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Abstract. We introduce an adaptive framework for multivariate sensor stream 
data reduction. The proposed method takes as input a sliding window of multi-
variate stream data, classifies the data in each window, and chooses reduction 
strategies that are most appropriate for the window. In the classification step, it 
discretizes the stream data into a string of symbols that characterize the signal 
changes and then applies classification algorithms to classify the transformed 
sensor stream data. In the second step, depending on the classification labels 
assigned to each window, it applies most appropriate data reduction techniques 
and reduction ratios to the window. For classification, we considered super-
vised methods including Naïve Bayes Model and SVM, and unsupervised 
methods including Jaccard, TFIDF, Jaro and JaroWinkler. For data reduction, 
we compared Wavelet, Sampling, SVD and Hierarchical clustering. In our ex-
periments, SVM and TFIDF outperformed the other classification methods and 
SVD and Sampling showed the best result in data reduction. 

1   Introduction 

A typical wireless sensor network (WSN) consists of small battery-powered wireless 
devices and sensors. Conserving battery power on such devices is crucial to improve 
the life span of a WSN. Among many operations that a sensor node performs, trans-
mitting data among sensor nodes typically consumes the most energy. Many data 
reduction techniques and approximate data representation methods have been pro-
posed to address this problem [1, 2, 3, 4]. In most realistic sensor network scenarios, 
sensors naturally generate multivariate data streams. However, most previous re-
search has not focused on addressing problems with multivariate stream data. More-
over, different strategies for storing and transmitting data may need to be applied 
depending on the types of applications that run on the network and types of data that 
the network generates (e.g., long-term monitoring such as sea level change vs. intru-
sion detection).  
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Different sensor network applications generate different types of data and have dif-
ferent requirements for data processing. The three broad areas of sensor network 
applications include environmental monitoring, object tracking, and object guarding 
[5, 6, 7]. Examples of environmental monitoring are flood detection, home applica-
tion and habitat monitoring. Long-term data analysis with low frequency data type is 
usually used in this application. Examples of object tracking include vehicle tracking, 
military applications and SCM (Supply Chain Management), and it has characteristics 
of both high frequency and multivariate data types. Examples of object guarding are 
emergency medical care, intrusion detection and earthquake risk assessment. These 
applications require a real-time monitoring of outliers and detection of abnormality. 
Such application specific requirements and data characteristics need to be considered 
when we evaluate techniques for sensor network data processing. Moreover, even for 
the same application, different strategies may need to be adaptively applied as the 
characteristics of data changes. For example, in a network monitoring application, 
users may want to receive only 5% samples of original data when network operates 
normally, while they might want to receive full data for further analysis when an 
interesting pattern (e.g., similar to a predefined intrusion pattern) is detected. The 
ability of handling sensor data adaptively based on the characteristics of data becomes 
important for such applications. 

In order to address this problem, we propose an adaptive framework for sensor 
data processing that works in two steps as follows. In the first step, it takes as input a 
sliding window of multivariate stream data and classifies the data in each window 
assigning labels that best describe the data in the window. In the second step, it 
chooses a data processing strategy appropriate for the window based on the classifica-
tion. In particular, in this work, we evaluated the proposed framework in the context 
of sensor data reduction for storage and transmission. Given the classification, the 
proposed framework applies different reduction strategies for different windows.  

For classifying multivariate stream data, the proposed method first discretizes the 
stream data into a string of symbols that characterize the signal changes, and then 
applies classification algorithms to classify the transformed sensor stream data. This 
transformation simplifies the classification task significantly and allows us to use 
various existing classification algorithms based on string and vector distance models. 
The classification model is learned from a user-labeled data. Users assign a descrip-
tive label to each window in the training set. For example, if the sensor data in a win-
dow contains an intrusion pattern, the user labels the window as “intrusion”. Simi-
larly, if a window contains normal signals, it can be labeled as “normal”. Once the 
classification model is built, the classifier can now take a new window of data and 
predict if the window contains “intrusion” or “normal” signals. Based on the classifi-
cation, the proposed method adaptively applies different reduction strategies that are 
prescribed by the user. Users can instruct the system which reduction algorithm is to 
be used for a window with particular label and how much reduction error is allowed 
for such window.  

For classification, we considered supervised methods including Naïve Bayes 
Model and SVM, and unsupervised methods including Jaccard, TFIDF, Jaro and 
JaroWinkler. For data reduction, we compared Wavelet, Sampling, SVD and Hierar-
chical clustering. We identify the contributions of our work as follows: 



1. In order for fast pattern matching, we discritized the continuous sensor streams 
into a string of symbols characterizing signal changes. In order to allow partial 
matches and to retain temporal locality of patterns, we chunked the symbol strings 
into various lengths of n-gram style words. This representation gives rise to vari-
ous well studied string and vector-space classifiers. 

2. