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Abstract

Broadcast authentication is a critical security servicavireless sensor networks. There are a number of
benefits to provide broadcast authentication with digighatures, such as immediate authentication capabil-
ity and the ease of managing cryptographic keys, compartidtiwé alternative of TESLA-based approaches.
Though previously considered infeasible, recent resalt® fldlemonstrated that it is possible to perform public
key cryptography on resource constrained sensor nodeigeffic However, using digital signatures for broad-
cast authentication still faces a great challenge of defiisérvice (DoS) attacksAn attacker can inject bogus
broadcast packets to force sensor nodes to perform expesgjnature verifications, and thus exhaust their
limited battery power.This paper presents an efficient mechanism caibedsage specific puzzte mitigate
such DoS attacks. In addition to a digital signature, thigrapch adds a weak authenticator in each broadcast
packet, which can be efficiently verified by a regular sensaien but takes a computationally powerful attacker
a substantial amount of time to forge. Upon receiving a btaatipacket, each sensor node first verifies the
weak authenticator, and performs the expensive signatuiécation operation only when the weak authentica-
tor is valid. A weak authenticator cannot be pre-computabavuit a non-reusable key disclosed only in a valid
broadcast packet. As a result, an attacker cannot starkgiensive computation to forge a weak authenticator
without seeing a valid broadcast packet. Even if an attalcissufficient computational resources to forge one
or more weak authenticators, it is difficult to reuse thesgdd weak authenticators. Thus, this weak authen-
tication mechanism substantially increases the difficaftiaunching successful DoS attacks against signature
verifications. This paper also reports an implementatiafi€d TinySigGuardl of the proposed techniques on
TinyOS, as well as the experimental evaluation in a netwdMICAz motes.

1 Introduction

Recent technological advances have made it possible taydepl
large scale sensor networks consisting of a large numbevof |
cost, low power, and multi-functional sensor nodes that room
nicate in short distances through wireless links [2]. Thesesor
nodes are typically battery-powered, and are expectedntéinran O
unattended fashion for a long period of time. Such sensor net
works have a wide range of applications in civilian and rarlt o
operations such as monitoring of critical infrastructunel &attle-

field surveillance. Many attempts have been made to develtep po
tocols that can fulfill the requirements of these applic#ide.g.,
[2,9,16,29,31, 37]).

Broadcast is an important communication primitive in wess
sensor networks. Itis highly desirable to broadcast coninéag.,
gueries used to collect sensor data) and data (e.qg., gllocil\@alue
distributed for time synchronization) to the sensor nodestd the
large number of sensor nodes and the broadcast nature désgird=igure 1. Broadcast in wireless sensor net-
communication. Due to the limited signal range, it is usuaéices- works. A broadcast packet is usually re-
sary to have some receivers of a broadcast packet re-bsidatite broadcast multiple times before all reachable
order to propagate the packet throughout the network fergugh nodes receive it.
flooding, or probabilistic broadcasting [24, 30, 41]). Asistrated
in Figure 1, nodesS first broadcasts a packet (locally within the signal ranga&)y somenodes that receive this
packet for the first time (e.g., nod® re-broadcast it (locally) to propagate this packet to nrmdes (e.g., node
B). This process continues until all the reachable nodesvet®e broadcast packet.




For clarify, we refer to the node that originally generates broadcast packet as teendey and a node that
receives a broadcast packet ageeiver As discussed earlier, a receiver may re-broadcast thevegcpacket.

1.1 Broadcast Authentication in Sensor Networks

In hostile environments, broadcast authentication (aethentication of broadcast packets) is a critical securit
service to ensure the trustworthiness of sensor networkcagipns. Due to the resource constraints on sensor
nodes, especially the limited battery power, broadcasteantiication in wireless sensor networks is by no means a
trivial problem.

Several approaches [25-27, 37] have been developed in shegweeral years for scalable broadcast authentica-
tion in wireless sensor networks. All of these approache$ased on TESLA [35, 36], which provides broadcast
authentication based on symmetric cryptography by delayszlosure of authentication keys. The main motiva-
tion of these approaches is to provide broadcast authénticaithout using public key cryptography, which was
expected to be infeasible in resource constrained sentuorkes.

However, the TESLA-based approaches have a fundamenitdtiion: A broadcast packet cannot be authenti-
cated immediately after it is received, due to the delaysdlasure of authentication keys. Perrig et al. provided
an immediate authentication mechanism by including thé imaage of thepacket contenin a previous broadcast
packet[36]. However, such immediate authentication does notigcdoeexample, the hash image for later packet
content. As a result, an attacker can forge a large numbexabdgps by modifying the uncovered part without being
immediately detected, force sensor nodes to propagate ffaekets across the network, and eventually exhaust
their limited battery power. Appendix A gives additionakaiés on TESLA-based approaches and their limitation
regarding denial of service (DoS) attacks.

Broadcast authentication has been traditionally providét digital signatures in wired networks. Though
digital signatures are substantially more expensive tHa8L1A-based approaches, they have a number of benefits,
such as the immediate authentication capability and the elasianaging cryptographic keys. Recently, Gura et
al. demonstrated that it is feasible to perform public keyptwgraphic operations on low end sensor nodes [13].
For example, consider the 160-bit elliptic cursecp160r 1 [6] recommended by the Standards for Efficient
Cryptography Group (SECG), which provides cryptographgrajth similar to 1024-bit RSA or DSA. It takes
0.81 seconds to perform a point multiplication on this éltigurve on Atmegal28, the processor used in many
sensor nodes such as MICA2 and MICAz motes [13]. This imphasit would take about 1.62 seconds to verify
an ECDSA signature on the same elliptic curve, since the damtioperations in signature verification are two
point multiplications. Meanwhile, the recent advancesenser wireless communication allow relatively large
packets to be transmitted. In particular, IEEE 802.15.4, standard for low power sensor networks, allows a
maximum packet size of 127 bytes, including a variable paylof up to 102 bytes [20]. Such a packet provides
enough space to include a digital signature for broadcdkeatication, such as a 40-byte ECDSA signature on the
above 160-bit elliptic curve. Thus, it is highly desirabtecbnsider digital signatures for broadcast authentinatio
in wireless sensor networks.

1.2 DoS Attacks against Signature-Based Broadcast Authepation

Although it is possible to perform digital signature opamas on sensor nodes, the cost of such operations is still
substantially higher than that of symmetric cryptograpbperations, and will result in the depletion of battery
power if frequently performed. This leads to a fatal threatignature-based broadcast authenticatfamattacker
may simply forge a large number of broadcast messages vgttabsignatures, force sensor nodes to verify these
signatures, and eventually deplete their battery povBamign sensor nodes may certainly decide not to forward
broadcast messages before their signatures are verifiasleudq a single malicious node can still overload and
disable many benign nodes in its local region with forged sages. Moreover, an attacker may generate much
higher impact by increasing the signal strength or deptpymultiple malicious nodes.

1.3 Proposed Approach

In this paper, we develop an approach to mitigate the DoSkati@gainst signature-based broadcast authentication.
The basic idea is to use an efficiently verifiable weak autbaetar along with a digital signature, so that a sensor
node performs the expensive signature verification onlynithe weak authenticator can be verified. We develop a
weak authentication mechanism calledssage specific puztéeachieve this goal. This mechanism has a number



of nice properties:

- Aweak authenticator can be efficiently verified by a regatnsor node; however, it takes a computationally
powerful attacker a substantial amount of time to forge awakak authenticator.

