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Abstract 

Various regression test selection techniques have been developed 

and have shown fault detection effectiveness. The majority of these 

test selection techniques rely on access to source code for change 

identification. However, when new releases of COTS components 

are made available for integration and testing, source code is often 

not available. In this paper we present a lightweight Integrated - 

Black-box Approach for Component Change Identification (I-

BACCI) process for selection of regression tests for user/glue code 

that uses COTS components. I-BACCI is applicable when 

component licensing agreements do not preclude analysis of the 

binary files. A case study of the process was conducted on an ABB 

product that uses a medium-scale internal ABB software 

component. Five releases of the component were examined to 

evaluate the efficacy of the proposed process. The result of the 

case study indicates that this process can reduce the required 

number of regression tests by 54% on average. 

1. Introduction 

Regression testing involves selective re-testing of a system or component to verify that 

modifications have not caused unintended effects and that the system or component still 

complies with its specified requirements [7]. To minimize the time and resource cost of 

regression testing, a variety of regression test selection techniques have been developed [3, 5].  

However, these regression test selection techniques rely on source code, and therefore are not 

suitable when source code is not available for analysis, such as for COTS components. 

COTS software products typically undergo a new release every eight to nine months, with active 

vendor support for only the latest three releases [2]. Upon receiving the COTS files, users often 

need to conduct regression testing to determine if a new component or new version of a 

component will cause problems with their existing software and/or hardware system. However, 

users of COTS components often do not have access to the source code, only to the binary files 

and a small set of reference documents. Currently, in this case the functions in the user/glue code 

(which we call the “user functions” henceforth) that use COTS components would need to be 

completely retested. This retest-all stategy is prohibitively expensive in both time and resources 

[5]. North Carolina State University and ABB Corporate Research are collaborating to address 

the challenge presented by the lack of source code for the reduction and selection of test cases. 
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Our research objective is to develop a lightweight process for regression test selection for the 

user functions that use software components when source code of the components is not 

available. We call our process the Integrated - Black-box Approach for Component Change 

Identification (I-BACCI) process. I-BACCI is applicable when component licensing agreements 

do not preclude binary code analysis. The input artifacts to the process are the binary code of the 

components (old and new versions), the source code of the user functions, and the test suite for 

the user functions. These artifacts are generally available to the COTS user. Once the I-BACCI 

process is completed, the reduced set of regression test cases can be executed. 

In prior research, the first two steps of I-BACCI Version 1 were applied on four releases of an 

internal ABB product component [24]. In this paper, we report the results of an additional case 

study conducted with a medium-scale ABB product that uses a medium-scale internal ABB 

software library. All six steps of I-BACCI Version 2 were applied to five releases of the product 

and component. 

The rest of this paper is organized as follows. Section 2 discusses the background and related 

work. The I-BACCI process is described in Section 3. Section 4 identifies the limitations of the 

current approach. Section 5 describes the new case study of applying I-BACCI on the ABB 

product and its library component. Finally, Section 6 presents conclusions and future work. 

2. Background and related work 

In this section, we discuss the prior work in software component testing, regression testing, 

change identification, and firewall analysis. 

2.1 Testing of software components 

Poor testability, due to the lack of access to the component’s source code and internal artifacts, is 

one of the issues and challenges of component testing [4]. Generally, only black-box tests can be 

run on COTS software because users do not have access to the source code to analyze the 

internal implementation. Black-box test cases of COTS components can be based upon the 

specification documentation provided by the vendor. Alternately, the behavior could be 

determined by studying the inputs and the related outputs of the component. 

Harrold et al. [6] presented techniques that use component metadata for regression test selection 

of COTS components. Using a controlled example of seven versions of a VendingMachine 

program with a Dispenser component, they demonstrated that, on average, 26% of the overall 

testing effort can be saved by using their technique, with three types of metadata to perform the 

regression test selection [6]. I-BACCI does not require the collection of this metadata, which the 

component supplier might not provide. However, Harrold’s process may be more applicable 

when component licensing agreements preclude the binary code analysis needed for I-BACCI. 

2.2 Regression test selection 

Regression test selection (RTS) techniques attempt to reduce the high cost of retest-all regression 

testing by selecting a subset of possible test cases [5] which focuses on the software 

components/functions that have been changed or are most likely to be affected by the change. In 

the selection of test cases, an RTS technique might not be safe. A safe RTS technique guarantees 

that the subset of tests selected contains all test cases in the original test suite that can reveal 

faults based upon the modified program [3, 10, 14]. A variety of RTS techniques (e.g. [3, 5]) 



3 

have been proposed, such as methods based upon path analysis techniques or dataflow 

techniques. However, these techniques rely upon having information about the source code. 

