
Integrating Access Control Policy Specification
into the Software Development Process

Qingfeng He and Annie I. Antón
Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8207 USA
{qhe2, aianton}@eos.ncsu.edu

Abstract

Access control policies (ACPs) express rules concerning
who can access what information, and under what
conditions. Traditionally, ACP specification is not an
explicit part of the software development process and often
isolated from requirements analysis, leaving systems
vulnerable to security breaches because policies are
specified without ensuring compliance with system
requirements. In this paper, we present the Re quirements-
based Access C ontrol A nalysis and P olicy S pecification
(ReCAPS) method for deriving ACPs from various sources.
This method integrates policy specification into the
software development process, ensures consistency across
software artifacts, and provides prescriptive guidance for
how to specify ACPs. To date, we have validated the
method by applying it within the context of four
operational systems. This paper reports the results of an
empirical study in which we evaluated the usefulness and
effectiveness of the method.

1. Introduction
Data security and privacy are important in every

software system, but particularly vulnerable in critical
infrastructure systems, such as medical, immigration, and
financial information systems. Access control (AC) is often
used in these kinds of systems to protect data
confidentiality and integrity [35]. Two major challenges in
an access control system are: (a) defining correct and
complete policies to control users’ access to the system and
its resources, and (b) ensuring the resulting policies comply
with the system requirements and high-level security and
privacy policies. Proper access control analysis requires one
to examine system requirements in tandem with
organizational security and privacy policies to specify
access control policies (ACPs). However, these analysis
activities are often conducted in isolation, leaving sensitive
data vulnerable to security breaches.

Researchers are recognizing the need to bridge the gap
between requirements analysis and complex ACP
specification [6]. Existing RE approaches (e.g., KAOS

[11], i* [36] and the analytical role modeling framework
[6]) provide limited support.

Methodological support is needed to guide software
engineers as they specify a system’s ACPs. To this end, we
have developed the Requirements-based Access Control
Analysis and Policy Specification (ReCAPS) method [18]
to integrate these analysis activities, improve software
quality and develop policy- and requirements-compliant
systems. In this paper, we present the ReCAPS method for
deriving ACPs from various sources, including software
requirements specifications (SRS), design documents,
database designs, as well as high-level security and privacy
policies. The method provides prescriptive guidance for
specifying ACPs, improving the quality of software
documentation, and ensuring compliance between access
policies and system requirements.

The remainder of the paper is structured as follows.
Section 2 discusses related work. Section 3 briefly
summarizes the ReCAPS method. Section 4 presents the
results of an empirical study conducted to evaluate the
effectiveness and usefulness of the method. Finally,
Section 5 summarizes our plans for future work.

2. Background and Related work
2.1. ACP specification in security

ACPs can be broadly grouped into three main policy
categories: Discretionary Access Control (DAC) [23, 17],
Mandatory Access Control (MAC) [10, 5], and Role-Based
Access Control (RBAC) [31]. Instead of considering ACP
specification from a holistic, real-systems perspective as we
advocate in this paper, current ACP specification research
has a much narrower focus (e.g., uniform or flexible ways
to specify ACPs [22], specifying ACPs for XML
documents [14], etc.). There are few reported methods and
experiences [33] relating ACP specification in operational
software systems. In the RBAC literature, researchers are
investigating role engineering, the process of defining roles
and privileges as well as assigning privileges to roles [7].
Several role-engineering approaches employ requirements
engineering (RE) concepts. For example, Fernandez and
Hawkins suggest deriving the needed rights for roles from
use cases [12]. Neumann and Strembeck propose a scenario-

driven approach for engineering functional roles in RBAC
[28]. Role engineering is specific to RBAC, whereas our
method is a more general approach for specifying ACPs.
2.2. Elements of ACPs

An access control policy is comprised of a set of AC
rules. A r u l e can have various modes (e.g.,
allow/deny/oblige/refrain). This paper focuses on allow and
deny rules. Allow rules authorize a subject to access a
particular object. Deny rules explicitly prohibit a subject
from accessing a particular object. When a subject requests
to perform an action on an object, the corresponding rules
are evaluated by the enforcement engine for that request. A
typical AC rule is expressed as a 3-tuple <subject, object,
action>, such that a subject can perform some action on an
object [9]. A subject is a user or a program agent, or any
entity that may access objects. An object is a data field, a
table, a procedure, an application or any entity to which
access is restricted. An action is a simple operation (e.g.
read or write) or an abstract operation (e.g. deposit or
withdraw). In this paper, we extend the typical AC rule 3-
tuple to include conditions and obligations.

An ACP may express conditions that must be satisfied
before an access request can be granted. For example, in
healthcare applications, the location from which the access
request originates might affect the grant/deny decision [2].
If an access request is from the emergency room, then the
request may be granted. We can specify the location of the
request is emergency room as a condition for the AC rule.
Obligations [3] are actions that must be fulfilled if a
request to access an object is granted. For example,
consider: require affiliates to destroy customer data after
service is completed. Here, “destroy customer data” is an
obligation that must be satisfied by affiliates.

In requirements specification, we are concerned with the
actions for which each actor (subject) is responsible, and
the conditions under which each action can occur
(constraints and pre-conditions). Thus, AC elements may
be mapped to requirements specification elements, helping
to guide analysts as they derive ACPs from requirements.
2.3. Access control analysis in RE

Requirements engineering (RE) researchers are
investigating access-related security requirements. Fontaine
[15] employs KAOS, a goal-based requirements analysis
method [11], to refine security requirements into specific
authorization rules and ACPs expressed in Ponder—a
language for specifying management and security policies
for distributed systems [8]. Fontaine’s work is an
important step towards requirements-level access control
analysis for security policy specification. ACPs come from
requirements as well as high-level security and privacy
policies. However, Fontaine’s approach cannot derive
ACPs from security and privacy policies whereas the
ReCAPS method can. Additionally, Fontaine’s approach
does not focus on ensuring compliance between ACPs,
requirements and design. In contrast, compliance among
these artifacts is an important design principle in ReCAPS.