- A weak authenticator cannot be pre-computed without aneosable key disclosed only in a valid broadcast
packet. Thus, an attacker cannot start the expensive catigguto forge a weak authenticator without seeing
a valid broadcast packet.

- Even if an attacker has sufficient computational resoutaderge one or more weak authenticators, it is
difficult to reuse these forged weak authenticators. Thus weak authentication mechanism substantially
increases the difficulty of launching successful DoS attaainst signature verifications.

These desirable properties come with a cost. First, thegserp message specific puzzles require a computa-
tionally powerful sender with sufficient power supply. Sedpthe generation of weak authenticators introduces
a delay at the sender. However, considering the benefitgghtday message specific puzzles, we believe the
proposed techniques are useful and practical in wirelessos@etworks.

To facilitate the evaluation of message specific puzzlesave implemented on TinyOS [16] a software pack-
age calledlinyECCfor Elliptic Curve Cryptography (ECC), which currently pides support for ECDSA signa-
ture generation and verification, and a software packadedc@inySigGuard which uses the ECDSA signature
support in TinyECC and provides the proposed weak autteidit for signature-based broadcast authentication.
We have performed initial experimental evaluation of Tig@uard in a network of MICAz motes. The experi-
mental results indicate that the proposed techniques ameiging for secure sensor network applications.

1.4 Organization

The remainder of this paper is organized as follows. The segtion describes the assumptions of the proposed
techniques. Section 3 presents the proposed techniquetigatsnDoS attacks against signature-based broadcast
authentication in wireless sensor networks. Section 4riescthe implementation and evaluation of the proposed
techniques on TinyOS, an operating system for networkesiss16]. Section 5 discusses related work. Section
6 concludes this paper and points out some future researetitidns. The appendices give more information
related to the proposed techniques.

2 Assumptions

Assumptions of Sensor Networks. We assume the (original) senders of authenticated brobdwssages are
computationally powerful nodes (e.g., laptops), whictodiave sufficient power supply (e.g., charged in a ve-
hicle). There are certainly scenarios where the sendersoaidbast messages are regular, resource-constrained
sensor nodes. Our techniques proposed in this paper do plgttagsuch cases. Nevertheless, we will investigate
techniques for these scenarios in our future research.

We assume regular sensor nodes can perform a limited nurhpablic key cryptographic operations, and can
finish each operation in a reasonable amount of time. As siégzliin the Introduction, this assumption has been
validated in [13]. For example, based on the results in [A3y)ICA2 mote can finish a 1024-bit RSA signature
verification in about 0.43 seconds, and a 160-bit ECDSA s$igeaverification in about.62 seconds. However,
such public key cryptographic operations still consumestaftially more resources (e.g., battery power) than
symmetric cryptographic operations, and can be exploiyeattackers to launch DoS attacks.

We also assume that a packet transmitted in a sensor netsvianigé enough to accommodate a public key sig-
nature. As discussed earlier, using IEEE 802.15.4, Zigieepliant sensor nodes (e.g., MICAz [7]) can support
packet payload up to 102 bytes [20], despite the fact thadi¢ifi@ult payload size in TinyOS is only 29 bytes [16].
Such a packet can certainly include, for example, a 160®DEA signature, which require$) bytes. To confirm
this assumption, we performed experiments with MICAz mutereasure the packet delivery rate at different dis-
tances when the packet payload size is 102 bytes. In our irelgeriments, the packet delivery rate for MICAz
is over 90% when the distance is 100 feet, compared with ¢to8&6 packet delivery rate for MICA2. Appendix
B shows more details.

We do not assume any specific broadcast protocol. The brsiagatocol can be simply flooding, or proba-
bilistic broadcast (e.g., [24, 30, 41]). However, we do assihat in order to propagate a broadcast packet to the



entire network, it is necessary feomereceivers to re-broadcast the packet. This is certainky fiou all existing
broadcast protocols for wireless sensor networks due thntiited signal range.

Assumptions of Attackers. We assume the attacker can eavesdrop, inject, and modike{satansmitted
in the network. We assume the attacker has access to coipatBt resourceful nodes such as laptops and
workstations. We assume the attacker may use multipledintiunodes in different parts of the network. Thus,
the attacker will be able to create wormholes between éiffeparts of a network. We assume the attacker may
compromise some nodes and learn the cryptographic secrékeim. However, the attacker cannot compromise
the broadcast sender, and cannot forge valid signatures.

Our goal in this paper is to develop lightweight techniguesitigate the DoS attacks against signature verifi-
cation launched by such attackers. In other words, we wakedd enable regular sensor nodes to quickly identify
most forged broadcast packets (if not all) without perforgrihe costly signature verifications.

3 Mitigating DoS Attacks against Signature Verification

Our general approach is to use efficient cryptographic piries to provide a weak authenticator along with a
digital signature in each broadcast packet, so that a sewstw does not have to verify the digital signature if
the weak authenticator cannot be verified. As discussedenrtioduction, the proposed weak authentication
mechanism has some nice properties: The verification of & wethenticator takes substantially less resources
than the verification of a digital signature; however, fagga weak authenticator is time-consuming, though not
infeasible. Moreover, it is computationally infeasibleftwge a weak authenticator before the broadcast sender
discloses some secret information. As a result, weak atitlaors cannot be pre-computed. Even if an attacker
has sufficient computational resources to forge one or meskwuthenticators, it is difficult to reuse these forged
weak authenticators. Thus, this weak authentication nmestmasubstantially increases the difficulty of launching
successful DoS attacks against signature verifications.

We would like to emphasize that weak authenticators aremended as a replacement of digital signatures.
Instead, they are used as an additional layer of protectdiiitér out forged broadcast packets to reduce the
resource consumption of unnecessary signature verifizatio

In the following, we first present a strawman approach taiihte the basic idea and the potential threats. We
then gradually enhance this approach to obtain the finatisoluFor simplicity, we assume there is one broadcast
sender and many receivers in the later presentation. Butemhiniques can certainly be used when there are
multiple broadcast senders.

3.1 Weak Authentication through One-Way Key Chains: A Strawman Approach
This strawman approach uses one-way key chains to providk aghentication. One-way key chains have been
used in several scenarios to provide efficient authenticatExamples include S/Key [14], TESLA [35], and its
variations [25, 26, 36].

To generate a one-way key chain, the sender fir1§0t F K F e [ F K. F K,
selects a random valuk,, as the last key in the key

chain, and then repeatedly performs a (cryptograph"ﬁ)Jure 2: An example one-way key chaif,, is randomly

hash function, which is a on_e-way function, to CO"@'eneratedKi — F(Ki.1), whereF is a pseudo random
pute all the other keys. Thati&; = F(Ki11), Where g,nction and) < i < n—1. K, is used as the commitment
F'is the hash function andl < i < n — 1. With the of the key chain.

hash functionF’, given K; in the key chain, it is easy
to compute all the previous keys; (0 < i < ), but it is computationally infeasible to compute any of ther
keysK; ( + 1 < i < n). Thus, with the knowledge of the initial kelf,, a receiver can authenticate any key in
the key chain by merely performing hash function operatiorige initial key K is often called theommitment
of the key chain. Figure 2 illustrates an example of one-waydhain.