Srivastava and Thiagarajan at Microsoft have developed a test prioritization system, Echelon 

[16], that prioritizes an application’s set of tests based on a binary code comparison. Echelon 

takes as input two versions of the program in binary form, and the test coverage information of 

the older version (a mapping between the test suite and the lines of code it executes). Echelon 

outputs a prioritized list of test sequences (small groups of tests). Although they have not 

published results of applying Echelon to components, in theory, the tool seems to be applicable 

to test selection for COTS components. However, Echelon is a large proprietary Microsoft 

internal product with a significant infrastructure and an underlying bytecode manipulation 

engine.  As will be discussed, I-BACCI is a lightweight, relatively simple process. 

2.3 Change identification 

A key step in choosing regression tests is applying impact analysis [13] to identify changes 

between the new release and the previously-tested version with the same source code base. 

However, most change identification approaches utilize the source code of the old and modified 

programs [9, 14, 17]. Although a comparison between versions of documentation (such as user 

manuals, specifications, and samples) is potentially helpful [10, 12], the documentation for 

COTS components may not reflect all changes, and the implementation may change without 

necessitating any documentation changes. 

Wang et. al. [18] developed the Binary Matching Tool (BMAT) which compares two versions of 

a binary program without knowledge of the source code changes. The implementation of BMAT 

is built on Windows NT® for the x86 architecture, using the Vulcan binary analysis tool [15] to 

create an intermediate representation of x86 binaries. The process enables good matching even 

with shifted addresses, different register allocations, and small program modifications [18]. 

BMAT was used by Echelon [16], which is discussed in Section 2.2, to match blocks in the two 

binaries. However, like Echelon, BMAT is a proprietary tool. We have developed a lightweight 

non-proprietary Trivial Identifier of Differences in BInary-analysis Text Zapper (TID-BITZ)
1
 

tool to perform the same function for I-BACCI. 

2.4 Firewall analysis 

Leung and White [1, 10, 11, 21] developed firewall analysis for regression testing with 

integration test cases (tests that evaluate interactions among components [7]) in the presence of 

small changes in functionally-designed software. Firewall analysis has been extended to object-

oriented systems and graphical user interfaces [8, 19, 20]. Firewall analysis is intended to limit 

regression testing to potentially-affected system elements directly dependent upon changed 

system elements [21, 22]. I-BACCI utilizes firewall analysis for RTS. 

Module dependencies, control-flow dependencies, and data dependencies are considered in 

firewall analysis [21]. Affected areas, including modified functions, structures, and functions that 

use them, are identified. Dependencies are modeled as call graphs and a “firewall” is drawn 

around the changed functions on the call graph. All modules inside the firewall are unit and 

integration tested, and are integration tested with all modules not enclosed by the firewall [21]. 

                                                 
1
 http://www4.ncsu.edu/~jzheng4/TID-BITZ/index.htm 
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Firewall methods can only be guaranteed to select all modification-revealing [14] tests and to be 

safe if all unit and integration tests initially used to test system components are reliable
2
. 

However, test suites are typically not reliable in practice [22], so the firewall technique may omit 

modification-revealing tests and/or may admit some non-modification-traversing tests. White 

and Robinson [22] have shown firewall to be effective despite these theoretical limitations via 

empirical studies of industrial real-time systems. These limitations thus should not impair the 

effectiveness of I-BACCI in practice. 

3. I-BACCI 

The I-BACCI process is an integration of the firewall analysis RTS method with our Black-box 

Approach for Component Change Identification (BACCI) process [24] for identifying change. 

The second version of the I-BACCI process involves six steps as shown in Figure 1. The inputs 

to the I-BACCI process, which feed into different steps, are shown in gray blocks in Figure 1. 

 

Figure 1:  I-BACCI Version 2 Regression Test Selection Process 

The first two steps are done via the BACCI process (in dash-dotted line frame), which produces 

a report on changed functions and the calling relationships among the functions in the 

components. The remaining four steps are currently done via manual firewall analysis (in dashed 

line frame), which requires the user functions, the full test suite for the user functions, and the 

                                                 
2
 Correctness of modules exercised by those tests for the tested inputs implies correctness of those modules for all 

inputs [14]. 
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output of BACCI. Steps 2, 3, and 4 can be performed concurrently. Each identified change is 

propagated to the roots of the call graph for the component, and all user functions that directly or 

indirectly call the changed function are identified for retesting. 