Liu et al. apply the i* framework [36], a goal-based
method, to support AC analysis by modeling the

dependencies among actors, tasks and a system’s resources
[25]. However this approach assumes the roles and
privileges have been previously derived. It lacks guidance
on how to identify roles and privileges, from where they
originate, or how privileges are assigned to these roles.

Crook et al. propose an analytical role-modeling
framework to model ACPs [6]. This approach offers two
contributions. First, the framework clarifies the need to
model ACPs during requirements analysis. Second, the
rationale for deriving roles based on organizational
structures is very useful. Job positions in an organization
can be mapped to roles in RBAC. Organizational and
seniority hierarchies can be mapped to RBAC role
hierarchies. Deriving roles from organizational structures
facilitates the user assignment and authorization
management processes in access control.

Moffett et al. [26] discuss the relationship between
ACPs and requirements engineering, broadly classifying
ACPs into three categories: global ACPs that are built into
the a system, discretionary ACPs that are basically security
requirements, and mandatory ACPs that are essentially
mechanisms and should not concern requirements
engineering. ReCAPs is consistent with this view; deriving
ACPs from requirements and high-level global security and
privacy policies.

Lamsweerde employs KAOS [11] to elaborate security
requirements by constructing intentional anti-models [24].
This approach generates malicious obstacles set up by
attackers to threaten security goals, and provides alternative
resolutions to counteract these obstacles. The idea is
similar to other approaches that capture security
requirements through misuse cases [1]. Misuse cases
express the viewpoint of an actor with hostile intent.
Security requirements are specified to protect assets in a
system from malicious attacks. Thinking from an attacker’s
standpoint helps elicit security requirements and provide
countermeasure resolutions. In ReCAPS, misuse cases are
also employed to specify implicit conditions for ACPs.
2.4. Policy specification and software development

Moffett and Sloman [27] discuss the importance of
policy hierarchies and define several relationships (e.g.,
partitioned targets, goal refinement, delegation of
responsibility) that may exist between policies in a
hierarchy. Policies can be classified according to three
expression modes: natural language, declarative or semi-
structured languages, and formal languages (see Figure 1).
Policies at the top level are stated in natural language;
examples include website privacy policies, corporate
security policies, security and privacy laws, etc. Policies at
the middle level are specified in declarative or semi-
structured languages, such as Ponder [8] and XACML [29].
These policies instantiate high-level policies into rules that
describe who has permission to access which object in a
specific system. Bottom level policies are specified in
formal languages such as Authorization Specification
Language (ASL) [21] and Alloy [19], which are often used
for verification and analysis purpose.

Policy specification is typically isolated from
requirements analysis and software design, and often results
in high-level policies that fail to comply with system
requirements, or mid-level ACPs that fail to comply with
system requirements. Brose et al. propose integrating AC
design into the software development process by extending
UML to specify ACPs for distributed object systems [4].
We concur that ACP specification should be an integral
part of software development processes. However, Brose et
al.’s approach does not emphasize compliance between
different policy levels, requirements and system design,
whereas ReCAPS maintains compliance as a key principle.

ReCAPS integrates policy specification with
requirements analysis and software design (see Figure 1).
The three shaded boxes are the focus of this paper. High-
level security and privacy policies should be specified as
system requirements. Mid-level policies are instances of
high-level policies within a specific system’s context. To
specify these policies, one must examine system
requirements to identify users and their interactions with
the system, and system designs (e.g., database design) to
identify the data to be protected. Focusing on mid-level
policies offers two major advantages. First, they are
machine-enforceable, whereas natural languages policies are
not. Second, it is relatively simple for system security
officers to specify security policies that meet organizational
security goals using declarative mid-level languages than
using formal languages. The policies discussed herein fall
into the former category. ACP specification is an iterative
process; although we derive policies from requirements and
designs, we also improve the requirements and designs
during analysis (see two arrows from mid-level policies to
requirements analysis and software design in Figure 1).
Finally, mid-level policies can be used by software
engineers to implement access control.

3. The ReCAPS Method
The ReCAPS method was developed in two formative

case studies involving operational software systems: the
Security and Privacy Requirements Analysis Tool
(SPRAT) [20] and the Transnational Digital Government
(TDG) remote border control system [34]. Examples from
these two case studies are employed to elucidate the
ReCAPS heuristics in Section 3.2. This section overviews
the ReCAPS method, clarifies its underlying assumptions
and presents example heuristics.

3.1. Overview of the ReCAPS Method
The overall objective of the ReCAPS method is to

produce a comprehensive set of ACP specifications. The
inputs are any available source documents (e.g. SRS,
design document, database design, E/R diagrams, security
and privacy policies, etc.). The SRS and DB design are the
minimally required sources. These two source documents
are complementary––the SRS justifies the rationale for the
ACPs, whereas the DB design details the objects to which
any access should be controlled.

The ReCAPS method aids analysts in clarifying and
resolving ambiguities, conflicts and redundancies during
requirements analysis so that correct and consistent ACPs
can be derived and specified for policy enforcement. The
mechanisms include a detailed process description and a set
of heuristics to guide analysts in deriving and specifying
ACPs as well as a software tool to support analysis
activities. The process relies on RE techniques, including
goal [11] and scenario analysis techniques [30]. The
outputs are a set of ACPs and the modified source
documents that benefit from refinement, resulting in more
complete, correct and less ambiguous documentation.

ReCAPS is based on three assumptions that narrow the
scope of application to information systems:

Assumption #1: The system’s DB design and SRS
exist and are available.

Assumption #2: There are various data objects in the
system to which access must be restricted (Resource
control, such as granting employees access to certain
printers but not others, is beyond the scope of this paper.).

Assumption #3: ACPs are specified for information
systems, supported by a database containing sensitive data
(We have not investigated ACP specifications for security
kernels such as file access in operating systems.).

