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ABSTRACT
Recently, improving the energy efficiency of HPC machines
has become important. As a result, interest in using power-
scalable clusters, where frequency and voltage can be dynam-
ically modified, has increased. On power-scalable clusters,
one opportunity for saving energy with little or no loss of per-
formance exists when the computational load is not perfectly
balanced. This situation occurs frequently, as balancing load
between nodes is one of the long standing problems in parallel
and distributed computing.

In this paper we present a system called Jitter, which re-
duces the frequency on nodes that are assigned less computa-
tion and therefore have slack time. This saves energy on these
nodes, and the goal of Jitter is to attempt to ensure that they
arrive “just in time” so that they avoid increasing overall ex-
ecution time. For example, in Aztec, from the ASCI Purple
suite, our algorithm uses 8% less energy while increasing exe-
cution time by only 2.6%.

1. INTRODUCTION
The tremendous increase in computer performance has come

with an even greater increase in power usage. As a result,
power consumption is a primary concern. According to Eric
Schmidt, CEO of Google, what matters most to Google “is not
speed but power—low power, because data centers can con-
sume as much electricity as a city” [30]. This does not im-
ply speed is not important, rather that excessive power limits
performance. Such a limit might exist due to either a limited
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power supply or a limited capacity to dissipate and remove
heat. Additionally, reducing the energy and cooling costs can
be a high priority. Regardless of the reason, a power constraint
is a performance-limiting factor.

As a result, power-aware computing has gained traction in
the high-performance computing (HPC) community. Recently,
low-power, high-performance systems have been developed to
stem the ever-increasing demand for energy. We are most in-
terested in clusters composed of microprocessors that support
frequency and voltage scaling. Such systems increase the en-
ergy efficiency of nodes at lower frequency-voltage settings,
which we term lower energy gears in this paper. This either
reduces the energy required to complete a task, or conversely
increases the number of tasks that can be performed with a
given amount of energy. Thus, one can dynamically adjust the
tradeoffs between performance and energy savings.

Previously, we have shown how to exploit this energy-time
tradeoff using a single frequency-voltage setting [16] as well
as multiple settings [15]. Both of these approaches primarily
attack the intra-node bottleneck, where the CPU is not on the
critical path. At such times, some other component (e.g., the
memory) is the bottleneck resource; therefore, reducing the
performance of the CPU saves energy with little performance
penalty.

This paper addresses the inter-node bottleneck, where at
least one of the nodes is not on the critical path. In other
words, some of the nodes arrive early at a synchronization
point, meaning that one or more (different) bottleneck nodes
determine program execution time. In such a situation, a non-
bottleneck node will wait for a message (or other event) from
another node, which wastes energy. As an analogy, consider a
car speeding between stop lights. Because a traditional micro-
processor has only one gear, which uses full power and pro-
vides the maximum performance, it must race between meta-
phorical stop lights. With frequency scaling, a node can shift
into a reduced power and performance state so that computa-
tion is potentially completed just in time for the unblocking
event—i.e., arriving just as the light turns green.

In this paper, we present a dynamic, adaptive system for
just-in-time performance scaling, called Jitter. Our system
interposes itself between an application and the MPI library,
making it generally transparent to both the application and

1



Gear Frequency Voltage
(MHz) (V)

0 2000 1.5
1 1800 1.4
2 1600 1.3
3 1400 1.2
4 1200 1.1
5 1000 1.0
6 800 0.9

Table 1: Frequency-voltage pairs for Athlon-64.

MPI. It monitors the time a program waits for external events
and then uses dynamic voltage scaling—meaning that it dy-
namically adjusts the CPU frequency (and voltage)—to min-
imize wait time and energy consumption. (See Table 1; for
convenience, in the remainder of this paper we describe this as
simply varying the frequency.)

The Jitter system saves 8% energy, with a 2.6% time penalty,
on a unbalanced program, and it does this without modification
to the application or the communication library. Furthermore,
our system is within 5% of the hand-tuned (“optimal”) solu-
tion. Additionally, we show that our solution adapts to changes
in load, which a hand-tuned solution cannot do.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work, and Section 3 describes the Jit-
ter implementation. Next, Section 4 describes performance
results on a wide variety of benchmarks. Finally, Section 5
summarizes this paper.

