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Abstract
Sensor networks are often deployed in open environments. They are vulnerable to physical

attacks. Once a node’s cryptographic key is compromised, an attacker may completely im-
personate it, and introduce arbitrary false information into the network. Basic cryptographic
security mechanisms are often not effective in this situation. Most techniques to address this
problem focus on detecting and tolerating false information introduced by compromised nodes.
They cannot pinpoint exactly where the false information is introduced and who is responsible
for it. We still lack effective techniques to accurately identify compromised nodes so that they
can be excluded from a sensor network once and for all.

This paper proposes an application-independent framework for identifying compromised sen-
sor nodes. In this framework, sensor nodes may conceptually observe the activity of each other
following the deployment topology of a sensor network. An alert is generated if a node observes
an abnormal activity. Such alerts are collected by the base station, which further reason and
finally identify compromised nodes. The reasoning process is very challenging due to the fact
that compromised nodes may very well raise false alerts. They may also form local majorities
and collude to further mislead the base station. In this paper, we develop efficient and accurate
reasoning algorithms that can effectively deal with collusion and local majorities. Our algo-
rithms are optimal in the sense that they identify the largest number of compromised nodes
without introducing false positives. We evaluate the effectiveness of our algorithms through
comprehensive experiments.

1 Introduction

Low-power wireless sensor networks can be rapidly deployed in a large geographical area in a self-
configured manner. This makes them particularly suitable for real-time, large-scale information
collection and event monitoring for mission-critical applications in hostile environments, such as
target tracking and battlefield surveillance.

Such applications, meanwhile, impose unique security challenges. In particular, since sensors
are often deployed in open environments, they are vulnerable to physical attacks. Once recovering
the keying materials of some nodes, an adversary is able to impersonate them completely, and inject
arbitrary false information. Basic cryptographic security mechanisms, such as authentication and
integrity protection, are often not effective against such impersonation attacks [6].

Recently, several approaches have been proposed to cope with compromised nodes, which mainly
fall into two categories. Approaches in the first category are to detect and tolerate false information
introduced by attackers [5, 10, 22], in particular during data aggregation. Once the base station
receives aggregated data, it checks their validity through mechanisms such as sampling and the
deployment of redundant sensors. However, these techniques cannot be used to identify exactly
where the false information is introduced and who is responsible for it.

Approaches in the second category rely on application specific detection mechanisms which en-
able sensor nodes to monitor the activities of others nearby. Once an abnormal activity is observed,
a node may raise an alert either to the base station or to other nodes, who further determine which
nodes are compromised. We call approaches in this category alert-based. Representative alert-based
approaches include those in sensor network routing [8] and localization [16].

Alerts from sensor nodes make it possible to pinpoint compromised nodes. However, how to
effectively utilize such information is very challenging. It is hard to decide whether an alert can
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be trusted since compromised nodes may also raise false alerts to mislead the base station and
other nodes. Compromised nodes may further form a local majority and collude, increasing their
influences in the network. Further, existing alert-based approaches are application specific. They
cannot be easily extended to other domains. A general solution to the accurate identification of
compromised nodes still remains elusive.

The problem of false alerts (or feedback) and collusion also arises in other decentralized systems
such as online auction communities and P2P systems [1, 11, 13, 19, 23, 25, 26]. Reputation-based
trust management has been adopted as an effective means to form cooperative groups in the above
systems. One seemingly attractive approach is to apply existing trust management techniques
in sensor networks. For example, we may identify sensor nodes with the lowest trust values as
compromised. However, as a decentralized system, sensor networks bear quite unique properties.
Many assumptions in reputation-based trust management do not hold in sensor networks. Thus,
simply applying those techniques is unlikely to be effective (see section 4 for a detailed experimental
comparison).

For example, in P2P systems, interactions may happen between any two entities. If an entity
provides misleading information or poor services, it is likely that some other entities will be able to
detect it and issue negative feedback accordingly. The interactions among sensor nodes, however,
are restricted by the deployment of a sensor network. For a given node, only a fixed set of nodes
are able to observe it. Thus, it is easy for compromised nodes to form local majorities.

Also, most decentralized systems are composed of autonomous entities, which pursue to maxi-
mize its own interests. Incentive mechanisms are needed to encourage entities to issue (or at least
not discourage them from issuing) feedback about others. A sensor network, on the other hand, is
essentially a distributed system. Sensor nodes are designed to cooperate and finish a common task.
Therefore, it is possible to design identification mechanisms that achieve global optimality for a
given goal. For instance, to cope with false alerts, we may choose to identify as compromised both
the target and the issuer of an alert, as long as it will improve the security of the whole system.
Such an approach is usually not acceptable in P2P systems and online auction communities.

Indeed, the unique properties of sensor networks bring both challenges and opportunities. How
to accommodate and take advantages of these properties is the key to the accurate identification
of compromised nodes.

In this paper, we propose novel techniques to provide general solutions to the identification of
compromised sensor nodes. Our techniques are based on an application-independent framework
that abstracts some of the unique and intrinsic properties of sensor networks. It can be used to
model a large range of existing sensor network applications. In summary, our contributions include
the following:

1. We generalize the model of alert-based approaches, and propose an application-independent
framework for identifying compromised nodes. The central component of the framework is
an abstraction of the monitoring relationship between sensor nodes. Such relationship can be
derived from application specific detection mechanisms. The framework further models sensor
nodes’ sensing and monitoring capabilities, and their impacts on detection accuracy. We
show by example that many existing sensor networks can be easily modeled by the proposed
framework.

2. Based on the proposed framework, we design efficient algorithms to accurately identify com-
promised sensor nodes for situations where (1) compromised nodes inject false information
and false alerts independently, and (2) compromised nodes form local majorities and collude
to inject false information and false alerts. We show that our algorithms are optimal, in the
sense that they identify the largest number of compromised nodes without introducing any
false positives. We also propose techniques to further eliminate those compromised nodes
that cannot be directly identified by the above algorithms. To the best of our knowledge, our
work is the first application-independent approach to identifying compromised sensor nodes.