Figure 2 portrays the main activities an analyst
undertakes to derive ACPs from source documents. These
activities comprise four steps:

Step #1: Develop understanding of problem domain;
Step #2: Scan available source documents to identify

AC elements and specify AC rules;
Step #3: Refine AC rules; and
Step #4: Group logically connected AC rules into

ACPs.
These steps are accompanied by heuristics. Because the

emphasis of this paper is the empirical study, we can only

Software Development
Phases

Different Policy Levels

Security and Privacy Policies in Natural Language

Access Control Policies in Declarative or Semi-
Structured Languages

Access Control Policies in Formal Logic

Requirements Analysis

System Design (including
DB design)

Implementation

Figure 1. ReCAPS integrates policy specification with requirements
 analysis and software design

Figure 2. ReCAPS analysis activities

AC analysis

AC rule refinement

Identify and remove

redundancies

Identify and resolve

conflicts
Group AC rules

into policies

Specify AC rules

Identify AC elements

Domain analysisSRS

DB design

Policies

ACPs

Augmented

src doc

Output

Input

provide a very high level overview of the method and its
associated heuristics. A full codification of the method and
heuristics is available in [18].
3.2. The ReCAPS Analysis Heuristics

Four kinds of heuristics support the ReCAPS analysis
activities: identification (IH), refinement (RH),
specification (SH), and grouping heuristics (GH).
Currently, ReCAPS provides a total of 32 heuristics (IH:
19, RH: 7, SH: 4, GH: 2).

The identification heuristics help identify the scope of
access control and each element of an AC rule: <subject,
action, object, condition, obligation>. For example, the
following heuristic helps identify objects:
IHobject3: To identify the objects that must be included in the

database, every object identified in the SRS should be mapped
to an object (e.g., a table, a column, a row or a cell) in the
database design.
Because requirements and design specifications are

often treated as separate phases conducted by different
persons in traditional software development processes,
inconsistencies inevitably exist across these artifacts.
Heuristic IHobject3 helps analysts clearly define what the
objects are in the DB (e.g., a table, a column, a row or a
cell in a table) early on and helps ensure the requirements
and database design are consistent with one another.

Consider this border control system requirement:
TDG 2.3.1: The system shall allow border

immigration agents to determine if the
traveler is on the “watch list”.

This requirement was annotated in the SRS with
questions and answers from the requirements engineers and
stakeholders. These annotations clarify exactly what is on
the watch list as follows:

TDG 2.3.1 Annotation: Question C: What data
is contained on the “watch list”?

Belize Answer: Name, Date of Birth,
Nationality, Reason for being on the
list, Action to be taken.

D R A n s w e r : Basically name, gender,
citizenship, watch list inclusion
explanation and actions to be taken in
case of positive identification.

Three items mentioned in these annotations were
missing in the DB design: gender, the reasons for a
person’s name being on the watch list, and actions to be
taken if a person whose name appears on the watch list is
encountered at a border station. These items were added
subsequently added to the database. Heuristic IHobject3 also
helps analysts correct database designs early on, preventing
possible costly changes that are typically not identified
until later in the software lifecycle.

In ReCAPS, explicit conditions are clearly defined as
constraints or pre-conditions in requirements specifications.
ReCAPS defines six kinds of constraints that are useful for
identifying conditions: authentication constraints,
contextual constraints (temporal, location, relationship,
affiliation, attribute, and state), usage constraints, database
constraints, security constraints, and privacy constraints
(purpose, recipient, and consent). For example, the
following heuristic helps identify security constraints.

IHcond7: (Security constraints) Use general security principles to
construct misuse cases that a user may use to exploit the
capabilities for hostile intent. Corresponding security
constraints should thus be specified in the resulting AC rule.
Security constraints specify restrictions that are based

on general security principles such as least privileges and
separation of duties. These security principles are important
to prevent fraud and errors. Consider this requirement:

SPRAT FR-PM-3: The system shall support
multi-user analysis results comparison.

This requirement needs to be clarified. The requirement
actually means Analysts can classify goals according to
some predefined taxonomy and Project Managers can view
these classification results. Project Manager and Analysts
are not mutually exclusive roles, which means a user can
assume both roles at the same time. To identify security
constraints, we ask “can a Project Manager exploit the
capability for his/her own good?” and construct the misuse
case shown in Figure 3. Note that the misuse case diagram
does not employ the standard use case diagram. In this
misuse case, user A assumes both roles: Project Manager
and Analyst, whereas user B assumes only the Analyst role.
The attack pattern is shown as Step (1) – (3) in Figure 3.

Step 1: B classifies goals,
Step 2: A views B’s classification results
Step 3: A classifies goals.

This is not desirable because A would be biased if
he/she saw B’s classification results before he/she has
classified the goals. Misuse case analysis allowed us to
specify a deny rule for Project Manager to view goal
classification results as shown in Table 1.

Table 1. Example AC rule derived from Figure 3
Mode Deny

Subject Role (Project Manager)

Action Read

Object goals.taxonomy

Condition Role (user, Analyst) = TRUE AND
user.scheduledToClassify = T R U E AND
user.classifyingFinished = FALSE

Obligation NULL

Source FR-PM-3

3.3. Validation Case Studies
We have applied the ReCAPS method within the

context of four operational systems. The first two case
studies were formative, offering early and preliminary

(1) B: classify
goals

(2) A: View B’s
classification results

(3) A: classify goals

Analyst

Project
Manager

User A User B

User assumes
role

Privilege from
role

Role

Key:

User performs
action

Figure 3. A misuse case for Project Manager

validation during to their central role in shaping the
method [18]. The second two were summative case studies:
the Surry Arts Council (SAC) Web enhancement project
and the College of Management Event Registration System
(ERS) at North Carolina State University (NCSU), both of
which are Web-based applications. Results from these
studies suggest that the ReCAPS process and heuristics are
useful and efficient in specifying requirement-compliant
ACPs for data-intensive information systems. These four
case studies enabled us to empirically evaluate the
effectiveness and usefulness of the ReCAPS method when
employed by others.