2. RELATED WORK
There has been a voluminous amount of research performed

in the general area of energy management. The closest work
to ours comes from the real-time community, where the goal is
to meet a given deadline while running each task at the lowest
possible energy gear. One example is in [45], where an ap-
proach to slack sharing in multiprocessor real-time systems is
presented. Another is [46], which extends this work to handle
AND/OR graphs.

In the rest of this section, we describe work in more general
areas of energy management, including both server/desktop
and mobile systems. In addition, there has been a significant
amount of work on dynamic load balancing, which is relevant
because the difficulty of balancing load dynamically gives rise
to our Jitter system.

2.1 Server/Desktop Systems
Several researchers have investigated saving energy in ser-

ver-class systems. The basic idea is that if there is a large
enough cluster of such machines, such as in hosting centers,
energy management can become an issue. Chase et al. [8] il-
lustrate a method to determine the aggregate system load and
then determine the minimal set of servers that can handle that
load. All other servers are transitioned to a low-energy state.
A similar idea leverages work in cluster load balancing to de-
termine when to turn machines on or off to handle a given
load [35, 36]. Elnozahy et al. [13] investigated the policy in
[35] as well as several others in a server farm. They found

that when each node independently sets its voltage, the perfor-
mance was almost as good as more complicated schemes that
required coordination between server nodes. Such work shows
that power and energy management are critical for commer-
cial workloads, especially web servers [6, 29]. Additional ap-
proaches have been taken to include dynamic voltage scaling
(DVS) [12, 38] and request batching [12]. The work in [38]
applies real-time techniques to web servers in order to con-
serve energy while maintaining quality of service.

Our work differs from most prior research because it fo-
cuses on HPC applications and installations, rather than com-
mercial ones. A commercial installation tries to reduce cost
while servicing a highly-variable stream of client requests. On
the other hand, an HPC installation exists to speedup an ap-
plication, which is often regular and predictable. One HPC
effort that addresses the memory bottleneck is given in [23];
however, this is a purely static approach.

In server farms, disk energy consumption is also significant.
Much work has been done on saving disk energy, including
reducing spindle speed [7], modulating the speed of the disk
energy [19, 20], improving cache performance so that the disk
can be kept in a low power state more often [47], and using
program counter techniques to infer the disk access pattern
[17]. In addition, there are schemes to aggregate disk accesses,
which again allows the disk to be kept in a lower power state
more often; one of these uses an integrated compiler/run time
approach [21], and the other uses prefetching [33].

Our work is complementary to techniques that save disk en-
ergy. Specifically, while the disk can consume a non-trivial
amount of power in HPC applications, the CPU is typically
a much larger power consumer. Moreover, unlike the CPU,
disks with more than one power-performance setting (i.e., gear)
are not yet commercially available. Therefore, we focus solely
on scaling the CPU.

There are also a few high-performance computing clusters
designed with energy in mind. One is BlueGene/L [1], which
uses a “system on a chip” to reduce energy. Another is Green
Destiny [40], which uses low-power Transmeta nodes. A re-
lated approach is the Orion Multisystem machines [32], though
these are targeted at desktop users. The latter two approaches
sacrifice performance in order to save energy by using less
powerful machines.

Finally, our prior work was an evaluation-based study that
focused on exploring the energy/time tradeoff in the NAS suite
[16]. Specifically, we found that using a single slower gear
was in some cases able to save energy with little time delay.
We also found a significant benefit to using multiple gears per
iteration (varying the gear per phase), and developed an algo-
rithm for choosing the assignment of gear to phase [15].

2.2 Mobile Systems
There is also a large body of work in saving energy in mo-

bile systems; most of the early research in energy-aware com-
puting was on these systems. Here we detail some of these
projects.

At the system level, there is work in trying to make the OS
energy-aware through making energy a first class resource [39,
11, 9]. Our approach differs in that we are concerned with
saving energy in a single program, not a set of processes. One
important avenue of application-level research on mobile de-
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vices focuses on collaboration with the OS (e.g., [42, 44, 2]).
Such application-related approaches are complementary to our
approach.