The sender can use these keys as weak authenticators. Befwsmitting the broadcast packets, the sender
distributes the commitmenk, of the key chain to all the receivers. This can be done thrqueghkdistribution
or signature-based broadcast packets. In this paper, wenasthe commitment has been reliably distributed to
all receivers. When the sender is ready to broadcast-thepacket with messag#f;, wherel < i < n, it
first generates the digital signatuséqg(:|)/;). It then broadcasts theth packet, which includes the indéxthe



message\/;, the signatureSig(i|M;), and thei-th weak authenticatof;. Notation-wise, we represent tligh
broadcast packet ag\V/;|Sig(i|M;)|K;, where |” represents concatenation.

Each receiver keeps the most recently authenticated weh&raicatork’; and the corresponding indgx Ini-
tially, j = 0 and K; = K. Upon receiving a packet with indexeach receiver first verifies if theth broadcast
packet from the sender has been previously received andraighted (i.e., the signature has been verified suc-
cessfully). If yes, this packet is potentially replayed orged, and the receiver simply drops it. Otherwise, the
receiver verifies the weak authenticasy by checking whethek; = F'~7(K;). It then verifies the digital sig-
natureSig(i|M;) if the weak authentication succeeds. If both the weak atitaar and the signature are valid,
the receiver replacegwith ¢, and K; with K;.

The use of one-way key chains provides some nice propeHBssh weak authenticatdf; can be easily verified
by regular sensor nodes. Moreover, before the broadcalsé ot packet, an attacker does not have access; o
and thus cannot forge the weak authenticator (due to thevaygaroperty of hash functiof’).

Weakness of the Strawman Approach.This strawman approach also has an obvious weakness, asathey r
may have observed. A malicious node may exploit an obsenaskwuthenticator and the communication delay
(or network partition) to forge broadcast packets, thowghmnot forge a weak authenticator directly. Specifically,
once a malicious node receives a broadcast packet, it m#gcesthe actual message and/or the signature and
re-broadcast the modified packet. Moreover, it may use &fesinel (e.g., a wormhole [19]) to transmit the weak
authenticator to another malicious node in a region thahbaseceived the broadcast packet. The latter malicious
node can then forge broadcast packets using this weak digtiten

If the valid broadcast packet reaches the nodes being attaglhin a reasonable amount of time, the number
of signature verifications can still be bounded, since aivece&rops the packets whose index numbers belong to
some previously verified packets. However, if the nodesghaitacked are isolated from the sender due to network
partition, the attacker can force these nodes to performfante number of signature verifications, and eventually
exhaust their battery power.

3.2 Message Specific Puzzles Based on One-Way Key Chains
In this subsection, we develop an initial version of messgugific puzzles based on the strawman approach,
assuming there is no network partition. We then addressedtveank partition problem in the next subsection.

Our idea is to use cryptographic puzzles to reduce the phigsthat an attacker may exploit an observed weak
authenticator to forge broadcast packets. Intuitivelyerzdgr (or an attacker) has to solve a cryptographic puzzle
[21] in order to generate a valid weak authenticator. Thezlguzolution is then used as the weak authenticator.
Though it is a bit time-consuming to solve a cryptographizzbe, it is very efficient to verify a puzzle solution.
Thus, while a receiver can efficiently verify a weak autheattr, it takes a substantial amount of time for an
attacker to forge a weak authenticator.

Traditional cryptographic puzzles (e.g., client puzz&[L, 43], congestion puzzles [42]) require interactions
between a client and a server. However, broadcast in see$aorks, which involves one sender and a large
number of receivers, does not permit such interactions. eb\@r, we have to prevent an attacker from pre-
computing puzzle solutions. Thus, we have to develop amwititechniques to make this idea feasible.

Our solution ismessage specific puzzles based on one-way key chiaingively, we consider each broadcast
message, along with the message index and the digital aignas a (message specific) puzzle. To prevent an
attacker from pre-computing puzzle solutions to forged sagss, we further add into such a message specific
puzzle a previously undisclosed key in the one-way key chaia a result, an attacker cannot pre-compute a
puzzle solution until such a key is released by the sendesnlgceiving such a packet, any node can easily verify
the puzzle solution. However, we develop the puzzle systesuch a way that it will take any node a substantial
amount of time to solve a puzzle. As a result, even if the kgyis released in a broadcast packet, an attacker
cannot immediately solve the puzzle for a forged packet tansl cannot immediately launch DoS attacks.

Basic Construction. Now let us describe the details of message specific puzzkes the strawman approach,
we assume the sender has generated a one-way key chairtiognsid<y, K1, ..., K, and distributed¥ to all
potential receivers. Theth key K; (1 < i < n) in the one-way key chain is used for the weak authenticaifon
thei-th broadcast packet. We also assume there is a hash fud¢tiomown to the sender and all the receivers.



Given thei-th messag@/;, the sender first generates the signatiiig(i|M/;) using (D& = F7(K)
its private key. The index, the messag@é/;, the signatureSig(i|M;), and K; then () i|M;| Sig (i | M) | K; | P;
constitute the puzzle, which we call tiith message-specific puzzieor the sake of ;
presentation, we call; the(i-th) puzzle keyand denote the solution for this puzzle as
P;. As illustrated in Figure 3, a valid solutioR; to thei-th message-specific puzzle,

wherel < i < n, must satisfy the following two conditions: ‘
1. The puzzle keyk; is thei-th key in the one-way key chain, and 00 Oxx

2. After applying the hash functiof, to thei-th message specific puzzle and its Ibits

solution, we get an image where the firgtits are all “0”. That is,
Figure 3: Message spe-
F,(i|M;|Sig(i|M; )| K; | Py) = 006...0 XX...X, cific puzzles
1 bits

where “xx...x" represents any bit pattern. The paramktecalled thestrengthof the puzzle.

Because of the one-way property of the hash functi9gnone has to search through the space of possible
solutions to solve the puzzle. In other words, given/;, Sig(i|M;), and K;, for each candidate solutiaf/, the
sender (or an attacker) has to verify if the fitdiits of F,,(:|M;|Sig(i|M;)|K;|P/) are all “0”. On average, the
sender needs to tB/~! possible solutions before finding the right one.

To take advantage of message specific puzzles, we use thie peyz<; (i.e., thei-th key in the one-way key
chain) and the puzzle solutiaf} together as theveak authenticator for théth broadcast packetGiven thei-th
broadcast messagdéd;, the sender first generates the digital signattitg(i| M;), retrieves the puzzle kek;, and
computes the puzzle solutid. The sender then broadcasts the packet with the pay|dédSig(i|M;)|K;|P;.
Upon receiving a broadcast packet, each receiver first @srifie puzzle key using, and K, (or a previously
verified puzzle key). Only when this verification is succaksioes the node verify the puzzle solution, and only
when the puzzle solution is valid does it verify the signatufhus, an attacker cannot force the nodes to verify
digital signatures in forged packets without first solvimgne message specific puzzles.