There are two sub-steps for the first step of the BACCI process: (1a) decomposing
3
 the binary 

files of the component; and (1b) filtering trivial information to facilitate comparisons by 

differencing tools. Prior to being distributed, component source code is compiled into files in 

binary code formats, such as .lib, .dll, .ocx, or .class files. Information on the data structure, 

functions, and function call relationships of the source code is stored in the binary files according 

to pre-defined formats, such as Common Object File Format (COFF)
4
 [24], so that an external 

system is able to find and call the functions in the corresponding code sections. 

The output of the first sub-step should be formatted conveniently for differencing tools to 

identify changes in functions between releases. The output of the second sub-step should be 

formatted conveniently for a graph generation tool to build call graphs. Often the first sub-step 

can be accomplished by parsing tools available for the language/architecture. For example, 32-bit 

COFF binary files can be examined by the Microsoft COFF Binary File Dumper (DUMPBIN). 

The DUMPBIN output is suitable for use as input to differencing tools. The second sub-step is 

frequently necessary because the output from the first sub-step may contain trivial information 

such as timestamps and file pointers, which are “noise” for the change identification. Generally, 

the second sub-step cannot be done via existing tools. Therefore, we have created the 

Decomposer and Trivial Information Zapper (D-TIZ)
5
 to perform the decomposition and remove 

trivial information. Currently D-TIZ can only be used with library (.lib) files, but it will be 

extended to handle all the component types, as will be discussed in future work. 

The second step of the I-BACCI process is to compare code sections between two versions. In  

I-BACCI Version 1, the output of D-TIZ was fed into the commercial differencing tool Araxis 

Merge
6
 to generate reports showing the changed functions. However, a large number of false 

positives were observed in I-BACCI Version 1, which increased the number of functions in the 

application that were identified for retesting. This could result in functions in the application 

being re-tested unnecessarily. Source code of the component was examined to determine the 

cause of the false positives. We found that a large amount of false positives were caused by the 

changes in registers used and addresses of variables/functions. Therefore, we have created TID-

BITZ to compare the code sections considering real code changes only. The algorithm used in 

TID-BITZ defines false positive patterns and ignores some changes of registers and addresses in 

the binary code sections. The algorithm can reduce many false positives but might miss real 

changed functions, i.e. introduce false negatives. The algorithm has evolved based upon 

examining the component source code and balancing false positives and false negatives. 

The third and fourth steps of the I-BACCI process produce function call graphs. The main 

difference between the two steps is that the input for Step 3 is the calling relationships among 

functions in a component, and the input for Step 4 is the user functions. Generally, the call 

graphs generated from Step 4 are less complex than those from Step 3. In Step 4 only the 

                                                 
3
 We use decomposition to refer to breaking up the binary code down into constituent elements, such as code 

sections and relocation tables. 
4
 MSDN Library - Visual Studio .NET 2003 

5
 http://www4.ncsu.edu/~jzheng4/D-TIZ/index.htm 

6
 http://www.araxis.com/ 
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exposed component functions and the user functions calling them need to be included in the call 

graphs. The call graph can be either represented by a data structure or drawn using graph 

generation tools such as GraphViz
7
. Currently the call graphs are drawn and analyzed manually, 

according to the calling relationships in the output of DUMPBIN. For convenience in identifying 

affected user functions, the call graphs generated from the two steps can be integrated. 

In the fifth step, the affected user functions are identified using directed graph theory 

algorithms. This change identification is currently done manually due to the lack of existing tool 

support. Analysis starts from each component function identified as changed, and that change is 

propagated along the call graphs from Step 4 until the user functions are reached. These are the 

user functions which are potentially affected by the initial changed function(s) in the component, 

and therefore need to be re-tested. 

The method discussed in the prior paragraph is especially suitable when there are only a few 

function changes in the new version of the component, but many user functions that directly call 

these functions. An alternative method can be used when there are only a few user functions and 

but many component function changes that directly call component functions. Analysis may start 

from the user functions and examine the component functions being called by them along the 

call graphs, until a changed component function is found or all the leaves are reached but no 

changed component functions are found. In the former situation, the initial user function is 

affected by the change in the component, so that it needs to be re-tested; the latter situation 

indicates the initial user function does not need to be tested. The output of Step 5 is a list of all 

affected user functions which need to be re-tested. 