3. We conduct comprehensive experiments to evaluate the proposed techniques. The results
show that they yields high detection rates and low false positive rates, and thus are effective
in identifying compromised nodes.
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Figure 1: An example deployment of sensor nodes in sensor network localization and its corre-
sponding observability graphs

The rest of the paper is organized as follows. Section 2 presents a general framework for
identifying compromised nodes, and shows how sensor network application can be modeled by the
framework. In section 3, we present algorithms that identify compromised sensor nodes for both
the collusion and non-collusion cases. In section 4, we show the effectiveness of our algorithms
through experimental evaluation. Some relevant issues are discussed in section 5. Section 6 reports
closed related work. Concluding remarks are given in section 7.

2 A General Framework for Identifying Compromised Nodes

In this section, we first use an example to identify the aspects of sensor networks that are relevant
to the identification of compromised nodes. We then present the general framework.

2.1 An Example Sensor Network Application
Many sensor network applications require sensors’ location information (e.g., in target tracking).
Since it is often too expensive to equip localization devices such as GPS receivers on every node,
many location discovery algorithms depend on beacon nodes, i.e., sensor nodes aware of their
locations. A non-beacon node queries beacon nodes nearby for references, and estimates its own
location. An example deployment of the sensor network is shown in figure 1(a), where beacon nodes
and non-beacon nodes are represented by rectangle and round nodes respectively. An edge from a
beacon node b to a non-beacon node s indicates that b can provide location references to s.

A compromised beacon node may claim its own location arbitrarily, making non-beacon nodes
around derive their locations incorrectly. Liu et al. [16] proposed a mechanism to detect malicious
beacon nodes. The basic idea is to let beacon nodes probe each other and check the sanity of
the claimed locations. Suppose beacon node b1’s location is (x, y) and beacon node b2 claims its
location to be (x′, y′). If the difference between the derived distance and the measured distance
exceeds a threshold ε, then b1 will consider b2 as compromised, and report to the base station.
Clearly, a compromised beacon node may also send false alerts to the base station.

After receiving a set of alerts from beacon nodes, what information is needed for the base station
to make a rational decision on compromised nodes? First, the base station has to know whether an
alert is valid, i.e., whether beacon nodes b1 and b2 are close enough to probe each other. In other
words, the monitoring relationship between beacon nodes is needed.

Second, due to the imprecision of distance measuring, it is possible that an alert is raised by
an uncompromised beacon node against another uncompromised one. The base station has to take
this possibility into consideration.

Third, it is necessary to regularly probe a beacon node so that it can be detected promptly if
that beacon node is compromised and provides misleading location references.

The above information is quite relevant for the base station to reason about compromised
nodes, and is commonly available in sensor network applications. It should be included in a general
framework for identifying compromised nodes.
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2.2 Assumptions
We make the following assumptions about sensor network applications before presenting a general
framework for identifying compromised nodes.

First, we assume there exist application-specific detection mechanisms deployed in a sensor net-
work, which enable sensor nodes to observe each other’s activities. Such detection mechanisms are
commonly employed in sensor networks. Examples include beacon node probing in sensor network
localization as mentioned above, witnesses in data aggregation [5] and the watchdog mechanism
[8]. A sensor node s1 is called an observer of another node s2 if s1 can observe the activities of s2.
A node may have multiple observers or observe multiple other nodes.

Second, we focus on static sensor networks, where sensor nodes do not change their locations
dramatically once deployed. A large range of sensor networks fall into this category. One con-
sequence of this assumption is that the observability relationship between sensor nodes does not
change unless a sensor network is reconfigured.

Third, we assume that message confidentiality and integrity are protected through key manage-
ment and authentication mechanisms [4, 7, 9].

Finally, we assume the base station of a sensor network is trusted, and has sufficient computation
and communication capabilities. Hence, we adopt a centralized approach, where the base station is
responsible for reasoning about the alerts and identifying compromised nodes. The responsibility
of each node is only to observe abnormal activities and raise alerts to the base station. We briefly
discuss in section 5 decentralized approaches, where sensor nodes also take part in the reasoning
and identification process.

2.3 The Framework
With the above assumptions, our framework for identifying compromised nodes is composed of the
following components:
Observability graph. An observability graph is a directed graph G(V, E), where V is a set of

vertices that represent sensor nodes, and E is a set of edges. An edge (s1, s2) ∈ E if and only
if s1 is an observer of s2. An observability graph is derived from the detection mechanism
of an application. Note that V only contains those nodes whose security is concerned by a
detection mechanism. For example, in sensor network localization, the observability graph
only includes beacon nodes. Figure 1(b) shows the observability graph corresponding to the
sensor network localization deployment in figure 1(a).

Alerts. An alert takes the form (t, s1, s2), indicating that node s1 observes an abnormal activity of
s2 at time t. The information in an alert may be further enriched, for example, by including
s1’s confidence on the alert. For simplicity, this paper omits such parameters. Note that
alerts may not need to be explicitly sent by sensor nodes. Instead, in some applications they
may be implicitly inferred by the base station from application data sent by sensor nodes.

Sensor behavior model. Sensors are not perfect. Even if a node is uncompromised, it may still
occasionally report inaccurate information or behave abnormally. A sensor behavior model
includes a parameter rm (called the reliability of sensors) which represents the percentage
of normal activities conducted by an uncompromised node. For example, in sensor network
localization, if rm = 0.99, then 99% of the time, an uncompromised beacon node provides
correct location references.