In terms of research on device-specific energy savings, there
is work in the CPU via dynamic voltage scaling (e.g., [14, 34,
18]), the disk via spindown (e.g., [22, 10]), and on the mem-
ory or network (e.g., [28, 26]). The primary distinction be-
tween these projects and ours is that energy saving is typically
the primary concern in mobile devices. In HPC applications,
performance is still the primary concern.

2.3 Dynamic Load Balancing
There has been a large volume of work in load balancing

in parallel programs. It should be noted that application pro-
grammers themselves often employ a specific load-balancing
scheme. Here, we focus on runtime system techniques to bal-
ance the workload. A few of these include shared-memory
systems such as SUIF-Adapt [31] as well as MPI-based ones
such as Adaptive MPI [5, 27], Dyn-MPI [41], and Tern [24].

The important point here is that dynamic load balancing,
whether it is employed at the application or system level, de-
creases the need for Jitter. However, many applications are
at least somewhat resistant to dynamic load balancing; this is
proven by the fact that the balancing must be done repeatedly
throughout the lifetime of the application. In any case, Jitter
could be integrated with the load balancing systems to gain
information about the estimated amount of work per node.

3. JITTER IMPLEMENTATION
The general idea behind our implementation is to exploit a

node that is not on the critical path. Such a node completes its
work and idles waiting for a message from another node. With
just-in-time (JIT) scaling, this node executes at reduced perfor-
mance and completes its work just before the message arrives
from the remote node. Ideally, with JIT scaling, the reduction
in performance does not increase application completion time.
This is the case as long as the node executing at a reduced gear
finishes its computation before the bottleneck node.

In this paper we assume iterative programs, which comprise
the vast majority of scientific programs; furthermore, we as-
sume that the iterations are relatively stable. This allows us
to use past behavior to predict future behavior. There can be
hundreds of compute-communicate bursts per second. Thus,
reacting on a per-burst basis is too fine-grain. Therefore, our
model aggregates all bursts in an iteration together, rather than
monitoring and reacting to each individually. To do this Jitter
uses the notion of slack, defined as the sum of individual wait
times for each burst in the iteration divided by the time of the
iteration.

It is important to note that modern OSs such as Linux are al-
ready power-aware in that they issue a HALT instruction send-
ing the CPU into a reduced power state during idle/wait pe-
riods. A trivial improvement possible in a scalable cluster is
to shift to the lowest gear before issuing the HALT. However,
this change adds a latency to transition into and out of the low
gear due to the HALT, which can take more than 1 millisec-
ond on our AMD. As there are many compute-communicate
bursts per iteration, this latency can swamp any possible im-
provement.

We have created an implementation of just-in-time scaling
called Jitter. The implementation is within a layer beneath the

application that interacts with MPI, so that it is independent of
any particular application. There are several items that Jitter
must determine:

• the iteration boundaries,
• the net slack of each node,
• when to reduce the performance,
• when to increase the performance,
• when to remain in the same gear, and
• when to reset algorithm parameters.

We describe each of these in turn.

3.1 Determining the Iteration Boundaries
Currently, we manually insert a special Jitter MPI call, MPI -

Jitter, at the top of the main loop in the program; however, this
is easily automated [25]. Such a loop must exist, as we are
assuming iterative programs. When iterations are too short,
Jitter limits the overhead by waiting several iterations before
MPI Jitter takes action. The current implementation combines
iterations until the time exceeds half a second. Jitter performs
several actions in MPI Jitter, which are described next.

3.2 Determining the Net Slack
Slack in Jitter is determined as follows. First, to determine

wait time, we use our MPI-jack tool, which is an interface that
exploits PMPI [37], the profiling layer of MPI. MPI-jack en-
ables a user transparently to intercept (hijack) any MPI call.
A user can execute arbitrary code before and/or after an in-
tercepted call using pre and post hooks. In this work, we use
MPI-jack to determine the time spent in blocking MPI calls,
such as MPI Recv, MPI Wait, and MPI Barrier. The pre hook
records the time the routine began. The post hook records
when it ends, computes the wait time, and updates the node’s
overall wait time.