In the sixth step, the set of test cases which are mapped to the user functions they cover are used 

to select test cases that cover only the affected user functions, as identified by the steps above. 

The I-BACCI process has the potential to reduce the set of regression test cases because it 

focuses on the affected user functions and ignores the unaffected areas in the user functions. 

4. Limitations of I-BACCI 

For use of I-BACCI, the licensing agreement of the COTS component must not preclude the 

analysis of the binary files. I-BACCI shares an acknowledged limitation with all existing source-

based firewall methods: the potential for reporting false negatives in situations where binary 

differences are due to factors other than changes in source code (e.g. build tools, environment, or 

target platform). Although I-BACCI does work with the binary files for the component, and such 

differences are potentially detectable from binary file comparisons, the current method of 

analysis precludes identification of such differences. 

The second limitation of I-BACCI is its potential for identifying false positives by assuming, in 

tracing the call graphs, that any uses of called functions with changed binaries will be affected by 

the change. However, an actual use of a changed function might never exercise the changed logic 

or data. With further development of I-BACCI, these unneeded tests may be eliminated from the 

regression suite. However, this limitation does not impact the current safeness of I-BACCI. 

Finally, I-BACCI requires (as input) test suites which are traceable to the user functions they 

cover, in order to perform RTS. 

                                                 
7
 an open source tool , http://www.graphviz.org/ 
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5. Case study 

An initial case study had been conducted on a 757 thousand lines of code (KLOC) ABB 

application written in C/C++, using a 67 KLOC internal ABB software component in library 

(.lib) files written in C. The result of the case study indicates that this process can reduce the 

required regression tests by 40% on average [23]. Some releases required no retesting, as no 

changes in the component affected the product using the component. Other releases appeared to 

require full retesting; however, TID-BITZ had not yet been created to reduce false positives. 

A second I-BACCI case study was conducted on a 40 KLOC ABB application written in C/C++. 

This product uses a 30 KLOC internal ABB software component in library (.lib) files written in 

C. Each component release contains eight libraries with total size of 5.1 ~ 5.8 megabyte. This 

software combination was chosen because (1) the numbers of test cases for each function of the 

application were available; and (2) multiple releases of the component were available. The full, 

retest-all strategy takes over four man months of effort to run. Five incremental releases of the 

component were analyzed and compared to study the effectiveness of the I-BACCI process at 

reducing regression test cases. 

The analyzer (the first author of this paper) first applied I-BACCI Version 1 to compare Releases 

1 and 2, and verify the change identification result using source code for the component for the 

releases. However, approximately 46% of the identified changes were false positives. To explore 

the cause of the false positives, the analyzer examined source code of the component, and the 

associated binary library files. The TID-BITZ tool was created to reduce the false positives and 

I-BACCI was promoted to Version 2 to include the use of this tool in Step 2. The analyzer then 

applied I-BACCI Version 2 on all four comparisons. The application source code was also used 

to analyze uses of the component functions and to draw call graphs for the interfaces between the 

user functions and the component. The results of the identified changes for all four comparisons 

and all call graphs for the components were verified by the analyzer, using source code for the 

component to determine the accuracy of the analysis post hoc. The reduction of test cases for 

each comparison was determined by the second author. 

5.1 I-BACCI Version 2 processing of library files 

The library files analyzed in the case study contain the raw binary code of many object files. 

They are organized in segments similar to the COFF file format [24]. The calling relationship 

among functions in the whole component can be ascertained by tracing the calls in the relocation 

tables throughout the library file. 

During the first step of the I-BACCI process, each library file in each of the five releases was 

translated into plain text using DUMPBIN. D-TIZ was used to scan the output of DUMPBIN, 

save the code sections of functions into separate files, and obtain the relocation table of each 

function. For the second step, the TID-BITZ tool was used to compare the functions among the 

five releases and to generate differencing reports. This change identification part of the case 

study was conducted on an IBM T42 laptop with one Intel® Pentium® M 1.8GHz processor and 

one gigabyte RAM. Completing the first step of the process with DUMPBIN and D-TIZ took 18 

seconds in total. TIDBITZ then spent about one second on each comparison and generating a 

simple differencing report. 

In the third, fourth, and fifth steps, call graphs were drawn for changed functions to identify the 

affected functions in the source code of the application by tracing the affected component 
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functions along the call graphs. Manually completing the three steps for the five versions 

compared took the analyzer approximately 24 person hours. Then, the second author received the 

list of all the affected functions in the application, verified the correctness of the change 

identification, and produced the numbers and percent reduction of the regression test cases 

needed, based on the original test suite. Future automation can reduce the time required for many 

of these manual steps. 