Observer model. Similarly, an observer model represents the effectiveness of the detection mech-
anism of a sensor network, which is captured by its observability rate rb, positive accuracy rp
and negative accuracy rn. rb is the probability that an observer s1 observes an activity when
it is conducted by an observee s2. This reflects the fact that in some applications, due to
cost and energy concerns, s1 may not observe every activity of s2. The positive accuracy rp
is the probability that s1 raises an alert when s2 conducts an abnormal activity observed by
s1. Similarly, rn is the probability that s1 does not raise an alert when s2 conducts a normal
activity observed by s1. rp and rn reflect the intrinsic capability of a detection mechanism.
The sensor behavior model and the observer model can usually be obtained from the specifi-
cation of sensors and application detection mechanisms.
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Security estimation. If it is possible that all the nodes in the network are compromised, then
in general the base station cannot identify definitely which nodes are compromised based on
alerts. Therefore, this framework focuses on the situation where the number of compromised
nodes does not exceed a certain threshold K. This threshold is application specific. We call
K the security estimation of a network. We emphasize that K is only an upper bound of the
number of compromised nodes. The base station does not need to know the exact number of
compromised nodes in a network.

Identification function. An identification function F determines which nodes are compromised.
Formally, it takes as inputs the observability graph G, the sensor reliability rm, the observer
model (rb, rp, rn), the security estimation K, and a set of alerts raised during a period T , and
returns a set of node IDs, which indicate those nodes that are considered compromised.

The above framework is application independent. It can be used to model a large range of
sensor networks. In appendix A, we use two examples (sensor network localization [16] described
in section 2.1 and a sensor network data fusion application [5]) to show the applicability of the
proposed framework. Note that in the appendix we intentionally omit the discussion of identification
functions when modeling the above applications, since neither work [5, 16] handles false alerts from
compromised nodes. Though inconsistencies between alerts may be discovered, no solution is
provided to reason which nodes are compromised.

3 Identification of Compromised Nodes

In this section, we present our approaches to identifying compromised sensor nodes based on the
above framework

Let s1 be an observer of s2. Intuitively, if s1 raises an alert against s2, then at least one of
them is compromised. Otherwise, if both behave normally, there should be no alerts between them.
However, sensors are not assumed to have perfect sensing and monitoring capabilities. Thus, the
base station cannot draw any definite conclusion from a single alert. Instead, it needs to observe the
alert pattern during a certain period of time to discover suspicious activities with high confidence.

Given a network’s sensor behavior model, its observer model and the frequency of the monitored
events, we can derive the expected number of alerts raised by s1 against s2 during a period of time,
when they are uncompromised. During the operation of the sensor network, the base station
compares the number of alerts actually raised by s1 against s2 with the expected number. Only
when the former is higher than the latter with statistical significance, should the base station
consider it as abnormal. Specifically, for every event sensed by a node sj , the probability that si
raises an alert against sj is given by C = rb · ((rm · (1 − rn) + (1 − rm) · rp). Let fj(x) be the
distribution of events that can be sensed by sj . Then the distribution of alerts along the edge
(si, sj) (i.e., those raised by si against sj) is fij(x) = fj( x

C ). For a period t, the expected number
of alerts along (si, sj) will be Rij(t) = C

∫ t
fij(x).

During a time period T , if the number of alerts along the edge (si, sj) is over Ri,j(|T |) + δ,
where δ ≥ 0 is an application specific parameter, then we say the edge (si, sj) is an abnormal edge
in the observability graph. Otherwise, (si, sj) is normal. An abnormal edge can be interpreted as a
definite claim from si that sj is compromised. Similarly, a normal edge represents si’s endorsement
that sj is not compromised.

Given an abnormal edge (si, sj), either si is compromised and raises many bogus alerts against
sj , or sj is compromised and its malicious activities are observed by si, or both. Further suppose
there is an additional normal edge (sl, sj). Then one of si and sl must be compromised. Otherwise,
the two edges should be consistent with each other since sl and si observe the activities of the same
node sj during the same period of time.

Definition 3.1. Given an observability graph G(V, E), let Ea and En be the set of abnormal edges
and normal edges in G respectively. We say that two sensor nodes si and sj form a suspicious pair
if one of the following holds:

1. (si, sj) ∈ Ea or (sj , si) ∈ Ea;
2. There exists a sensor node s′, such that either (si, s

′) ∈ Ea and (sj , s
′) ∈ En, or (si, s

′) ∈ En

and (sj , s
′) ∈ Ea.
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Figure 2: An observability graph and its corresponding inferred graph

Let {s1, s
′
1}, ..., {sk, s

′
k} be the suspicious pairs derived from an observability graph G. The inferred

graph of G is an undirected graph I(V ′, E′) such that V ′ =
⋃

1≤i≤k{si, s
′
i} and E′ = {{si, s

′
i} | 1 ≤

i ≤ k}.

Intutively, if (si, sj) are a suspicious pair, then at least one of them is compromised. Note that
if a pair of node is not suspicious, it does not mean that they are both uncompromised. It only
means we cannot infer anything about them.

The left part of figure 3 shows an observability graph, where abnormal and normal edges are
represented by solid and dashed edges respectively. The corresponding inferred graph is shown in
the right part of the figure. Note that an inferred graph may not be connected.

From the figure one may wonder that, since (2, 1) is normal and (2, 5) is abnormal, shouldn’t
{1, 5} be a suspicious pair? The answer is no since it is possible that node 2 is compromised, and
selectively issues bogus alerts against node 1 but not node 5, even though both node 1 and 5 are
uncompromised. Similarly, a compromised node may sense data normally but issue bogus alerts or
vise versa. So {1, 3} is not a suspicious pair even though (3, 2) is abnormal and (2, 1) is normal. In
other words, transitivity does not hold when constructing suspicious pairs.