Since the sender needs to solve a message specific puzzte befaling a broadcast packet, the computation
involved in finding the puzzle solution should finish in a i@eable amount of time, though it should not be trivial
to solve such a puzzle. Thus, an attacker may commit signifimamputational resources (e.g., multiple powerful
computers) to compute puzzle solutions (and thus the wetlleaticator) for forged packets once it obtains the
puzzle key in a valid broadcast packet. If the attacker is &buse a fast channel (e.g., a wormhole [18]) to send
the forged packet to nodes that have not received the vadiadoast packet, it may force these nodes to perform
an unnecessary signature verification. (Note that sucteéopgckets do not have much impact on the nodes that
have received the valid packet, because they can easiljifidére duplicated use of the puzzle key in the forged
packets.) Moreover, the attacker may repeatedly send the 8&aged packet to force the sensor nodes to verify a
large number of (the same) signatures, if there is no fuhetection.

Minimizing the Reuse of Forged Puzzle Solutions.Though we cannot prevent the nodes from verifying the
signatures in the forged packets if the attacker has acoessficient computational resources and fast communi-
cation channels, we can still take measures to minimizentipact of such attacks. In particular, we would like to
minimize the reuse of forged puzzle solutions by the attacke

We consider a puzzle solution in a received broadcast paskabrgedone if the puzzle solution can be verified
but the signature in the same packet cannot. To minimizentpact from attacker reusing forged puzzle solutions,
we propose to keep a buffer at each node for the forged pualzlans, and use theulti-buffer random selection
strategy in [25, 26] to manage the buffer. Specifically, assw@wach node has entries in the buffer for forged
puzzle solutions. For each incoming broadcast packet, eadh first checks if the puzzle solution in the packet
already exists in the buffer, and drops the packet if yesefiise, for thek-th forged puzzle solution, & < m,
the node simply saves the puzzle solution in an empty bufieyelf £ > m, the node does not have enough
buffers to save all forged puzzle solutions. In this casentbde saves it with probability. If the puzzle solution
is to be saved, the node randomly picks a buffer entry anéceplthe old entry with the new puzzle solution.

Itis easy to see that when the attacker has moresthforged puzzle solutions, the more frequently the attacker
uses one patrticular forged puzzle solution, the more plesiis puzzle solution is in the buffer when it reaches a
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sensor node (and is then discarded). Thus, a good strategjyefattacker is to use these forged puzzle solutions
at the same frequency. In this case, it is also easy to vévdy divenk’ (m < k' < k) distinct forged puzzle
solutions, each of them solution has the same probghly be kept in the buffer.

We will provide more details about how well the proposed apph can mitigate the reuse of forged puzzle
solutions during the security analysis. In the followinge ¥irst describe the procedure with which each node
processes incoming broadcast packets.

Processing Broadcast Packets at ReceiversBased on the above discussion, we describe the following pro
cedure for each receiver to process an incoming broadcakepaith payloadi|M;|Sig(i|M;)|K;|P;, assuming
that the most recently authenticated puzzle ke js

1. If j > i (i.e., thei-th packet is an earlier packet), pr= 7 but an authenticated copy of thi¢h broadcast
packet has been received, simply drop this packet and stop.

2. Authenticate the puzzle key; with K; by checking ifK; = F'~7(K;). (Note that it is possible to have
j = i when the node has received forged puzzle solutiongs); I§ not authenticated, simply drop the packet
and stop. Otherwise, if < i, replacek; with K;, and empty the buffer for forged puzzle solutions.

3. If P;is in the buffer for forged puzzle solutions, drop the packsd stop.

4. Verify the puzzle solution by computing, (i|M;|Sig(i|M;)|K;|P;). If the first! bits of the image are not
all “0”, simply drop the packet and stop.

5. Verify the digital signature&ig(:| ;) using the sender’s public key. If the verification passegpdstep 7.

6. Add F; into the buffer for forged puzzle solutions when space islabie. Otherwise, suppose this is the
k-th puzzle solution received for theth broadcast packet. Kedp with probability m /k, wherem is the
number of buffer entries. IF; is to be kept, randomly pick any previously saved puzzletamiuP/, and
replaceP; with P,. Drop the packet and stop.

7. Re-broadcast the received packet if necessary

Security Analysis. The one-way property of the hash functid brings a nice feature to message specific
puzzles: An attacker has to search in a solution space im todimd a weak authenticator for a forged packet. As
discussed earlier, given the puzzle strenigién attacker needs to t&y— ! hash function operations on average in
order to find a puzzle solution. Moreover, the use of one-wgydhains prevents an attacker from pre-computing
puzzle solutions. In other words, it is computationallyeia$ible for an attacker to compute a puzzle key that has
not been disclosed by the sender. Thus, the attacker caolvetthe message specific puzzle to forge #tte
broadcast packet until it has received a valid puzzle Keyn the (real)i-th broadcast packet.

We temporarily assume that there is no network partitiorhaball broadcast packets can reach all the nodes in
a finite amount of time. (We will discuss the case where thezenatwork partitions in Section 3.3.) Considering
the difficulty of solving message specific puzzles, given gorapriate puzzle strength, an attacker may not have
enough time to forge a weak authenticator before the bresageaket reaches all sensor nodes if the attacker does
not have substantial computational resources.

An attacker can certainly commit a lot of computational teses to forging weak authenticators. For each
forged packet, the attacker has to solve a message spedfitepwhich involves on averag®—! hash function
operations. Since each receiver hagntries in the buffer for forged puzzle solutions, the &acannot reuse any
forged packet before he/she solves more thiapuzzles. Consider the puzzle strength 22, which requires less
than 3 bytes per buffer entry. Based on the benchmark resu@rypto++ 5.2.1 [8], it takes about 7.5 seconds on
average for a 2.1 GHz Pentium 4 processor running Windowso)delize one puzzle. Thus, a 150 byte buffer for
forged puzzle solutions will force an attacker with the afoentioned system to compute for about 376.6 seconds
on average before the attacker has a chance to reuse a farggd polution.

Suppose the attacker has finished computih¢t’ > m) puzzle solutions, and is sending theh (¢ > &)
forged packet. In the best case, the attacker can succeedismg a previous puzzle solution with probability
1 — /2. This happens when the attacker sends a newly forged puzkios (i.e., thek’-th one) as thé¢k — 1)-th
packet and attempts to reuse it in theh packet. This probability will drop quickly as the attackattempts to

In some broadcast protocols (e.g., probabilistic broad@ds41]), not all the nodes need to re-broadcast the redgiacket.



reuse the same forged puzzle solution. It is very likely thatreal broadcast packet has reached most (if not all)
sensor nodes before the attacker can reuse any forged pohzi®n many times.

Compared with the simple signature-based broadcast didhion where an attacker can claim an arbitrary
message as a signed broadcast packet and force many sedssito@erify signatures, message specific puzzles
have substantially increased the cost of DoS attacks. NMereas discussed earlier, even if the attacker has
enough resources to launch such attacks, the forged weadrdigators are valid only for a limited period of time.
A forged broadcast packet has to arrive at a sensor nodectirreal packet to generate a significant impact.

Since each broadcast packet includes a message index feenider, each message specific puzzle is unique.
Moreover, the puzzle keys also change from packet to patkefs, puzzle solutions will also change with a high
probability (approximatelyl — 27%), and cannot be reused for later messages.