5.2 Results 

In this new case study, the proposed I-BACCI process was applied four times between five 

successively-released versions of the internal ABB component. The results are shown in Table 2. 

Table 2: Case Study Results with I-BACCI Version 2 

Comparisons Metrics 

1 vs. 2 2 vs. 3 3 vs. 4 4 vs. 5 

Total changed functions identified 388 1238 4 13 

True positive ratio
8
 99.46% 98.39% 100% 100% 

False positive ratio
9
 4.90% 6.14% 0% 7.69% 

Affected exported component functions 84 122 1 8 

% of reduced affected exported component functions 31.71% 0% 99.18% 93.44% 

Affected user functions in the application 38 59 1 6 

Percentage of reduced affected user functions 17.39% 0% 98.31% 89.33% 

Total test cases needed 151 215 11 20 

Percentage of reduced test cases 30% 0% 95% 91% 

 

The interfaces between the application’s user functions and the internal component were 

examined to establish a baseline of affected functions in the application. The user functions 

changed in Release 3. For the former version of user functions (i.e. in Release 2), there are 123 

exported functions in the component. In total, 46 user functions (in six C files) call 81 out of the 

123 exported functions of the component. In the worst case, all of the 46 functions would be 

affected by the changes in the component and would need to be re-tested. Similarly, at most 59 

user functions in the latter version would be affected. 

The first analysis was conducted between Release 1 and Release 2 of the component. The 

BACCI analysis showed that 388 functions were changed out of 1143 functions in Release 2. A 

source code difference analysis was performed which showed that 99.46% of the real changed 

functions in the source code were correctly identified and only two real changes were missed. 

Also, only 4.90% of the changes identified were not really changes. Firewall analysis showed 

                                                 
8
 True positives ratio is number of real changed functions found divided by total number of real changed functions. 

9
 False positive ratio is number of identified changed functions that are not really changes, divided by number of 

(correctly and incorrectly) identified changed functions. 
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that 84 exported functions in the component were affected by the identified changes and 38 user 

functions were affected. As a result, 30% regression test cases can be reduced. 

The second analysis comparing Release 2 and Release 3 determined that more than one thousand 

functions in the library were changed. The large number of changed functions would lead to a 

large amount of affected exported functions in the component. Therefore, the analyzer checked 

the user functions that called component functions. Unfortunately, all of these component 

function calls were identified as affected. Similar to the first analysis, approximately 6.14% of 

the component functions that were marked as “changed” by TID-BITZ were false positives. 

The third analysis identified only a few changes between Release 3 and Release 4. Four changes 

were correctly identified, and only one exported function in the component was affected by the 

identified change. One function in the application calls the only affected functions in the 

component. Therefore, we achieved 95% regression test case reduction. Similarly, the analysis 

between Release 4 and Release 5 showed that only 91% test cases need to be re-run, although the 

source code difference analysis showed that one of the changes identified was a false positive.   

I-BACCI can be very effective when there are small incremental changes between revisions. The 

TID-BITZ tool was able to reduce false positives to only 6% on average while still having a low 

false negative rate (about 1%). 

6. Conclusions and future work 

In this paper, we proposed the I-BACCI process for regression test selection for user/glue code 

that uses software components for which source code is not available. A medium-scale product 

and several versions of a library component used in that product were examined as a case study 

to verify the potential efficacy of this process. The results showed that a reduction in test cases 

can be effectively determined from a component using I-BACCI when no source code is 

available for analysis. I-BACCI can be very effective when there are small incremental changes 

between revisions. In the previous case study, there were times when releases required no 

retesting, as no changes in the component affected the product using the component. 

We plan to pursue several directions in our future work. First, we will conduct black-box testing 

for all tests to verify the results of our analysis, which will help determine the effectiveness of 

the RTS. Second, additional breadth is required to expand this process to adapt to all of the 

COTS file types. We plan to analyze more components in the various formats which can be 

examined by DUMPBIN, such as dynamic link libraries and executable files, as well as different 

component types such as the container/control model, in which user programs act as containers 

for third party controls. Third, a tool will be developed to generate the call graphs and automate 

the identification of affected functions, and the whole process should be automated into one tool 

to save both time and resources. Finally, in order to address the limitations of I-BACCI which 

are discussed in Section 4, we will explore other approaches, such as applying other code-based 

regression selection techniques, dynamic analysis techniques, and examining other available 

artifacts of COTS components. 
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