Clearly, if a sensor node does not appear in the inferred graph, then its behavior is consistent
with the sensor behavior model and observer model, and thus should be considered uncompro-
mised. Hence, we concentrate on identifying compromised sensor nodes among those involved in
the inferred graph.

Definition 3.2. Given an inferred graph I(V, E) and a security estimation K, a valid assignment
with regard to I and K is a pair (Sg, Sb), where Sg and Sb are two sets of sensor nodes that satisfies
all of the following conditions:

1. Sg and Sb is a partition of V , i.e., Sg ∪ Sb = V and Sg ∩ Sb = ∅;
2. For any two sensor nodes si and sj, if si ∈ Sg and sj ∈ Sg, then {si, sj} �∈ E; and
3. |Sb| ≤ K.

Intuitively, a valid assignment corresponds to one possible way that sensor nodes are compro-
mised, so that, when they raise false alerts and conduct abnormal activities, the resulting inferred
graph is I. Sg and Sb contains the uncompromised and compromised nodes respectively. Given an
inferred graph and a security estimation K, there may exist many valid assignments. If a node s
is included in the Sb of every possible valid assignment, then we are sure that s is compromised.

Definition 3.3. Given an inferred graph I(V, E) and a security estimation K, let {(Sg1, Sb1),
. . . , (Sgn, Sbn)} be the set of all the valid assignments with regard to I and K. We call

⋂
1≤i≤n Sbi the

compromised core of the inferred graph I with security estimation K, denoted CompromisedCore(I, K).
Similarly,

⋂
1≤i≤n Sgi is called the uncompromised core of I with security estimation K, denoted

UncompromisedCore(I, K).

If an identification function always returns the compromised core of an inferred graph I with
security estimation K, then the function is optimal in the sense that it identifies the largest number
of compromised nodes without introducing any false positives. Thus, given the general framework,
one key problem is to develop algorithms that efficiently compute CompromisedCore(I, K).
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On the other hand, though introducing no false positives, the compromised core may not achieve
high detection rates since there may exist suspicious pairs whose nodes are not included in the com-
promised core. Thus, another key problem is to seek techniques that further eliminate compromised
nodes without causing many false positives.

In summary, our approach is composed of two phases. In the first phase, we compute or
approximate the compromised core, identifying those nodes that are definitely compromised. In
the second phase, we tradeoff accuracy for eliminating more compromised nodes.

3.1 Identification of Colluding Compromised Sensor Nodes
Let us first consider a special case in which there is no edge between two compromised sensor nodes
in the inferred graph. This corresponds to a strong collusion model where compromised nodes are
well coordinated so that they do not raise alerts against each other, and alerts against a node
from two compromised nodes are consistent. It is easy to see that in this case the inferred graph is
bipartite. We call inferred graphs in this situation collusion-inferred graphs.

Let G1, . . . , Gz be the connected components of a collusion inferred graph I. For each Gi,
1 ≤ i ≤ z, let Ai, Bi denote the two sets of disjoint vertices in Gi such that vertices in one set are
adjacent only to vertices in the other set. We call (Ai, Bi) the two-color partition of Gi. Without loss
of generality, we assume |Ai| ≥ |Bi|. Clearly, since I is collusion inferred, vertices in the same set
are either all compromised or all uncompromised. Further, if vertices in one set are compromised
(uncompromised), then vertices in the other set are uncompromised (compromised). Therefore,∑

1≤i≤z |Bi| gives a lower bound of the number of compromised nodes in a network.

Lemma 3.1. Let I(V, E) be a collusion-inferred graph and K be a security estimation. Given the
two-color partition (Ai, Bi) of any connected component of I, 1 ≤ i ≤ z, let Qi be either Ai or Bi.
We have Qi ⊆ UncompromisedCore(I, K) if and only if |Qi| +

∑
j �=i |Bj | > K.

Intuitively, if Qi is compromised, then |Qi|+
∑

j �=i |Bi| gives a tighter lower bound of the number
of compromised nodes, which should be no more than K.

Corollary 3.1. Given any connected component Gi of a collusion inferred graph I, and a security
estimation K, Bi �⊆ UncompromisedCore(G, K).

Theorem 3.1. Given a collusion inferred graph I with z connected components, and a secu-
rity estimation K, let (Ai, Bi), 1 ≤ i ≤ z, be the two-color partition of each connected compo-
nent. Let Sb = {Bi | |Ai| +

∑
j �=i |Bj | > K}, and Sa = {Ai | |Ai| +

∑
j �=i |Bj | > K}. Then

CompromisedCore(I, K) =
⋃

Bi∈Sb
Bi and UncompromisedCore(I, K) =

⋃
Ai∈Sa

Ai.

Given theorem 3.1, it is straightforward to develop the algorithm that efficiently compute
CompromisedCore(I, K). The pseudocode of the algorithm is shown in figure 3(a).

Theorem 3.2. The complexity of algorithm CollusionCompromisedCore is O(n + m), where n and
m are the numbers of vertices and edges respectively in an collusion inferred graph.

3.2 A General Algorithm to Identify Compromised Sensor Nodes
The discussion above has made two assumptions. First, we assume that compromised nodes follow
a strong collusion model, so that no suspicious pair contains two compromised nodes. Second, we
assume that the base station is aware of the collusion. The effectiveness of the algorithm shown in
figure 3(a) relies on the fact that compromised nodes always collude.

When compromised nodes do not follow the collusion model strictly, the inferred graph may
not be bipartite any more, and thus the above algorithm cannot be applied. Note that, even if an
inferred graph is bipartite, it does not necessarily mean that compromised nodes are colluding. For
example, suppose the inferred graph contains two suspicious pairs {s1, s2} and {s1, s3}. Though it
is bipartite, it is possible that both s1 and s2 are compromised, but raise alerts against each other.