Performance Analysis. Message specific puzzles introduce light computationathmad on regular sensor
nodes. For each broadcast packet, a receiver needs tompearfoextra hash function operation to first verify
the weak authenticator. When there are DoS attacks agagmsttgre verifications, the proposed approach can
reduce the computational cost significantly by reducingniiln@ber of expensive signature verifications. However,
the broadcast sender has to solve a message specific putizlstrgngthl in order to generate a valid weak
authenticator, which involve®—! hash function operations on average per broadcast packeeadver, the sender
needs to pre-compute a one-way key chain before the depfayofiehe network. This includes, for example,
10,240 hash function operations for a chain of 10,240 puays. As discussed earlier, we assume the broadcast
sender is a powerful computer with external power supplgt,can perform such operations.

Message specific puzzles require some space in each bropdckst. Besides the message index, the message
content, and the digital signature, each packet has todecipuzzle key and a puzzle solution. In general, a 64-bit
puzzle key is sufficient to prevent attacks against the oagkey chain, and the solution to a message specific
puzzle with strengtli requires at leagtbits space in the packet. They together reg8ire {él bytes space in the
packet (e.g., 11 bytes whén= 24). Considering the importance of broadcast authenticadimh the maximum
payload size of 102 bytes in ZigBee-compliant sensor noelgs, MICAz), such an overhead is acceptable.

The storage overhead on regular sensor nodes is reasofiaul.node has to maintain the index of the most
recently verified broadcast packet, the corresponding lpu&y, and the buffer formn forged puzzle solutions.
When 16-bit indexes, 64-bit puzzle keys, druit puzzles are used, these requifer m - {é} bytes space for each
sender. For example, these require 160 bytes wher24 andm = 50. However, the storage requirement on the
broadcast sender is much heavier. The sender has to kegsiahle unused part of the one-way key chain, unless
it computes the puzzle key every time it is needed. This regufor example, 80,960 bytes for a chain of 10,240
64-bit keys. Given the assumption that the sender is a palsotle (e.g., a laptop), this is not a problem at all.

Choice of Parameters. We need to decide several parameters before we can use thagaepecific puzzles:
the hash functions, the puzzle strengthnd the buffer sizen for forged puzzle solutions.

Similar to the existing cryptographic puzzles (e.g., dlipnzzles [4, 21, 43], congestion puzzles [42]), we only
use the one-way property of hash functions in message sppuiizles. Thus, as indicated in [21], we may use a
fast hash function such as MD4 [38], or a fast block ciphehsagcRC6 [39] as the hash function. To save the code
size, our implementation reuses SHA-1, which is necessageherate ECDSA signatures, as the hash function
for both the one-way (puzzle) key chain and message spedifirigs.

Puzzle strengthis an important parameter for message specific puzzles. tision of this parameter should
follow two principles: First, the sender should be able ttvsdhe puzzle within a reasonable amount of time.
An overly large value fot will result in a long delay before transmitting broadcastksds on the sender’s side.
Second, the parameter should not be too small. In other wirdsattacker should not be able to solve a large
number of puzzles before the valid broadcast packet is gaipd throughout the network. Based on these two
principles, the network designer should determine theevathrough balancing the maximum delay the sender
can tolerate before sending the broadcast packet and khef f3oS attacks against signature verifications.

The larger buffer a node has for forged puzzle solutionsp#teer it can minimize the reuse of forged puzzle
solutions. In practice, parameter should be determined based on the available storage onrsestses and the
threat model. For example, wheén= 22 and there are more than 150 bytes available on each node, weeha
m = 50. This requires at most 150 bytes for the buffer, and can farcattacker with one 2.1 GHz Pentium 4



processor to spend about 376.6 seconds on average in orgeisea previously forged puzzle solution.

A Remaining Threat. A threat still remains when there are network partitiongreif we use message specific
puzzles as weak authenticators. Consider the followingast® A computationally resourceful attacker observes
the i-th broadcast packet transmitted by the sender, and |elaenkely K; included in this packet. As a result,
the attacker can forge theth broadcast packet with an invalid signature but valid kveathenticator. This is
in general not a big threat to a connected sensor networlguiseca node will discard the forged packet after it
receives the valid broadcast packet. However, when somesnat isolated from the sender (i.e., they cannot
receive the packet from the sender), the attacker can esgigdbrge packets and send to these nodes, and thus
force them to verify the (invalid) signatures. The attack@l eventually exhaust their battery power.

3.3 Time Limited Message Specific Puzzles

In this subsection, we further enhance message specifitgsupamitigate the aforementioned attack against nodes
isolated from the sender. For brevity, we refer to a nodeatedl from the sender as @mwolated node

The essential reason for the above attack is that a puzzleckegins valid for a node as long as this node has
not authenticated a broadcast packet that uses this orr&kégtén the key chain. An attacker can use this puzzle
key repeatedly to exhaust the battery power of isolated sxa@ar solution is thus to invalidate this condition.

Our solution is inspired by TESLA [35]. As shown ” ” ” ” ”
in Figure 4, we divide the time period for broadcastfo<+—— K+ K - = «——Kye— K,
ing into multiple time intervals, labeled ds, I, ..., 5 5 I L
I,. Each puzzle keys; in the one-way key chain is \ \ L ! !
associated with the time interva], wherel < i < n. T I I Tra T I
The sender usek; for weak authentication only dur- o o
ing the time intervall;. For convenience, we de_F_lgure 4: One-way ke_zy chain |n_t|me—l|m|ted message spe-
note the starting point and the end point of interv&lfi¢ Puzzles. Eacli; is only valid betweef;_, —d. and
I; (1 < i < n)asT;_; andT}, respectively. T;+ 6.+ 6,, whered,. is the maximum clock difference be-

We assume the clocks of the sender and all receiv%’ysen the sender and any receiver, 8pts the maximum

are loosely synchronized. More precisely, we assu'%reopagatlon delay.

the clock difference between any two nodes is boundedl. biloreover, we assume the propagation delay of any
broadcast packet in a network without partition is boundgd,b This delay may also include the time required
by signature verification at intermediate forwarding nodaseach receiver, each key; is only valid between
Ti—1 — 0. andT; + 6. + 0, (in the local clock). When a node receives a broadcast patketal timet with

a weak authenticator, which is composed of the puzzle Keyand the puzzle solutio®;, it first verifies the
conditionT;_; — 6. < t < T; + d. + 6,, and continues to perform the steps specified in Sectionr#y2vehen

this condition is satisfied. As a result, even if a node isateml from the sender, an attacker can only use a cracked
weak authenticator for a limited period of time.

The reader may have noticed that when the sender has notchsiddr a relatively long period of time, all
the receivers have to perform a potentially large numberashtfunction operations to verify the key in a new
broadcast packet. A simple solution to this problem is toehttne sender periodically (e.g., for every 100 time
intervals) broadcast the most recently expired key to thevark. (Note that such keys are self-authenticated
because of the one-way key chain.) After receiving and aitegting such a key, each receiver replaces the most
recently authenticated puzzle key with the new one. As dtrdle receiving nodes can spread the verification of
the puzzle keys in the one-way key chain over time.