Second, we then compute the absolute or gross slack as the
ratio of the wait time divided by the iteration time. The global
minimum slack among all nodes is determined using a reduc-
tion (MPI Allreduce). Then the node’s net slack is computed
as the difference between its slack and the global minimum
slack.

Net slack, rather than absolute slack, is used for two rea-
sons. First, the amount of slack can vary widely between dif-
ferent applications. For example, in the NAS suite average
slack varies from less than 10% to over 90%. Second, the
amount of slack can vary widely among nodes within an ap-
plication and in practice is never zero on any node (because it
is highly unlikely that any single node is always last to arrive
at a large number of communication calls within an iteration).

3.3 When to Reduce Performance
Jitter reduces a node’s performance if there is enough net

slack. The Jitter prototype uses the following relationship to
determine whether there is enough slack to reduce the gear:

net slack > S · dg → enough slack.

The term S is the base slack threshold. It represents the amount
of net slack needed to reduce the gear. We have tuned S over
several applications, and currently choose S between 10 and
20%. Because a user must define S, Jitter is not completely
transparent. Future work will develop techniques to derive S
dynamically, which will make Jitter completely transparent.
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While net slack is better than gross slack at identifying a
bottleneck node, it is not enough. If Jitter chooses to reduce
and it turns out to be a bad choice (which is learned when
the node later increases performance, as described below) the
threshold to reduce again is raised. This threshold increase is
captured in the term dg , which we call the downshift factor.
Each time a node reduces from gear g it increases dg using
the formula dg = dg ∗ bias. Through experimentation, we
found that bias = 2 and initial dg = 1 works well for all
applications. We have not found that the benchmarks are very
sensitive to the bias value; however, further experiments are
ongoing.

3.4 When to Increase Performance
Each node determines if it is a bottleneck node according to

the following relationship.

net slack < α · S/ug → bottleneck node.

The term α, explained below, defines the initial range in which
the gear remains the same and must be less than 1. We use
an upshift factor, ug , that is similar in spirit to the downshift
factor above. It is adjusted each time there is an increase in
performance using bias in the same way as dg . This lowers
the threshold slack required to shift up.

Because there is always at least one bottleneck node every
iteration, being a bottleneck node is not a sufficient condition
for increasing performance, for two reasons. First, a node can
be a bottleneck in a lower gear without slowing down the com-
putation. This happens when there is another node that is as
slow or slower but is in the top gear. Second, there is vari-
ance in the times between iterations even in the best situation.
Therefore, some conditions are transient and we do not want
Jitter to react to them. Consequently, a bottleneck node will
increase its performance if either of the following conditions
hold: (1) the iteration time has increased, and the node re-
duced its gear on the previous iteration, or (2) the node has
been a bottleneck for three consecutive iterations.

3.5 When to Remain in the Same Gear
Jitter remains in the same gear if it chooses not to reduce

or increase, as described above. Initially, this range is αS <
net slack < S, because upshift and downshift factors are ini-
tialized to 1. The more the algorithm shifts gears, the larger
this range is, due to the biasing of the upshift and downshift
factors. Thus the algorithm tends to stabilize. We use α = 0.5
in our tests, but it could be a user-provided parameter. How-
ever, this simplifies use and has little adverse effect on Jitter’s
performance.

3.6 When to Reset Algorithm Parameters
In addition the above three standard actions (reduce, in-

crease, remain), there is a the fourth, extraordinary action,
which is to reset the algorithm parameters. This action is trig-
gered by a dramatic change in the iteration time. Currently,
a reset occurs if the time between adjacent iterations changes
by 50% or more. The reset is not because of a problem within
Jitter, but rather because because the application has changed
in a significant way. (Jitter only otherwise changes by a single
gear per iteration, which is not likely to cause a large change
because frequencies change by 20% or less between adjacent
gears.) None of the tested NAS or ASCI benchmarks algo-

Time (s) Energy (KJ)
Full 64.8 44.4

Hand-tuned 65.0 (0.3%) 38.6 (-13.1%)
Jitter 66.5 (2.6%) 40.9 (-7.9%)

Reduced 67.1 (3.0%) 40.6 (-8.5%)

Table 2: Aztec results

rithms causes a reset; however, we force a reset with our syn-
thetic benchmark (see the next section).