On the other hand, it always holds that a suspicious pair contains at least one compromised
node. This property helps us derive the lower bound of the number of compromised nodes, even if
they do not always collude.
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CollusionCompromisedCore(I, K)
//Input: I is an collusion inferred graph
// K is a security estimation
//Output: the compromised core of I with K
Sb = ∅
For each connected component Gi of I

Let (Ai, Bi) be the
two-color partition of Gi

If |Ai| +
∑

j �=i |Bj | > K
Sb = Sb ∪ Bi

Return Sb

(a) The algorithm for computing the compro-
mised core of a collusion inferred graph with se-
curity estimation K

AppCompromisedCore(I, K)
//Input: I is an inferred graph
// K is a security estimation
//Output: the compromised core of I with K
Sb = ∅
For each sensor node s in I

Let ns be the number of neighbors of s
Let m = MI′

s

If ns + m > K
Sb = Sb ∪ {s}

Return Sb

(b) The algorithm for approximating the com-
promised core of an inferred graph with security
estimation K

Figure 3: Efficient algorithms for computing the compromised core

Lemma 3.2. Given an inferred graph I(V, E), let VI be a minimum vertex cover of I. Then the
number of compromised nodes is no less than |VI |.

We denote the size of the minimum vertex covers of an undirected graph G as CG. Given a
sensor node s, the neighbors of s in an inferred graph I is denoted Ns. Further, let I ′s denote the
graph after removing s and its neighbors from I. We have the following theorem for identifying
compromised sensor nodes.

Theorem 3.3. Given an inferred graph I and a security estimation K, for any node s in I,
s ∈ CompromisedCore(I, K) if and only if |Ns| + CI′s > K.

Intuitively, if we assume a sensor node s is uncompromised, then all its neighbors in I must be
compromised. According to lemma 3.2, there are at least |Ns| + CI′s compromised nodes, which
should be no more than the security estimation K. Otherwise, s must be compromised. Meanwhile,
if |Ns| + CI′s ≤ K, we can always construct a valid assignment for I with regard to K, where s is
assigned as uncompromised, which means s is not in CompromsedCore(I, K).

By theorem 3.3, the algorithm to identify CompromisedCore(I, K) is straightforward. For each
node s, we check whether |Ns|+ CI′s is larger than K. Unfortunately, this algorithm is in general
not efficient since the minimum vertex covering problem is NP-complete. In theory we also have
to compute the minimum vertex cover of a different graph when checking each node.

Thus, we seek efficient algorithms to approximate the size of minimum vertex covers. To prevent
false positives, we are interested in a good lower bound of the size of minimum vertex covers, a goal
different from that of many existing approximation algorithms. In this paper, we choose the size of
maximum matchings of I as such an approximate. We denote the size of the maximum matchings
of an undirected graph G as MG.

Lemma 3.3. Given an undirected graph G, MG ≤ CG ≤ 2MG. And the bounds are tight.

Corollary 3.2. Given an inferred graph I and a security estimation K, for any node s in I, if
|Ns| + MI′s > K, then s ∈ CompromisedCore(I, K).

A maximum matching of an undirected graph can be computed in polynomial time [18]. Figure
3(b) shows an efficient algorithm to approximate the compromised core. Since this algorithm
does not assume any specific collusion model among compromised nodes, we call it the general
identification algorithm, and the one in section 3.1 the bipartite identification algorithm.

Theorem 3.4. The complexity of the algorithm AppCompromisedCore is O(mn
√

n), where m is
the number of edges and n is the number of vertices in an inferred graph [18].
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3.3 Further Elimination of Compromised Sensor Nodes
The above algorithms do not introduce any false positives. Compromised nodes identified by the
above algorithms may be safely excluded from the networks through, e.g., key revocation [4, 15].
However, there may still be suspicious pairs left that do no include any nodes in the compromised
core. We call the graph composed of such pairs the residual graph.

We may tradeoff accuracy for eliminating more compromised nodes. Since a suspicious pair
contains at least one compromised node, identifying both nodes as compromised will introduce at
most one false positive. By computing the maximum matching of a residual graph and treating
them as compromised, the false positive rate is bounded by 0.5.

Therefore, given an inferred graph, we first compute or approximate its compromised core. We
then compute the maximum matching of the residual graph, and further eliminate compromised
nodes.

4 Experiments

We simulate a sensor network deployed to monitor the temperature of an area of 100m × 100m.
For simplicity, we assume sensor nodes are randomly distributed in the area. We adopt a simple
detection mechanism. If the distance between two sensor nodes is within 10 meters, and the
temperatures reported by them differ by more than 1◦C, the base station infers that each of them
raises an alert against the other. In other words, two nodes are observers of each other if they are
with in 10 meters. We assume that, once a network is deployed, sensors’ location information can
be collected through localization techniques. Therefore, the base station is able to construct an
observability graph accordingly.

Sensor nodes report temperatures to the base station once per minute, and the sensed data
follows a normal distribution N(µ, σ2), where µ is the true temperature at a location, and σ = 0.2,
which is consistent with the accuracy of typical thermistors in sensor network [24].

Unless otherwise stated, we assume 10% ∼ 15% of the nodes in the network are compromised.
The security estimation is K = 0.15N , where N is the total number of nodes in the network.
The goal of the attacker is to raise the temperature reading in the area. The attacker may choose
to either randomly compromise nodes in the field, in which case no local majority is formed, or
to compromise nodes centered around a position (x, y), following a normal distribution with a
standard deviation σd. The latter corresponds to the case of local majority, and the parameter σd
controls its strength. The smaller σd is, the closer compromised nodes are to each other, and thus
the stronger the local majority is. We call σd the concentration of compromised nodes.

The evaluation metrics of the experiments are the detection rates and false positive rates of the
proposed identification approaches.