Time limited message specific puzzles retain the securidlypg@nformance properties of message specific puz-
zles discussed earlier. Moreover, it can prevent attadkens launching unlimited DoS attacks against isolated
nodes, as discussed earlier. This extension does bringrizgtios along with the benefit: The sender cannot send
more than one broadcast packet per time interval, since #aehinterval has only one puzzle key. This can
be addressed by having short time intervals, or having plelpuzzle keys per interval. The sender may need
a potentially large number of puzzle keys, many of which areused. Such a problem can be potentially ad-
dressed by using sandwich chains [17] or multi-level keyrehf25, 26]. These approaches provide more complex
but efficient ways to organize key chains, and allow recsiverskip the computation of intermediate keys when
authenticating later keys. Since these are not the focusopaper, we do not discuss them in detail.
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3.4 Adaptive Verification

As discussed earlier, broadcast in a wireless sensor rietyically requires that some nodes receiving an authen-
ticated broadcast packet re-broadcast it (locally) to @agape the packet across the network. In the proposed (time
limited) message specific puzzles, such a node verifies thdgugolution and the digital signature before for-
warding the broadcast packet. Though the verification aftgois to message specific puzzles is trivial, signature
verification takes much longer time. This will certainlyrimdluce undesirable delays in large sensor networks.

An alternative approach is to have each node re-broadcagiatket right after verifying the puzzle solution
but before verifying the signature. However, message fpequizzles araveakauthenticators intended for miti-
gating DoS attacks against signature verifications. Asudised earlier, they can be forged if the attacker devotes
significant computational resources. If a node uses tresradtive approach, it may forward forged packets before
realizing that they are forged, thus wasting the limiteddrgitpower on unnecessary packet transmissions.

It seems that both approaches are not satisfactory. Tosglthis dilemma, we propose an adaptive approach
to determining the order of signature verification and fowirag of broadcast packets. Intuitively, this approach
tries to detect attempts of DoS attacks against signatuications. In normal situations where there are no such
attacks, each node re-broadcasts a broadcast packet enaedk authenticator is verified, and then verifies the
signature. However, when there are DoS attacks againstsignverifications, each node first verifies the digital
signature, and then re-broadcasts the packet if the signistualid.

Figure 5 illustrates this approach. Each node works in twdeso N>0
optimistic modeandpessimistic modeln the optimistic mode, a node
re-broadcasts the packet locally once it verifies the wetkeaticator.
In contrast, in the pessimistic mode, a node verifies bothwiek au-
thenticator and the signature, and re-broadcasts the paakewhen N=0
both verifications pass. The switch between these two maddstér-
mined by a detection metriy;, the number of failed signature verififigure 5: Adaptive verification/{: # of
cations in the past time units wherew is a system parameter detefailed signature verifications in the past
mined by the security policy. Note that a node verifies a gigesonly time units)
when the weak authenticator is valid. Thidg; represents the number of forged broadcast packets witth waiak
authenticators but invalid signatures. A node initiallyris®in the optimistic mode. It switches to pessimistic
mode if N becomes greater than 0, and may switch back to the optinnmgide whenV, drops to 0.

Adapitive verification can be used with either message spquifizles or time limited message specific puzzles,
and retains the same security properties. When there arafaks, this approach is exactly the same as proposed
earlier. However, in normal situations where there are oh sittacks, adaptive verification can substantially reduce
the broadcast delay.

So: Optimistic Mode

S1: Pessimistic Mode

3.5 Discussion

The proposed message specific puzzle technique can be maare against external attackers with a slight change.
If all the normal sensor nodes share a key, we can includekéyisn the input to the hash functiof,. As a
result, only valid nodes can solve the message specific gaizEowever, this does not add any defense against
compromised nodes, which have access to the global key.

Though we presented message specific puzzles as a defertsanisecfor signature-based broadcast authenti-
cation, it can potentially be used witlTESLA-based broadcast authentication [25, 26, 37] as vk concern in
this case is not the expensive computation, but the bufferaddcast packets before they can be verified with an
authentication key disclosed later. Nevertheless, thelsessage specific puzzles fof ESLA and its variations
is not the focus of this paper, and may entail additionalaege We will consider it in future work.

Despite the useful properties, message specific puzzledale some limitations. First, the broadcast sender
has to solve a puzzle before broadcasting a message. Thisa®dhat the sender must be a computationally
powerful node with sufficient power supply, and also implieat there will be a delay before the transmission
of the packet. However, in certain applications, theselprab are tolerable in exchange of the mitigation of the
DoS attacks. Moreover, message specific puzzles add medemratmunication overhead and storage overhead on
regular sensor nodes. As discussed in the security anatySection 3.2, these overheads are generally acceptable
in the current generation of sensor networks.
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4 Implementation and Experimental Evaluation

We have implemented the proposed techniques on TinyOS, enatoy system for networked sensors [16], and
performed initial experimental evaluation. To facilitabe evaluation, we have implemented a software package
called TinyECCfor Elliptic Curve Cryptography (ECC) on TinyOS. The currerrsion of TinyECC includes big
integer operations (e.g., modular addition, modular rplidtation), elliptic curve operations (i.e., point additj
point doubling, point multiplication) over finite field,, ECDSA overF,, and SHA-1 (which is required for
ECDSA). More details of TinyECC can be found in Appendix C.

The proposed techniques are implemented in a software gadadledTinySigGuardwhich uses TinyECC for
digital signature support on TinyOS. To reuse the code igH®C, we used SHA-1 as the hash functions for both
message specific puzzles and the one-way key chain. To rddeisize of the puzzle keys included in broadcast
packets, when generating the one-way key chain, we randgenigrate a 64-bit key as the last puzzle k&y),
and truncate the output of SHA-1 function to 64 bits. Thulspatzle keys in the one-way key chain have 64 bits.
Note that truncating each SHA-1 output to 64 bits does notsearily provide the expected security as in a 64-bit
one-way function. This is simply an implementation degcisiand can be replaced if such a truncation significantly
weakens the one-way property.

TinySigGuard consists of two part3:SGSendeand TSGReceiverTSGSender is a Java program running on
a PC. It communicates with the sensor network through a aegdnsor node attached to the PC, which runs
TOSBasgan application (in the TinyOS distribution) that simplyvi@rds packets between the sensor network
and the PC. To broadcast an authenticated packet, 3&@er first generates the packet by signing the broadcast
data and solving the message specific puzzle, and then gdndbé sensor node running TOSBase, which then
broadcasts the packet. TSGReceiver is responsible fdyweyithe message specific puzzles and digital signatures
in broadcast packets and re-broadcasting them. In thiscimguhtation, we take the simplest flooding approach
as the broadcast protocol. That is, each receiver re-bastsla packet once receiving and authenticating it. It is
certainly desirable to experiment with other more efficlanmiadcast protocols; we will do so in our future research.

To allow the transmission of broadcast packets autherticatith T,pie 1: Code Size (Bytes) on MICAZ
ECDSA signatures, we modified the maximum payload size iiyQ ROM | RAM
from 29 bytes to 102 bytes, which is the maximum payload siz&EE TSGReceiverl 1.978| 398
802.15.4 standard specification [20].