4. RESULTS
This section present our results. First, we describe our method-

ology. Next, we show the benefits of Jitter on imbalanced ap-
plications. Then, using a synthetic benchmark, we show the
full capabilities of Jitter. Last, we show that Jitter does not
slow down a program unnecessarily when its load is balanced.

4.1 Methodology
Our experimental platform is a cluster of 10 frequency- and

voltage-scalable AMD Athlon-64s. Its available operating points
are in the range of 800–2000MHz and 0.9–1.5V, see Table 1
in Section 1. Each node has 1GB main memory, a 128KB L1
cache (split), and a 512KB L2 cache, and the nodes are con-
nected by 100Mb/s network. In this paper, we vary the CPU
power and measure overall system energy. Although there are
other components, throttling the CPU is effective in saving en-
ergy because the CPU is a major power consumer. In particu-
lar, the Athlon-64 CPU used in this study consumes approxi-
mately 45–55% of overall system energy.1

The programs we studied included two of the ASCI Purple
benchmarks [3] as well as all of the NAS suite [4]. Presum-
ably, such mature benchmarks have been thoroughly analyzed
and are well-written (e.g., see [43])—so some work has been
done to balance the computational load. Therefore, well-tuned
programs like those in ASCI and NAS should result in an ap-
proximate lower bound in terms of saving energy due to load
imbalance. We used as many nodes as possible on each test;
this number is typically 8, though BT and SP run on 9 nodes.

For each program we measure execution time and energy
consumed. Execution time is elapsed wall clock time. Total
system power consumed by each node is measured by Watts-
Up power meters at the wall outlet, which are connected to the
serial port their respective node. These meters report average
power consumption (in Watts) since last queried. Each node
reads its associated meter every second and integrates power
over time to determine the energy it consumes.

4.2 Non-uniform Loads
This section shows the results of two benchmark programs

that have load imbalance. The first one, Aztec, is a parallel
iterative solver for sparse linear systems from the Purple suite.
Table 2 shows results for Aztec using four different methods.

1CPU power is not measured directly. However, the system
power at the fastest energy gear is 90–120 W. While the AMD
datasheet states that the absolute maximum CPU power dis-
sipation is 89 W, these benchmarks do not run that hot. We
estimate the peak power of the CPU for our application is in
the range of 40–50 W.
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Figure 1: Gears for each node for each iteration in Aztec.

All results are the average of at least 3 runs, with little vari-
ance. The first method is Full power, where all nodes exe-
cute in top gear (2000MHz). It is used as the baseline. The
next uses a hand-tuned set of per-node gear settings. Using
the slack on each node at Full as a guide, we tested many
solutions to find the “best.” Because we are biasing towards
performance, the goal was to save as much energy as possi-
ble while allowing only small performance impact, which we
somewhat arbitrarily define as less than 2.5% increase in time.
While our search was not exhaustive, it was extensive. The
third method is Jitter, where all nodes begin in top gear and
dynamically shift according to the algorithm described in Sec-
tion 3. In the last method (Reduced), every node executes at
1800MHz—performance is reduced by one gear. This method
serves as another baseline.

The hand-tuned run saves 13% energy with no time penalty.
Each node executes in a single, but possibly different gear: one
node runs in top gear (node 4), four in 1800MHz (nodes 1, 2,
3, and 5), and one each in the next three gears. (Frequency
is used to name the gear, but both frequency and voltage are
scaled.)

The Jitter run takes more time than Full, but saves nearly
8% energy. As expected, it does not save as much energy as
the hand-tuned method. The primary reason for this is that the
gears selected by the algorithm are higher than in hand-tuned.
Five of the nodes execute more than half of the iterations in
top gear. The secondary reason is the cost of constantly shift-
ing gears, as it takes Jitter a handful of iterations to determine
a solution. During this time it continually refines the gear set-
tings. Note that Aztec is the least stable of all benchmarks—
e.g., it still shifts to some extent after 50 iterations—which we
believe is likely typical of a production application than the
other benchmarks.