4. Empirical Evaluation
To evaluate the effectiveness and usefulness of

ReCAPS, we conducted an empirical study in a graduate-
level software engineering class at NCSU. Because of the
lack of prescriptive guidance for ACP specification, we
were unable to compare ReCAPS with other existing
methods. The closest is Fontain’s mapping approach from
KAOS specifications to Ponder policies [15]. However, it
is difficult to compare ReCAPS with Fontain’s approach in
an educational environment. Fontain’s approach starts from
KAOS specifications expressed in a formal language. It
requires significant training for a group of undergraduate
and graduate students to understand and use KAOS
specifications, making it unsuitable for a homework
assignment. Moreover, the experimenter would have to
manipulate the source documents and produce KAOS
specifications from these source documents a-priori for the
group that applies Fontain’s approach. This comparison is
unfair because the two groups would start from different
inputs to derive ACPs. Thus, our empirical study required
careful design as we now discuss. Our main hypothesis was
that ReCAPS allows analysts to specify better quality
ACPs than does the lack of a method (which is the current
state of the art).
4.1. Experimental Method

This experiment compares the use of ReCAPS to
specify ACPs for information systems with a control
condition in which no method was stipulated. The subject
population was a group of undergraduate and graduate
students enrolled in the Spring 2005 NCSU graduate
software engineering course (CSC 510). Students were
invited to voluntarily participate in an experiment for
which they would be compensated with extra credit.

Students participating in the experiment possessed
varied backgrounds: 3 PhD students; 28 master’s students,
and 17 undergraduate seniors. Their knowledge in software
engineering, databases, and security differed significantly.
To minimize noise that would have occurred with
unbalanced groups, a survey was conducted beforehand to
collect information from each subject concerning their
background. The course instructors blinded any identifying
information (e.g. students’ names) from us to ensure that
we assigned students to groups in an unbiased manner. All
48 students were then assigned to the two groups in a
balanced fashion. Students were first grouped according to
their expertise and class level. Allocation was random

within a group with similar expertise and the same class
level. For example, when an undergraduate student with
limited security knowledge was assigned to one group,
another undergraduate student with similar level of security
knowledge was assigned to the other group.

Of the 48 students enrolled in the course, 28
participated. Of the 28 participants, 26 submitted valid
responses. Assignments were deemed valid if the
participant completed the entire assignment, including the
time/effort form and evaluation questions. Note that among
those 26 students who participated and submitted valid
results, the ReCAPS group was less confident about their
security and software engineering skills than the control
group; whereas the control group was less confident about
their database background than the ReCAPS group.

 The project used in the experiment was a simplified
version of the Surry Arts Council (SAC) Web enhancement
project [18]. Two documents served as the sources for this
study: an SRS document and a database schema design.
The simplified SRS contains ten requirements (in contrast
to 15 requirements in the full SRS), and the DB schema
design contains five tables (as in the original DB design).

Both groups were given identical source documents.
What differed in the materials were the instructions. The
ReCAPS group was given an assignment description that
summarized the method, including the main activities and
several heuristics. The control group was provided a
different assignment description that only summarized
necessary background information for how to complete the
study (much of this was identical to that provided to the
ReCAPS group, but all ReCAPS context was removed),
and what correct results look like (e.g., what is access
control, what an access control policy is comprised of).

Although no specific method for how to specify ACPs
was provided to the control group, both groups were given
the exact same criteria for a good set of ACPs (see Section
4.2) with example rules and policies. The instructions
made it clear that these criteria would be used to evaluate
their results. The ReCAPS instructions explained how to
ensure these criteria are met, whereas the control group
knew the criteria but only received guidance about how to
achieve the criteria in the form of correct AC rule and
policy examples.

An initial pilot study was run in the Fall 2004 NCSU
graduate software engineering class (CSC 510). Pilot
studies are necessary prerequisites for the design of a sound
empirical study. This pilot study enabled us to revise the
materials to ensure that students in the subsequent
empirical study fully understood what constituted a “valid
response.” Also, the access control rules produced during
this initial study were given to an independent security
expert to evaluate the quality of the rules specified by the
pilot study students. We included these evaluation criteria
in the final empirical study to ensure that all participants in
both groups had a common understanding how their results
would be evaluated (see Section 4.2 for these criteria).

The main task for the subjects was to produce a set of
ACPs derived from two source documents. Additionally,

subjects were required to improve both documents during
ACP analysis and specification; for example, if they
identified an inconsistency or missing requirement/data
element, they were to document this in the respective
document(s). All results were documented on the provided
worksheets. Subjects were also required to document the
amount of time they spent. However, subjects were assured
that the amount of time spent on the assignment would in
no way affect their grades. Upon completing the study,
subjects had to answer several qualitative questions
concerning their experience during the assignment.
4.2. Measurement

We employed the Mann-Whitney U Test [32] to
conduct statistical analysis on the empirical study results.
This test is a non-parametric method for testing the
significant differences between two independent groups
with non-normal data and small sample size.

Three main aspects of the experiment may be compared
across the two groups of subjects: the quality of resulting
ACPs, the improvements to the two source documents, and
the time effort. The following eight criteria were used to
evaluate the quality of resulting ACPs. These criteria were
determined together with a security expert after the pilot
study, as mentioned in Section 4.1.

(1) All possible access control rules are specified.
(2) Each rule is within the scope of access control.
(3) Each action is a database operation and each object is

an object in the DB.
(4) The conditions for each rule are correctly specified and

as completely as possible.
(5) Each rule is traceable to the sources from which it was

derived.
(6) No two rules are redundant.
(7) No two rules conflict with one another.
(8) Logically connected rules are grouped together.

These eight criteria were used to evaluate the resulting
ACPs. The improvements to both source documents were
measured using the number of inconsistencies identified
between the SRS and the database design, the number of
ambiguities and inconsistencies identified within the
requirements specifications, and the number of problems
identified within the database design. All subjects were
aware that their results would be evaluated using the same
quality criteria. This ensured that all subjects had a
common understanding about the study’s objective and
prevented the experimental results from being skewed.