Table 1 shows the code size of TSGReceiver on Miable 2: Time (milliseconds) Required for Solving and
CAz, which was obtained using tliheck si ze. pl  Verifying Message Specific Puzzles

script in the TinyOS CVS repository. This does not in- Puzzle Solving a Verifying a Solution
clude the code in TinyECC and other TinyOS compp-<Strength {) | Puzzle (on PC) Puzzle (on MICAZ)
nents. In our experiments, the sender is a DELL Lati- 20 8,835 14.6
tude D510 laptop with a 1.6 GHz Pentium M 730 pro- 22 28,203 14.6
cessor and 512 MB DDR SDRAM. Each sensor nofe 24 132,250 14.6
is a MICAz mote, which has an 8-bit Atmegal28 pro- 26 581,258 14.6

cessor and an IEEE 802.15.4 compliant RF transceiver.

(More details about MICAz can be found in [1].) Table 2 showsie timing results on solving message specific
puzzles (on the PC) and verifying puzzle solutions (on a Mé@Aote). Each number is the average of the results
from 100 random test cases. Note that the timing resultshdsénder is obtained with a Java program; it can be
more efficient if a good implementation is used on the natiaemne (rather than the Java virtual machine).

We have performed experiments in a network of 30 MICAz mdtés used ECDSA on the 160-bit elliptic curve
secpl60kl specified by SECG [6]. As discussed earlier, we used a simgdelifig protocol for broadcasting.
That is, each node re-broadcasts an authenticated packetituieceives this packet for the first time. To avoid
packet collision, each node randomly delays between 0 antilbfeconds before re-broadcasting. Since the com-
putation and storage overheads are already clear from Higseésrand the earlier experiments, these experiments
are focused on the communication delay introduced by messaerific puzzles.

Figure 6 shows the broadcast delays at different hops frenseéhder for four cases: (1) no broadcast authenti-
cation, (2) our approach in optimistic mode using TinyECZ} dur approach in pessimistic mode using TinyECC,
and (4) our approach in pessimistic mode using the optim@@ implementation in [13]. The first three cases
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were obtained in our experiments, while the last case imastid based on the timing results in [13] (i.e., each
ECDSA signature verification takes about 1.62 seconds).
It is easy to see that the proposed approach introducesdaght|] —s—noautenicaion —+— Optimistic mode
lays when used in optimistic mode. However, in pessimisticien || —_C=sm=enee T Opimized ECDSA (expected)
(i.e., when there are DoS attacks), the proposed approachatiul oo N
significant delays (e.g., about 10 seconds to reach 7 hopstheét o —
optimized ECC implementation in [13]). Though these resdt ' ;o x z —=
not justify the immediate use of these techniques, they lasedo o = r = =
acceptable performances. We expect these techniquesevitide- .
tical when sensor nodes with better processing power aikablea Yo T 2 s . s .
We have provided security analysis for the proposed teciesiq Number of hops
and performed initial experimental evaluation in normalaions.
It is also desirable to experiment with these techniqueswthere Figure 6: Delay with and without Signature-
are attacks. We will perform such experiments in our futwe Based Authentication
search.

5 Related Work

Broadcast authentication has been traditionally achievitd digital signatures, where the sender signs the mes-
sages and all the receivers can authenticate the messagesfiping the signatures. In the past few years, many
researchers have been working on how to reduce the numbéaynattisre operations in, for example, streaming
applications over lossy channels (e.g., graph-based basaduthentication [10, 28, 40], forward error correction
based approaches [32, 33]) and to address the resultingeprsife.g., DoS attacks [12, 22]). These techniques
certainly suffer from the DoS attacks against signaturéigations in wireless sensor networks, though message
specific puzzles can potentially be useful to mitigate sutdcks.

Researchers have been working on broadcast authentigatrety based on symmetric cryptography, such as
TESLA [35] and its variations [25—-27, 37], which have beescdssed in the Introduction, and BiBa [34]. In
particular, TESLA [37] and the later variations have been consideredoa gandidate for broadcast authentica-
tion wireless sensor networks. Howevel,ESLA and the other variations require a loose clock syrnulgation,
which cannot always be guaranteed. Moreover, they intteduthentication delays, and could be exploited by
an attacker to launch DoS attacks. (See Appendix A.1 for rdetails.) The techniques developed in this pa-
per provide a way to use digital signatures efficiently ineMiss sensor networks, and thus provide a solution
complementary ta TESLA-based approaches.

Message specific puzzles are essentially an integratiohenit puzzles and one-way hash chains. Client puz-
Zles were proposed in [21] and later used in several apgitate.qg., [4, 42, 43]). However, all the previous
cryptographic puzzle techniques require interactionsveéeh a client and a server. Our innovation in this pa-
per is to integrate cryptographic puzzles, one-way keynshand broadcast messages together to achieve weak
authentication without requiring interaction betweengsbader and many receivers.

Delay (milliseconds)

6 Conclusion

In this paper, we developed message specific puzzles, a wéandication mechanism, to mitigate DoS attacks
against signature-based broadcast authentication imesfraensor networks. This approach has a number of nice
properties: First, a weak authenticator can be efficierghjfied by a regular sensor node, but takes a computation-
ally powerful attacker a substantial amount of time to for§econd, a weak authenticator cannot be pre-computed
without a non-reusable key disclosed only in a valid broatipacket. Thus, an attacker cannot start the expensive
computation to forge a weak authenticator without seeinglia broadcast packet. Third, even if an attacker has
sufficient computational resources to forge one or more veedkenticators, it is difficult to reuse these forged
weak authenticators. Thus, this weak authentication nmesimasubstantially increases the difficulty of launching
successful DoS attacks against signature verificationshale implemented the proposed techniques in a software
package named TinySigGuard on TinyOS, and performed lieitizerimental evaluation on MICAz motes. In our
future research, we will continue the experimental evabuain large-scale sensor networks, and investigate the
effective integration with efficient broadcast protocais Wireless sensor networks.
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A A Brief Overview of 4 TESLA and Its Limitations

An asymmetric mechanism such as public key cryptographyeiweiglly required for broadcast authentication
[35]. Otherwise, a malicious receiver can easily forge aagkpt from the sender, as discussed earlidi=SLA
introduces asymmetry by delaying the disclosure of symmkéays [37]. A sender broadcasts a message with a
Message Authentication Code (MAC) generated with a seagfk which is disclosed after a certain period of
time. When a receiver gets this message, if it can ensuréhthgiacket was sent before the key was disclosed, the
receiver buffers this packet and authenticates the padkehvt later receives the disclosed key. To continuously
authenticate broadcast packetd,ESLA divides the time period for broadcast into multipléervals, assigning
different keys to different time intervals. All packets hdrast in a particular time interval are authenticated with
the same key assigned to that time interval.

To authenticate the broadcast messages, a receiver fingtngichtes the disclosed keysTESLA uses a one-
way key chain for this purpose. The sender selects a randlum k@ as the last key in the key chain and repeatedly
performs a (cryptographic) hash functiéhto compute all the other keys(; = F(K;11),0 <i < n — 1, where
the secret keyg; (except forK)) is assigned to théth time interval. Because of the one-way property of thénhas
function, givenk; in the key chain, anybody can compute all the previous Key$ < i < j, but nobody can
compute any of the later onds;, j + 1 < i < n. Thus, with the knowledge of the initial key,, which is called
the commitmenbf the key chain, a receiver can authenticate any key in theckain by merely performing hash
function operations. When a broadcast message is avaiftatile i-th time interval, the sender generates a MAC
for this message with a key derived fraly, broadcasts this message along with its MAC, and discldsekey
K;_, for time intervall;_; in the broadcast message (wheérs the disclosure lag of the authentication keys).