We act conservatively, and assume that compromised nodes are in fact colluding, but the base
station has to use the general detection algorithm since it cannot assume so. Thus, in the exper-
iments, compromised nodes always collude. We then compare the effectiveness of the following
approaches: (1) bipartite+mm: the bipartite identification algorithm followed by the maximum
matching approach; (2) bipartite-only: the bipartite identification algorithm alone; (3) general+mm:
the general identification algorithm followed by the maximum matching approach; and (4) general-
only: the general identification algorithm alone. The comparision helps us investigate how much
benefits it will bring if the base station is aware of the collusion among compromised nodes.

We further compare our approaches with EigenRep [11], a well-known reputation-based trust
management scheme for P2P systems. The idea of EigenRep is similar to the PageRank algorithm
[12]. In EigenRep, the number of satisfactory and unsatisfactory transactions between each pair of
entities is collected to construct a matrix. One special property of the matrix is that the entries in
each row add up to 1. The matrix is repetitively multiplied with an initial vector until it converges.
The initial vector is a pre-defined parameter that corresponds to the default trust value of each
entity. Each entry in the converged vector represents an entity’s final trust value. Since the trust
values of all nodes always add up to 1, 1/N is the average trust value of sensor nodes in the network.
In the experiment, we identify the K nodes with the lowest trust values as compromised, unless
their trust values are over 1/N .

Network Density. In the first experiment, we vary the number of sensor nodes in the area
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Figure 4: The impact of the deployment density of sensor nodes

from 50 to 250. The concentration of compromised nodes is set to be 20. Figure 4(a) and 4(b)
show respectively the detection rate and false positive rate of each approach.

We see that when the number of sensor nodes increases, all the approaches achieve better
detection rates and less false positive rates. Intuitively, the more densely sensor nodes are deployed,
the more observers each node has, and thus the more likely an abnormal activity is detected.
Another observation is that, bipartite+mm and general+mm achieve almost the same detection
rates. However, the false positive rate of the latter is much higher than that of the former, since
the latter takes advantages of the fact that compromised nodes are colluding, which helps identify
compromised nodes more accurately. The third observation is that using the bipartite and the
general identification algorithms alone do not achieve high detection rates when sensor nodes are
deployed very loosely. This is because there are very few alerts for the base station to identify
compromised nodes definitely. Note that these are the best that the base station can do without
introducing false positives. Finally, we see that the bipartite+mm and the general+mm approaches
can detect much more compromised nodes with much fewer false positives than EigenRep, due
to the fact that they take the unique properties of sensor networks into consideration, instead of
treating it as a generic decentralized system.

Local majority. Figure 5 shows the effectiveness of different approaches when compromised
nodes form local majorities. The number of nodes in the network is set to be 200. The concentration
of compromised nodes is varied from 5 to 200. When compromised nodes are extremely close to each
other, they essentially form a cluster. Suspicious pairs only involve those compromised nodes near
the edge of the cluster. Those near the center of the cluster do not appear in the inferred graph,
and thus cannot be identified. However, even at this situation, the bipartite+mm and general+mm
approaches can still achieve detection rate over 0.6, mainly due to the maximum matching approach
in the second phase. When the compromised nodes are less concentrated, the bipartite and the
general algorithms enables the base station to quickly identify almost all the compromised nodes.
That is why we see a quick rise in their detection rates and a sharp drop in their false positive
rates. Again, we observe that EigenRep is inferior to both bipartite+mm and general+mm.

Accuracy of the security estimation. The security estimation is an important parameter
for identification functions to infer compromised nodes. An accurate security estimation is not
expected to always be available. The next experiment evaluate how the accuracy of a security
estimation affects the effectiveness of different approaches. The total number of sensor nodes are
set to 200. The number of compromised nodes and their concentration are both set to 20. The
security estimation is varied from 20 to 40. The smaller the security estimation is, the more accurate
it is. The experiment results are shown in figure 6.

We see that bipartite+mm and general+mm still achieve very high detection rates even when the
accuracy of the security estimation decreases. When the security estimation is accurate, most of the
compromised nodes are identified by algorithms in the first phase, producing low false positives.
When the accuracy of the security estimation decreases, the effectiveness of the first phase also
decreases. More compromised nodes are instead identified in the second phase by the maximum
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Figure 5: The impact of the concentration of compromised sensor nodes
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Figure 6: The impact of the accuracy of security estimation

matching approach. That explains why the false positives increase while detection rates remain
high. The detection rate of EigenRep in fact improves when the security estimation accuracy
decreases. This is because EigenRep always chooses the K nodes with lowest trust values, which
will include more compromised nodes. But it also dramatically increases its false positive rate.

In summary, our experiments show that the two-phase approaches can always achieve very high
detection rates with low false positives, even when sensor nodes are relatively loosely deployed, and
compromised nodes form strong local majorities. Also, since they are designed to accommodate the
uniqueness of sensor networks, they consistently outperform EigenRep, a reputation-based trust
management schemes for general decentralized systems. Further, though the bipartite-only and
general-only approaches cannot achieve as high detection rates as bipartite+mm and general+mm,
they do not introduce any false positives, which may be a desirable property for many applications.

5 Discussion

Attacks The proposed framework and algorithms focus on identifying compromised nodes through
reasoning about alerts between sensor nodes. One possible attack is that an attacker may
repetitively trigger events that can only be monitored by a node s. Thus, the data reported
by s may be significantly different from that of others. This may cause many alerts against
s, and have s identified as compromised. The essential reason for such attack is that the
detection mechanism cannot tell the difference of information of a real phenomenon from pure
bogus information generated by a compromised node. This problem cannot be handled by the
general framework. Instead, it requires more accurate application detection mechanisms, e.g.,
having sensor nodes more densely deployed so that any event can be monitored by multiple
nodes.