We followed the following process to quantitatively
evaluate the quality of AC rules derived by subjects. First,
we counted all the subject-derived rules and compared these
rules with a rule set that was derived from the same sources
and specified by experts. For each rule in the experts’ rule
set, we noted whether there was a semantically equivalent
rule in the subject’s rule set. If yes, we counted the subject-
identified rule, otherwise we counted it as incorrect. The
form of rules specified by the subjects did not have to be
identical to those specified by the experts. In this way, we
were able to create two sets of rules for each subject: a set
of rules A that are in the experts’ rule set and a set of rules

B that are false positive (either outside the scope of access
control or cannot be derived from sources, see Figure 4).

For each rule in rule set A, we analyzed: whether each
action is a database operation and each object is an object
in the DB, whether the conditions are correct and as
completely specified as possible, and whether the rule is
traceable to the sources from which it was derived. For the
entire rule set A , we analyzed whether there were any
redundant or conflicting rules and whether logically
connected rules were grouped together. A set of rules is
logically connected if the rules have the same subject,
action or object. For each rule in rule set B, we documented
whether it was “outside the scope of access control” or
“cannot be derived from sources”.

We used the number of AC rules identified by each
subject to measure criteria 1—4 and 6—7. However,
traceability (Criterion 5) is evaluated as a binary measure: a
subject is either able to trace all rules to the sources or is
not. We did not find a case in which a subject was able to
trace some rules to their sources but not others. In all cases,
all rules were traced or none were. With respect to grouping
(Criterion 8), the rules were graded on a scale of 0—10
based on the grouping in each subject’s rule set. Criterion 8
was scored as 10 if all rules were grouped into policies,
otherwise only partial credit was given, depending on based
on how many rules were correctly grouped.
4.3. Results
4.3.1. Quality of Access Control Policies

Table 2 compares the performance of the ReCAPS and
Control groups with respect to the eight evaluation criteria.
The evaluation criteria are listed in the first column and the
second column specifies whether the ReCAPS group
outperformed the Control group, based upon whether the
Mann-Whitney U test revealed the results as statistically
significant. As shown in Table 2 and Figure 5, the
ReCAPS group identified more AC rules that were also
identified by the experts than the control group (Criterion
1). The average number of rules identified by the ReCAPS
group that were also in the experts’ rule set is 22.29,
compared with 15.17 rules identified by the control group.
The results of this comparison are statistically significant
(Mann Whitney U = 152.5, p < 0.001, two-tailed test).
This data shows the ReCAPS group provided better AC
rule and policy coverage than the control group.

A subject’s rule set:
all rules

Rule set A: rules that were
 also identified by experts

Rule set B:
false positive rules

Rules that are outside the
scope of access control

Rules that cannot be
derived from sources

Rules belong to one
or more categories*

Figure 4. Evaluation of a subject’s rule set

*: E.g., ambiguous actions/objects, incomplete conditions, etc.

If we subtract the number of rules identified by the
experts from the total number of rules identified by each
subject, we obtain the number of false positive rules. The
ReCAPS group identified fewer false positive rules than
the control group (see Figure 6). The average number of
false positive rules identified by the ReCAPS group is
5.79, compared with 8.25 false positive rules identified by
the control group. The results of the comparison are
statistically significant (Mann Whitney U = 122.5, p <
0.05, two-tailed test). This data further demonstrates that
the ReCAPS not only ensures better coverage; it also
reduces false positive access control rules.

Table 2. Summary of empirical study results
Evaluation Criteria ReCAPS > Control

(1) All possible access control rules are
specified.

Significant, p < 0.001

(2) Each rule is within the scope of access
control.

Not significant

(3) Each action is a database operation and
each object is an object in the DB.

Significant, p < 0.001

(4) The conditions for each rule are correctly
specified and as completely as possible.

Not significant

(5) Each rule is traceable to the sources from
which it was derived.

Significant, p < 0.001

(6) No two rules are redundant. Not significant

(7) No two rules conflict with one another. Not significant

(8) Logically connected rules are grouped
together.

Significant, p < 0.001

Subjects were asked to specify database-level ACPs, in
which every action is a DB operation and every object is an
object in the DB. This helps minimize the number of
ambiguous actions and objects identified. The ReCAPS
group outperformed the control group by identifying fewer
rules with ambiguous actions/objects (see Figure 7). The
average number of rules with ambiguous actions/objects
identified by the ReCAPS group is 2.71, compared with
14.58 rules identified by the control group. The results of
the comparison are statistically significant (Mann Whitney
U = 160.0, p < 0.001, two-tailed test).

The ReCAPS group yielded more rules with correctly
specified elements than the control group. Here, correctly
means that each action is a DB action, each object is an
object in the DB, and any conditions are fully and correctly

specified. The average number of rules with every element
correctly specified by individuals in the ReCAPS group is
9.43, compared with 1.25 rules specified by individuals in
the control group. The results of this comparison are
statistically significant (Mann Whitney U = 153.5, p <
0.001, two-tailed test).

As previously mentioned, traceability was evaluated in
a binary fashion in this study. The individuals in the
ReCAPS group consistently out performed the individuals
in the control group with regard to maintaining traceability.
The results of the comparison are statistically significant
(Mann Whitney U = 154.0, p < 0.001, two-tailed test).

In short, the ReCAPS group outperformed the control
group in all eight evaluation criteria. However, the Mann-
Whitney U test results are statistically significant in four of
the eight evaluation criteria (1, 3, 5, 8). In the remaining
criteria (2, 4, 6, 7), the results are positive, but anecdotal at
best because they are not statistically significant.

4.3.2. Improvements to Source Documents
The empirical study provided only anecdotal evidence

that the ReCAPS group outperformed the control group by
identifying more inconsistencies between the SRS and the
database design, more ambiguities/inconsistencies within
the requirements specifications, and more problems in the
database design. Although not statistically significant, the
data suggests that improvement to source documents is a
side-benefit of the approach, not a main contribution.