The four nodes that execute at 1800MHz in the hand-tuned
case execute at 2000MHz in Jitter. Jitter mis-predicts this gear
because the slack varies due to constant gear shifting. This
variance causes these nodes to shift back to top gear. They
often reduce performance again, but will eventually shift back
to top gear. Each time through this cycle it becomes harder
to reduce due to the increasing downshift factor dg (see Sec-
tion 3). Our goal of favoring performance over energy forces
these nodes into the top gear. Nevertheless, Jitter performs
well. It is possible to extract better numbers from Jitter by
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Figure 2: Gears for each node for each iteration in
Sweep3d.

tuning the parameters to optimize it for Aztec; however, this
paper presents a more general usage of Jitter.

Figure 1 shows the gears per node per iteration for Aztec.
It shows a single, representative run. Because there are more
nodes than gears, the lines overlap significantly. At the end
there are 5 nodes that execute at 2000MHz (nodes 1–5). Node
7 reduces one gear each iteration down to 1000MHz, where it
remains for the duration of the program’s execution. Node 0
predominantly executes at 1200MHz and node 6 at 1400MHz.

The second program that shows load imbalance is Sweep3d,
which is also a Purple benchmark. Sweep3d solves a time-
independent discrete geometry neutron transport problem in
3-dimensions. Table 3 shows the results. In the hand-tuned
method two nodes, 6 and 7, are in 1800MHz, while the rest
are in top gear. There is essentially no time penalty for hand-
tuned. Even with this little difference from full performance,
there is a noticeable energy savings.

Figure 2 shows the gears used by Jitter in Sweep3d. Be-
cause the application iteration length is about 0.1 seconds, Jit-
ter takes action only every 5 iterations; therefore, the figure
plots every 5 iterations. It stabilizes much more quickly than
Aztec, reaching stability within 50 iterations (10 Jitter itera-
tions). After iteration 50, the nodes are in the same gears as
hand-tuned. Before that, 4 different nodes reduce to 1600MHz,
two of which climb back to top gear. Overall, 89% of the time
Jitter is in the same gear as hand-tuned, and only 2% of the
time are any nodes more that one gear away from hand-tuned.
Therefore, Jitter performs nearly the same as hand-tuned.

4.3 Synthetic Benchmark Results
This section presents results from a synthetic benchmark,

which was created to fully exercise Jitter. It is an iterative
PDE solver, where we added (artificial) parameters that make

Time (s) Energy (KJ)
Full 26.2 19.1

Hand-tuned 26.3 (0.3%) 18.1 (-5.3%)
Jitter 26.3 (0.3%) 18.1 (-5.3%)

Reduced 28.2 (7.0%) 17.9 (-6.3%)

Table 3: Sweep3d results
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Figure 3: Gears for each node for each iteration in syn-
thetic benchmark with stable, non-uniform load.

Time (s) Energy (KJ)
Full 80.0 55.1

Hand-tuned 80.1 (0.1%) 47.5 (-13.8%)
Jitter 80.8 (1.0%) 48.3 (-12.4%)

Reduced 88.6 (10.7%) 54.8 (-0.1%)

Table 4: Synthetic benchmark results

the amount of load per node configurable. Essentially, each
node does an customized amount of work each iteration. Then
it sends data to each of two neighbors and executes a barrier.

Figure 3 (on page 6) shows gears for each node. In this
example, each node has an increasing amount of work, so node
0 has the least work and node 7 the most. Through separate
experimentation, we determined these loads so that each node
should select a different gear. (Because there are only 7 gears,
0 and 1 should select the same gear).

Table 4 shows the overall results. As expected, when using
Jitter, there is significant energy savings and little time penalty.
Jitter is nearly the same as the hand-tuned case because it sta-
bilizes quickly to the same gear assignments as hand-tuned.