Each key in the key chain will be disclosed after some delaya Pesult, the attacker can forge a broadcast packet
by using the disclosed ke TESLA uses a security condition to prevent such situatit¥isen a receiver receives
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an incoming broadcast packet in time inter¥alit checks the security conditidi{7. + A —11)/Tint | < i+d—1,
whereT, is the local time when the packet is receivél|s the start time of the time intervé| T;,,; is the duration
of each time interval, and\ is the maximum clock difference between the sender and.itdélthe security
condition is satisfied, i.e., the sender has not disclose#ek K; yet, the receiver accepts this packet. Otherwise,
the receiver simply drops it.

uTESLA is an extension to TESLA [35]. The only difference beem TESLA anduTESLA is in their key
chain commitment distribution schemes. TESLA uses asymeralyptography to bootstrap new receivers, which
is impractical for current sensor networks due to its higmpatation and storage overheadslESLA depends
on symmetric cryptography (with the master key shared bamtvibe sender and each receiver) to bootstrap the
new receivers individually. TESLA was later extended tdude an immediate authentication mechanism [36].
The basic idea is to include an image under a hash functiolaté anessage content in an earlier message so that
once the earlier message is authenticated, the later ngessatent can be authenticated immediately after being
received. This extension can also be applied T&SLA.

A.1 Limitations of 4 TESLA in Wireless Sensor Networks

A major limitation of yTESLA [37] and its variations [25, 26] is the authenticatidelay. In other words, a
receiver cannot authenticate a broadcast packet immbdadter receiving it. Consider the fact that a broadcast
packet typically has to be forwarded (via local re-broatjcamsiltiple times before it can reach all the nodes. This
means that a sensor node has to forward a broadcast packet pefperly authenticating it. The key disclosed in
a broadcast packet can provide some weak authenticatiomevép, once an attacker receives a normal broadcast
packet, he/she can reuse this key to forge many packetsahgpass this weak authentication. As a result, an
attacker can easily inject a large nhumber of forged broaduaskets, force regular nodes to forward these bogus
packets, and eventually exhaust their battery power.

Perrig et al. provided an immediate authentication medamaiy including the hash image of thacket content
in a previous broadcagiacket[36]. This extension ensures the immediate authenticatiothe content of a
broadcast packet. However, such immediate authenticaib@s not cover the hash image for the later packet
content, nor the MAC. As a result, an attacker can forge alagnber of packets by modifying the uncovered
part without being immediately detected, force sensor saderopagate these packets across the network, and
eventually exhaust their limited battery power.

B Packet Delivery Rates for MICA2 and MICAz in Indoor Environ ments

We performed some in-door experiments to confirm the padsst late for MICAz with large packet sizes. We
used both MICA2 and MICAz in our experiments for comparisarpgoses. The Radio Frequency (RF) module of
MICAZ runs at frequency 916.7MHz, while that of MICAz runsfegquency 2.425GHz. We set the transmission
power as -10dbm on both MICA2 and MICAz. Figure 7 shows themanison of packet delivery rates for MICA2
and MICAz when the packet payload size is 102 bytes (i.eiévdmum payload size in IEEE 802.15.4). Itis easy
to see that the packet delivery rate for MICAz remains abd®@fé $ all test cases, when this rate quickly drops
to O as the distance between the sender and the receiveasesr&om 50 feet to 90 feet. This results confirms
our assumption that it is practical to have a large enoughgtdbat can accommodate a digital signature on IEEE
802.15.4 compliant sensor nodes.

C Implementation and Performance of TinyeCC

We have been implementing a software package for Ellipticv€ Cryptography (ECC) on TinyOS, which is
called TinyECC Currently, we have finished the implementation of elligtirve operations over finite field,
and ECDSA [3] on such curves. In this appendix, we briefly dbscthis implementation and the performance
results.

The big integer operations in TinyECC are based on RSARER23]D We first ported the natural number
operations in RSAREF 2.0 to TinyOS, and then added a few krmptimizations to speed up ECC operations.
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Figure 7: Packet delivery rates for MICA2 and MICAz in our @riat experiments (Payload size: 102 bytes)

These include the modular square, modular addition, andufapdubtraction operations described in [15], as well
as the optimization for modular multiplication describad13].

We adopted Jacobian projective coordinates to speed upQGizdperations [15]. In particular, we used the
algorithms for elliptic curve point addition and point ddinly described in [5]. To optimize for special elliptic
curves, we used the point addition and doubling algorithmgL5] for elliptic curvesy? = z3 + ax + b with
a = 0 or —3. Finally, we used the sliding window method (i.e., procedsits a time, wherev is the window size)
described in [15] for point multiplication.

Table 3 shows some performance results of ECDSA in TinyEGGhi® SECG-defined elliptic curves [6]. In
Table 3, the name of each curve starts with “secp”, indigatirat the curve is ovefF, by SECG. The number after
“secp” indicates the number of bits in the prime number defjithe finite field. The letter “k” or “r” then indicates
if the elliptic curve is a Koblitz curve or a verifiably randararve. The name of each curve is then finished with a
sequence number. The exact parameters of each curve camrgkifd6].

Note that the code sizes shown in Table 3 are those for thadgstogram, which signs and verifies random
messages, and then transmits the timing results back to @lCperformance results may change as we improve
our implementation.

Table 3: Code size and execution time of ECDSA in TinyECC oAl motes. (Note that the code size changes
with different parameters due to the changes in the ECC mimamand some internal state. Moreover, the code
for SHA-1, which is 31,866 bytes, is the dominant part of EGC.)

Curve | Window Size {v) | Code Size | Code Size| Signature | Signature
(ROM) (RAM) Generation| Verification

secpl28rl w = 2 bits 44,438 byte§ 442 bytes | 9,966 ms | 19,201 ms
w = 4 bits 44,446 bytes 1,298 bytes| 8,716 ms | 17,080 ms

secpl28r2 w = 2 bits 44,468 byte§ 442 bytes | 11,405 ms| 22,499 ms
w = 4 bits 44,476 bytes 1,298 bytes| 10,150 ms| 20,270 ms

secpl60kl w = 2 bits 44,530 byteg 522 bytes | 8,189 ms | 16,272 ms
w = 4 bits 44,538 bytes 1,570 bytes| 7,012 ms | 13,956 ms

secpl60rl w = 2 bits 44,546 byteg 522 bytes | 8,464 ms | 16,395 ms
w = 4 bits 44,554 byteg 1,570 bytes| 7,317 ms | 14,630 ms

secpl60r2 w = 2 bits 44,550 byte§ 522 bytes | 8,843 ms | 17,393 ms
w = 4 bits 44,558 byteg 1,570 bytes| 7,727 ms | 15,257 ms

TinyECC is implemented primarily for research purpose® wuthe lack of publicly available implementation
of public key cryptosystems on the current generation ob@enetworks. It does not include all the known
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optimizations for big integer and EC operations. Moreobegause it is entirely implemented in nesC, it cannot
take advantage of some techniques (e.g., hybrid multipicaaimed at optimizing the registers and memory
accesses) described in [13].

18