1 3 5 7 9

1
1

1
3

ReCAPS

Control
0

5

10

15

20

25

30

of rules

Subjects

ReCAPS

Control

Significant, p value < 0.05

(8.25)

(5.79)

Figure 6. Number of false positive rules identified by each subject:
the ReCAPS group outperformed the control group by
identifying fewer number of false positive rules.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

ReCAPS

Control
0

5

10

15

20

25

30

of rules

Subjects

ReCAPS
Control

Figure 5. Number of rules identified by each subject that were also identified
 by the experts: the ReCAPS group outperformed the control group
 by identifying more rules that were also identified by the experts.

Significant, p value < 0.001

(22.29)

(15.17)

1 3 5 7 9

1
1

1
3

ReCAPS

Control
0

5

10

15

20

25

30

of rules

Subjects

ReCAPS
Control

Significant, p value < 0.001

(14.58)

(2.71)

Figure 7. Number of rules with ambiguous actions/objects identified by each
subject: the ReCAPS group outperformed the control group by
identifying fewer rules with ambiguous actions/objects.

4.3.3. Time Effort
The average amount of time spent on the assignment by

the ReCAPS subjects was 4.53 hours, compared with 3.79
hours by individuals in the control group. The results of
this comparison are statistically significant (Mann Whitney
U = 124.0, p < 0.05, two-tailed test).

One might challenge the validity of the above data by
suggesting that the ReCAPS group outperformed the
control group simply because they spent more time than
the control group. To address this, we performed a
correlation analysis between the number of rules that were
in the experts’ rule set identified by the subjects and the
amount of time spent on the assignment by the subjects.
The result shows there is no strong correlation between
these two factors (see Figure 8). The variance R^2 (0.0326)
would lead to a correlation coefficient r close to 0.18. The
correlation result is not statistically significant either, with
p value greater than 0.05.

We conducted the same correlation analysis within the
ReCAPS group and the control group. The variance R^2
for the ReCAPS group is 0.0939 (correlation coefficient r
= 0.31) and the variance R^2 for the control group is
0.1221 (correlation coefficient r = 0.35). Neither of the
correlation analysis results is statistically significant, with
p value greater than 0.05. Thus, it is unlikely that
time/effort alone can account for the results in this study.
4.4. Summary

As previously stated, this empirical study sought to
evaluate the effectiveness and usefulness of the method in
comparison to other approaches (none of which exists) and
whether analysts who are unfamiliar with the method can
effectively employ it with reasonable training. The study
demonstrated the feasibility of employing the ReCAPS
method as a reasonable policy specification method. The
results are supported by the similar specification of ACPs
for the SAC Web enhancement project across the ReCAPS
and control groups. Four of the evaluation criteria for high-
quality access control rules and policies were shown to
yield statistically significant results in which the ReCAPS
group outperformed the Control group.

Because we were limited in the size and complexity of
the assignment that we could design for an optional extra
credit assignment, only a subset of the ReCAPS heuristics
were evaluated in this empirical study. The ReCAPS group
was provided with 18 heuristics (IHscope1 - 2 , IHobject1-3,
IHsubject/action1 , I Hsubject/action3 , S HDLP1-2 , SHDLP4 , IHcond1 , IHcond3,

IHcond6 , I Hcond8, R Hredundancy1-2 , RHconflict1-2) out of total 32
heuristics. These 18 heuristics were selected for this
empirical study by design. First, because the study was
being conducted within the confines of a homework
assignment, the selected heuristics could not require
excessive prerequisite knowledge nor could so many
heuristics be included without risking lack of participation
due to the assignment’s length and complexity. Second,
the set of heuristics needed to stand on their own and be
representative of the ReCAPS’ mission. Third, the selected
heuristics needed to be broadly applicable in the
assignment. These factors helped ensure that the set of
heuristics used in this empirical study supported the
identification, specification and refinement of AC rules.

The empirical study results and the feedback received
from the ReCAPS group suggests that this subset of
heuristics is helpful in guiding analysts as they derive AC
rules and specify ACPs. One student made the following
statement in addressing whether the heuristics helped
him/her perform the analysis efficiently:

 “I believe it was very efficient. Several assumptions I
would have overlooked were analyzed more meticulously
because I was forced to state them.”

Another student commented on the heuristics:
 “The heuristics, just as the breaking of the access

control rule into four parts, helped me to wrap my head
around each section. This made the assignment
manageable. Rather than trying to do everything at once in
a non-logical order, the heuristics force me to do each step
in order and sometimes in parallel.”

These anecdotal statements provide further insights into
how ReCAPS helps analysts. The remaining heuristics will
need to be evaluated in follow up studies due to limitations
on the scale of this study. Thus, it was not possible to
evaluate the heuristics as a complete set (e.g., whether they
are complete and sufficiently comprehensive).
4.5. Discussion

These results are very encouraging, but require careful
interpretation. Because there are no existing documented
ACP specification methods that provide prescriptive
guidance comparable to ReCAPS, any evaluation
necessarily involves comparing the performance of subjects
applying ReCAPS to those using a different type of
method or using no method at all. Examples of non-
comparable methods include best industry practices. This
evaluation strategy was rejected because we were unable to
obtain a written version of best industry practices.

The alternative used in the current empirical
study—comparing individuals’ performance in the
ReCAPS group to individuals’ performance in a control
group—is open to the objection that any method may help
people, at least initially, because of the so-called
Hawthorne Effect [13]. By virtue of being the focus of an
investigation and by manipulating their behavior in an
obvious way (here, training in ReCAPS), subjects are more
attentive to the task at hand and perform better than they
would have otherwise. Such a difference stems not from the
treatment (ReCAPS) but from the fact there is a treatment.