Figure 4 shows the slack for each node. There is a large
spread initially, from almost zero to nearly 80%, but this range
rapidly compresses. Node 0, which has half as much load as
node 1, still has a significant amount of slack. However, five
nodes have less than 10% slack. There is spike at iteration 12
that we cannot explain. Apparently, all communication takes
longer in this iteration. Every node’s total wait time increases
about the same amount (15ms). This spike is seen in every
run (but different iterations) of the synthetic benchmark for
all methods and every run of MG (from the NAS benchmark
suite). These are the only programs that have several nodes
with less than 10% slack. It is possible that there is a transient
delay in the network that programs with more slack are able to
absorb, which is why we do not see spikes in other programs.

Figure 5 shows the energy consumed by each node for the
three methods. The less loaded nodes use significantly less en-
ergy when using Full because Linux issues a HALT instruction
during idle. The figure shows that the most energy is saved in
these lower loaded nodes. Importantly, for this program, Jitter
achieves nearly the same results as the hand-tuned method.
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The next test shows that Jitter can adapt to a changing work-
load. The work assigned to each node changes at iteration 17.
Initially, the work is assigned as above, with 0 having the least
and 7 the most. In the second, half the workload distribution
is reversed with 0 having the most and 7 the least. Figure 6
shows the gears selected at every iteration. Because node 0
is in the slowest gear and it has a large increase in work, it-
eration 18 takes a long time (5 seconds instead of 2 seconds).
This causes a reset. After that the algorithm acts as before,
only the nodes select gears in a “mirror-image” fashion. In
Full this test takes 77.5 seconds and consumes 56.8 KJ. Jitter
is 4.1% slower, but uses 11.1% less energy.

4.4 Uniform Loads
This section presents the performance of the NAS bench-

mark suite. Most of the NAS programs have well-balanced
workloads, with the exception of CG. Therefore, generally
speaking, the actions taken by Jitter should be to choose a
uniform gear vector. In other words, we perform these tests
primarily to ensure that Jitter does no harm to the application
when the load is balanced.

We first discuss BT, LU, and MG (see Table 5). For these
programs, the hand-tuned version is on average 0.6% slower
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Figure 6: Gears for each node for each iteration in syn-
thetic benchmark with unstable, non-uniform load.

than Full and saves an average of 0.8% energy. Those numbers
for Jitter are 1.0% and 0.6%, respectively. Clearly, both hand-
tuned and Jitter perform similarly to Full, which justifies that
Jitter does not adversely affect load balanced applications.

Finally, we consider the cases of CG, IS, and SP. For CG,
both hand-tuned and Jitter save significant energy with a small
time penalty. Essentially, the reason for the impressive perfor-
mance of CG is because it is highly memory bound, as indi-
cated by the performance of Reduced. This result is consis-
tent with our previous results that studied exploiting the intra-
node bottleneck [16]. Nevertheless, Jitter and hand-tuning are
able to take advantage of the small amount of load imbalance
present.

For IS and SP, there is a large amount of slack time, but
it is constant over all nodes. Hence, the net slack is zero on
all nodes, so Jitter takes no action. Note that in this case, the
hand-tuned version reduces the gear such that all nodes exe-
cute in first gear (1800 MHz). IS and SP represent programs
that do not have an inter-node bottleneck because the load is
well balanced. We have different techniques, that leverage the
memory bottleneck, to save energy in such cases [15].

5. CONCLUSION
In this paper we have designed and implemented a system

we call Jitter, which leverages inter-node bottlenecks in MPI
programs to save energy. The basic idea behind Jitter is to ex-
ploit slack time spent by nodes at synchronization points by
reducing the energy gear on those nodes, which in turn signif-
icantly reduces the consumed energy. Jitter is designed so that
nodes will arrive at a synchronization as close as possible to
“just in time”, so that there will be little or no execution time
increase.

Performance results showed that Jitter saves as much as 8%
energy, with as little as a 2% time penalty, on a unbalanced
program. Furthermore, it has almost no effect on programs
that it cannot help—ones where the load is already balanced.
We believe that as scientific applications become more com-
plex and adaptive, making it more difficult to balance the load,
the usefulness of Jitter will only increase.
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