Decentralized approaches In this paper, we adopt a centralized approach, i.e., the base station
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collects alerts and identifies potentially compromised nodes. A centralized approach usually
offers better accuracy in identifying compromised and malfunctional nodes, since it has a
global view of the network. A decentralized approach (as in [8]) is a possible alternative,
which limits alerts to be exchanged between nearby nodes. A decentralized approach may
incur less communication costs and be more scalable in some applications1. But without
global information, it is in general more difficult to deal with the local majority and collusion
of compromised nodes. How to design light-weighted decentralized approach to accurately
identify compromised nodes is a challenging problem.

6 Related Work

Much work has been done to provide security primitives for wireless sensor networks, including
practical key management [2, 4, 7, 15], broadcast authentication [14, 20, 21], and data authentication
[10, 22, 27] as well as secure in-network processing [3]. The work of this paper is complementary to
the above techniques, and can be combined to achieve high information assurance for sensor network
applications. Several approaches have been proposed to detect and tolerate false information from
compromised sensor nodes [5, 10, 22] through e.g., sampling and redundancy. But they do not
provide mechanisms to accurately identify compromised sensor nodes, which is the focus of this
paper.

Reputation-based trust management has been studied in different application contexts, includ-
ing P2P systems, wireless ad hoc networks, social networks and the Semantic Web [1, 11, 13, 19, 23].
Many trust inference schemes have been proposed. They different greatly in inference methodolo-
gies, complexity and accuracy. As discussed early, the interaction model and assumptions in the
above applications are different from sensor networks. Directly applying existing trust inference
schemes may not yield satisfactory results in sensor networks.

Ganeriwal et al. [8], propose to detect abnormal routers in sensor networks through reputa-
tion mechanism. It is assumed that a sensor’s routing quality can be observed by nearby sensors
through a watchdog mechanism. Ganeriwal et al. adopt a decentralized trust inference approach.
Sensors evaluate each other’s trustworthiness by acquiring feedback information from nearby sen-
sors. Ganeriwal et al.’s work shows the usefulness of reputation in sensor networks. But their
approach treats a sensor network the same as a typical P2P system, and thus does not capture
the unique properties of sensor networks. Further, their work focuses on avoiding services from
potentially compromised sensors instead of identifying and excluding them from sensor networks.
Further, their work is application specific, and cannot be easily applied to other sensor network
applications.

7 Conclusion

In this paper, we present a general framework that abstracts the essential properties of sen-
sor networks for the identification of compromised sensor nodes. The framework is application-
independent, and thus can model a large range of sensor network applications. Based on the
framework, we develop efficient algorithms that achieve maximum accuracy without introducing
false positives. We further propose techniques to trade off accuracy for increasing the identification
of compromised nodes. The effectiveness of these techniques are shown through theoretical analysis
and detailed experiments. To the best of our knowledge, our work is the first in the field to provide
an application-independent approach to identifying compromised nodes.

We plan to extend this work in the following directions. First, we are interested in designing
a cost model for sensor network reconfiguration to mitigate the effect of compromised nodes. The
model should include possible reconfiguration mechanisms, and consider the multiple functionalities
provided by a sensor network and their dependency. Second, we plan to investigate light-weighted
decentralized approaches, and systematically analyze its benefits and inherent weakness when com-
pared with centralized approaches.

1As mentioned early, in many applications, alerts can be derived from sensed data, which do not incur additional
communication costs in the centralized approach.
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Appendix

A The Applicability of the Framework

Example 1: Localization in sensor networks. The approach for detecting compromised beacon
nodes [16] described in section 2.1 can be modeled by our framework as follows.

1. Observability graph. The vertices of the observability graph only includes beacon nodes.
There is a bi-directional edge between two beacon nodes, if they are close enough to probe each
other. (Note that a detecting beacon node has to use a pseudoID to prevent a compromised
beacon node from recognizing a probing query) Figure 7(b) shows the observability graph
corresponding to figure 7(a).

2. Alerts. If at time t a beacon node b1 detects a bogus location claimed by a nearby beacon b2,
it will send an alert (t, b1, b2) to the base station.

3. Sensor behavior model. The probability that an uncompromised beacon claims an incorrect
location is determined by the resolution and the accuracy of the localization device. Let (x, y)
be a beacon’s actual location and (x′, y′) be its measured location. Assume x′ − x and y′ − y
follow normal distribution N(0, σ2). Then the distribution of the distance d between (x, y)
and (x′, y′) will be d

2π2σ2 e−d2/2σ2
. Suppose a beacon node is considered defected if d is larger

than a pre-defined threshold ε. Then the reliability of beacon nodes is P (d < ε).
4. Observer model. Since a probe is always initiated by an observer, the observability of beacon

nodes is 1. A beacon node’s positive and negative detection rates can be derived from the
beacon node’s behavior model. We do not show the detailed steps here due to space limit.
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Example 2: Sensor network data fusion. Data fusion is a common technique to reduce
communication in sensor networks. Instead of having all the raw data sent to the base station,
they are sent to nearby data fusion nodes, which aggregate them and forward the result further to
the base station. Compromised data fusion nodes may send bogus aggregated information to the
base station. Du et al. [5] proposed a witness-based mechanism to detect compromised data fusion
nodes. The basic architecture of their approach is shown in figure 7(c). For a set of sensor nodes,
there are one dedicated data fusion node and several witness nodes, all of which can receive raw
data from sensor nodes. A witness node performs the same aggregation as the data fusion node,
but only forwards the MAC of the result (using its shared key with the base station) to the data
fusion node. The data fusion node then sends its result along with the witnesses’ MACs to the
base station. The base station checks the consistency between the data fusion node’s result and
the MACs of witnesses. Clearly, a compromised witness nodes may also send bogus MACs.