Figure 8. Correlation analysis shows there is no correlation between
 the time effort and the results in all subjects

R2 = 0.0326

0

5

10

15

20

25

30

0 2 4 6 8
Time Effort (hours)

#
 o

f
v
a
li

d
 r

u
le

s

ReCAPS & Control

Not Significant, p value > 0.05

There are two responses to this concern. First, it is still
important to confirm that the ReCAPS group significantly
outperformed the control group. For the Hawthorne Effect
to be a potential threat to validity, there has to be a
potentially valid effect to threaten. The statistical analysis
reveals that ReCAPS improved performance at the p<0.001
level. Research in process interventions is notoriously
vulnerable to individual differences, task variables,
experimental demand characteristics and seemingly random
properties of the experimental materials, e.g., different
worksheets used for each group. Plausibly justified
software engineering techniques and methods often fail to
show any advantage when subjected to experimental test. In
many cases, this may be because the techniques do not help
at all; but in view of the factors just mentioned, it is
important to replicate such studies before accepting such
results at face value. Thus, any significant result, such as
the one obtained in the current study, is clear prima facie
evidence that the treatment effect yields a genuine benefit.

The second response concerns the mechanism through
which the Hawthorne Effect is supposed to work. It could
be that being subject to a visible treatment caused subjects
to pay more attention to the task or take it more seriously,
presumably because the attention they were receiving by
being subjects in an experiment was reinforcing and they
wanted to do well. However, since there was no significant
difference between the time spent on the task by the
subjects in the two groups, we can safely conclude that the
results are not merely due to one group focusing on the
problem for longer. It is of course possible that the
ReCAPS subjects paid more careful attention and used the
time they had more effectively and would have done so
with any instructions at all. However, this residual effect is
unlikely for the following reason. The Hawthorne Effect is
most likely to arise in a repeated measures design where the
subjects are aware of the nature of changing treatments.
(The original interventions at the Hawthorne Plant, from
which the effect gets its name, are a classic example of
subjects being aware that they were being subjected to one
treatment after another.) In such a case, a control condition
is manifestly less a treatment than an experimental
condition. However, in an independent group design, such
as the one used in the current study, the subjects in the
experimental condition had no experience of the control
condition with which to compare it. Subjectively,
therefore, they were as likely to improve their performance
as the ReCAPS subjects. We conclude that the difference
between the ReCAPS and control groups can be attributed
to the ReCAPS process and heuristics and not to any
methodological artifact. Such a conclusion requires future
replication before it can be accepted as definitive, but it is
better supported currently than alternative explanations.

5. Discussion and Plans for Future Work
In this paper, we briefly summarized the ReCAPS

method and reported our experience in evaluating its
effectiveness and usefulness through an empirical study.
ReCAPS supports AC analysis and ACP specification by
providing methodological support and a rich set of

heuristics to help software and security engineers specify
requirements-, design- and policy-compliant ACPs.
ReCAPS offers three main advantages that are not currently
available: it integrates ACP specification in the software
development process, supports traceability to help ensure
compliance between policies and requirements (especially
with the aid of our newly developed software tool), and
offers prescriptive guidance for ACP specification.

Although ReCAPS is essentially an analysis method
supported by a set of heuristics and a tool (that was
completed after the empirical study reported herein),
incorporating ACP specification as an explicit part of the
software development process is a significant contribution
of this work. By integrating ACP specification with
requirements analysis and software design, ReCAPS
provides a basic framework for ensuring compliance
between different levels of policies, system requirements
and software design. The impact of this compliance is
important. Companies and organizations are plagued by the
degree of confidence they must have when claiming that
their information systems are enforcing security/privacy
laws and global policies. This challenge also plagues law
enforcement agencies; currently they lack technology to
help them measure an organization’s ability to enforce
laws. This is critical given that organizations are being held
accountable for their practices. The ReCAPS approach is a
promising step in the right direction. By deriving ACPs
from system requirements and high-level security / privacy
policies, we are able to focus on what is required to achieve
and enforce compliance early on while improving the
overall correctness and quality of a project’s software
artifacts. The ReCAPS method helps ensure that a software
system actually enforces high-level security / privacy laws
and policies. Additionally, by establishing traceability
links between high-level policies, system requirements, and
ACPs, ReCAPS (especially with the aid of the SPRAT)
helps ensure that any changes in the high-level policies can
be easily traced to the corresponding software artifacts (e.g.,
requirements specifications, ACPs), where appropriate
changes can be made to properly support evolution.

The ReCAPS method does have its limitations: to
date, it has only been applied within the context of systems
for which a requirements specification document and a
database design were readily available—it has yet to be
validated within the context of a newly envisioned system;
formal analysis of the resulting ACPs for completeness and
consistency is not yet available in the tool (SPRAT); and
the method does not yet provide enough support for
defining roles for RBAC systems. These limitations
motivate our plans for future work. Specifically, we plan
to extend ReCAPS so that it can be applied during initial
requirements analysis and to drive database design in newly
envisioned systems. We are also investigating role
engineering [16] within ReCAPS. These extensions will
broaden the scope of the method and tool, making it more
useful and accessible. Finally, we plan to integrate the
SPRAT with other software tools and further validate the
ReCAPS method and the tool in industrial settings.

Acknowledgements
This work was supported by NSF ITR Grant #0325269.

We thank Dr. Thomas Honeycutt and David Wright for
allowing us to conduct the empirical study in their class;
the NCSU students who participated in the pilot and
empirical studies; as well as Colin Potts, Calvin Powers,
Jonathan Moffett, Ting Yu and the NCSU
ThePrivacyPlace.Org reading group for their helpful
comments to an early version of the paper.

References
[1] I. Alexander. Misuse Cases: Use Cases with Hostile Intent.

IEEE Software, Vol. 20 (1), pp. 58-66, 2003.
[2] K. Beznosov. Requirements for Access Control: US

Healthcare Domain, 3rd ACM Workshop on Role-Based
Access Control, pp. 43, 1998.

[3] C. Bettini, S. Jajodia, S. Wang, D. Wijesekera, Provisions
and obligations in policy rule management and security
applications, 28th Int’l Conf. on Very Large Data Bases
(VLDB'02), pp. 502-513, 2002.

[4] G. Brose, M. Koch, and K.-P. Löhr. Integrating Access
Control Design into the Software Development Process.
6th Int’l Conf. on Integrated Design and Process
Technology (IDPT), 2002.

