, John Wiley
and Sons, 2003, pp. 205-231.

35. E. Wong, J. Horgan, M. Syring, W. Zage, and D. Zage, "Applying design metrics to
predict fault-proneness: a case study on a large-scale software system," Software
Practice and Experience, vol. 30, pp. 1587-1608, 2000.

 25

http://www.standishgroup.com/chaos.htm

	Introduction
	Related Work
	Coverage-based Test Case Prioritization
	Software Reliability Engineered Testing
	Case Study to Identify Prioritization Factors

	Prioritization of Requirements for Test (PORT)
	PORT Factors
	PORT Prioritization Factor Collection Process
	PORT Algorithm

	PORT Validation Metrics
	PORT Case Study
	Case Study Limitations
	Case Study Results

	5.3.1. Rate of Detection of Severe Failures
	2 Analysis of PORT Factors

	Sensitivity Analysis of PORT Factor Weights
	Comparison of SRET and PORT
	Summary