The above scheme can be modeled by our framework as follows.
1. Figure 7(d) shows the observability graph corresponding to figure 7(c). If there is a disagree-

ment between the data fusion node and a witness, it is equivalent that they raise alerts against
each other. In [5], sensor nodes collecting raw data are assumed to be trusted. Therefore, the
observability graph only contains data fusion nodes and witnesses. The observability graph
will be more complicated if we consider the situation where a node may serve as a witness or
an aggregator for more than one set of sensors.

2. Alerts. If the MAC of a witness w1 does not agree with the reported aggregation result of the
data fusion node df for an event happened at time t, the base station can derive two alerts
(t, w1, df ) and (t, df , w1).

3. Sensor behavior model. We only need to derive the reliability rate for the data fusion node
and witnesses. Suppose the communication channels between sensor nodes are reliable. Then
the data fusion node and witness nodes will always receive the same data from the sensor
node and get the same aggregation results. Thus the reliability rm of the data fusion node
and the witness nodes is 1.

4. Observer model. If we assume the communication channels between sensor nodes are reliable,
then the data fusion node and the witness nodes will always send data to the base station
when an event happens. Thus the observability rate rb = 1. The positive accuracy is the
probability that the MAC sent by an uncompromised witness does not agree with the bogus
aggregation result from a compromised data fusion node, which equals to 1 − 2−k, where k
is the length of the MAC. The negative detection rate is the probability that the MAC from
an uncompromised witness matches with the aggregation result from an uncompromised data
fusion node, which equals to rm.

B Proofs

Lemma 3.1.

Proof. ⇒ : Suppose there exists Qi ⊆ UncompromisedCore(G, K), which satisfies |Qi|+
∑

j �=i |Bj | ≤
K. Then from definition 3.3, Qi ∈ Sgi for all 1 ≤ i ≤ n, where n is the number of valid assignments.
Suppose the corresponding set in the same coloring partition with Qi is Pi. Since Pi and Qi are
bipartite, we know that Pi ∈ Sbi for all 1 ≤ i ≤ n, thus Pi ⊆ CompromisedCore(G, K). Now
we look at a particular assignment (Sgx, Sbx), 1 ≤ x ≤ n, such that Sbx contains Qi and all Bj ,
1 ≤ j ≤ k except Qi, where k is the number of two-color partitions, and Sgx contains Pi and all Aj ,
except Qi. This assignment satisfies all constraints of definition 3.2, but it also introduces a contra-
diction: Qi ⊆ UncompromisedCore(G, K), thus Qi ⊆ Sgj for all 1 ≤ j ≤ n, but Qi �⊆ Sgx in this
assignment. So if we have Qi ⊆ UncompromisedCore(G, K), it must satisfy |Qi|+

∑
j �=i |Bj | > K.

⇐ : Suppose there exists some Qi that satisfies |Qi| +
∑

j �=i |Bj | > K, and Qi can be in some
Sby, 1 ≤ y ≤ n. Since each coloring partition will have a set in Sby, Sby will be composed of the
following sets: Sby = {Qi, Ar, · · · , As, Bt, · · · , Bm}. We thus have |Sby| > |Qi| +

∑
j �=i |Bj | > K,
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since |Ai| ≥ |Bi| for 1 ≤ i ≤ k. This contradicts with constraint 3 in Definition 3.2. So Qi must be
in Sgy for all 1 ≤ y ≤ n. Thus Qi ⊆ UncompromisedCore(G, K).

Corollary 3.1.

Proof. Suppose there exists some Bi ⊆ UncompromisedCore(I, K), then we know Bi ∈ Sgi for
all assignment 1 ≤ i ≤ n. Thus Ai ∈ Sbi for all assignment 1 ≤ i ≤ n, so we have Ai ⊆
CompromisedCore(I, K). Now from Lemma 3.1, we have |Bi|+

∑
j �=i |Bj | > K. Since |Ai| ≥ |Bi|,

we also have Ai+
∑

j �=i |Bj | > K. Again from Lemma 3.1, Ai must be in UncompromisedCore(I, K).
This introduces contradiction. So Bi �⊆ UncompromisedCore(I, K).

Theorem 3.2.

Proof. The complexity of finding all the two-color partitions from the collusion inferred graph is
O(m), since we need to go through each edge to construct the partitions. The complexity of
identifying the compromised core is O(n), since the number of the connected components is in the
order of O(n), and we need to go through each component. Thus the total complexity of algorithm
CollusionCompromisedCore is O(n + m).

Lemma 3.2.

Proof. When we assign the nodes into Sg, Sb, for each edge Eij , at least one end point of them is
in Sb. So Sb is essentially a vertex cover for I. |S| ≥ |VI |.

Theorem 3.3.

Proof. ⇒: Suppose there exist some s that satisfies |Ns|+CI′s > K, and s ∈ Sg for some assignment
(Sg, Sb). Then we will have Ns ⊆ Sb. According to Lemma 3.2, we know the minimum number of
malicious nodes in I ′s is CI′s . So we have |Sb| ≥ |Ns|+ CI′s > K. This contradicts with constraint 3
of Definition 3.2. So s must be in Sb under any assignment. Thus s ∈ CompromisedCore(G, K).

⇐: If there exists s ∈ CompromisedCore(G, K) that satisfies |Ns| + CI′s ≤ K. Then we can
always construct an assignment of Sb: Sb = Ns

⋃
VI′s . This assignment will satisfy all constraints

of Definition 3.2, but it also introduces a contradiction: s ∈ CompromisedCore(G, K), and s /∈ Sb.
So if s ∈ CompromisedCore(G, K), it must satisfy |Ns| + CI′s > K

Theorem 3.4.

Proof. From [18], the complexity of finding the maximum matching of I ′s of any node s is O(m
√

n).
Algorithm AppCompromisedCore will go through each node s in the system, so the total complexity
is O(mn

√
n).
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