[5] D.E. Bell and L.J. LaPadula. Secure computer systems:
Mathematical foundations, Technical Report MTR-2547,
Vol. 1, MITRE Corporation, 1973.

[6] R. Crook, D. Ince, and B. Nuseibeh. Modelling Access
Policies Using Roles in Requirements Engineering,
Information and Software Technology, 45(14), pp. 979-
991, Elsevier, 2003.

[7] E.J. Coyne. Role Engineering, 1st ACM Workshop on
Role-Based Access Control (RBAC’96), pp. 15-16, 1996.

[8] N.C. Damianou. A Policy Framework for Management of
Distributed Systems, PhD Thesis, Imperial College,
London, 2002.

[9] D. E. Denning and P. J. Denning, Cryptography and Data
Security, Addison-Wesley, 1982.

[10] D.E. Denning. A Lattice Model of Secure Information
Flow, Comm. of the ACM, 19 (5), pp. 236-243, 1976.

[11] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-
Directed Requirements Acquisition, Science of Computer
Programming, 20: 3-50, 1993.

[1 2] E.B. Fernandez and J.C. Hawkins. Determining Role
Rights from Use Cases, 2nd ACM Workshop on Role-
Based Access Control, pp. 121-125, 1997.

[13] R.H. Franke and J.D. Kaul. The Hawthorne experiments:
First statistical interpretation. American Sociological
Review, 43, pp. 623-643, 1978.

[14] I. Fundulaki and M. Marx. Specifying access control
policies for XML documents with XPath, 9th ACM
Symposium on Access Control Models and Technologies
(SACMAT), pp. 61-69, 2004.

[1 5] P.-J. Fontaine. Goal-Oriented Elaboration of Security
Requirements, Project Dissertation , Université
Catholique de Louvain, Belgium, 2001.

[16] Q. He and A.I. Antón. A Framework for Modeling Privacy
Requirements in Role Engineering, 9th Int’l Workshop on
Requirements Engineering: Foundation for Software
Quality (REFSQ'03), pp. 137-146, 2003.

[17] M.H. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in
operating systems, Communications of the ACM, 19 (8),
pp. 461-471, 1976.

[18] Q. He. Requirements-Based Access Control Analysis and
Policy Specification. PhD Dissertation, North Carolina
State University, Raleigh, NC, 2005.

[1 9] D. Jackson. Alloy: A Lightweight Object Modelling
Notation. ACM Transactions on Software engineering
and Methodology, Vol. 11 (2), pp. 256-290, 2002.

[20] N. Jain, A.I. Antón, W.H. Stufflebeam, and Q. He. Security
and Privacy Requirements Analysis Tool (SPRAT)
Software Requirements Specification Version 2.00, NCSU
CS Technical Report TR-2004-7, April 9, 2004.

[21] S. Jajodia, P. Samarati, and V.S. Subrahmanian. A Logical
Language for Expressing Authorizations. 1997 IEEE
Symposium on Security and Privacy, pp. 31-42, 1997.

[22] S. Jajodia, P. Samarati, M.L. Sapino, V.S. Subrahmanian.
Flexible support for multiple access control policies,
ACM Transactions on Database Systems (TODS), 26(2),
pp. 214-260, 2001.

[23] B.W. Lampson. Protection, 5th Princeton Symposium on
Information Science and Systems, pp. 437-443, 1971.

[24] A. van Lamsweerde. Elaborating Security Requirements
by Construction of Intentional Anti-Models. 26th Int’l
Conf. on Software Engineering (ICSE’04), pp. 148-157,
2004.

[25] L. Liu, E. Yu and J. Mylopoulos. Security and Privacy
Requirements Analysis within a Social Setting, 11th Int’l
Requirements Eng. Conf. (RE'03), pp. 151-161, 2003.

[26] J.D. Moffett, C.B. Haley, and B. Nuseibeh. Core Security
Requirements Artefacts. Technical Report Number
2004/23, Department of Computing, Open University,
UK, 2004.

[27] J.D. Moffett and M.S. Sloman. Policy Hierarchies for
Distributed Systems Management. IEEE Journal on
Selected Areas in Communications, Vol. 11 (9), pp. 1404-
1414, 1993.

[28] G. Neumann and M. Strembeck. A Scenario-driven Role
Engineering Process for Functional RBAC Roles, 7th
ACM Symp. on Access Control Models and Technologies
(SACMAT’02), pp. 33-42, 2002.

[2 9] OASIS eXtensible Access Control Markup Language
(X A C M L) . Version 2 .0 , February 1 , 2005.
http://www.oasis-open.org/committees/xacml

[30] C. Potts, K. Takahashi and A.I. Antón. Inquiry-Based
Requirements Analysis, IEEE Software, 11(2), pp. 21-32,
1994.

[31] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman.
Role-Based Access Control Models, IEEE Computer,
29(2), pp. 38–47, 1996.

[32] S. Siegel. Nonparametric Statistics for the Behavioral
Sciences. McGraw-Hill Kogakusha Ltd., 1973.

[33] A. Schaad, J. Moffett, J. Jacob. The Role-Based Access
Control System of a European Bank: A Case Study and
Discussion, 6th ACM Symp. on Access Control Models &
Technologies (SACMAT’01), pp. 3-9, 2001.

[34] S. Su, et al. Transnational Information Sharing, Event
Notification, Rule Enforcement and Process
Coordination. Int’l Journal of Electronic Government
Research (IJEGR), Vol. 1 (2), pp. 1-26, 2005.

[35] P. Samarati, S. De Capitani di Vimercati. Access Control:
Policies, Models, and Mechanisms, IFIP WG 1.7 Int’l
School on Foundations of Security Analysis and Design
(FOSAD 2000), LNCS 2171, pp. 137-196, 2001.

[36] E. Yu. Modeling Organizations for Information Systems
Requirements Engineering, 1st IEEE Int’l Symp. on
Requirements Engineering, pp. 34-41, 1993.

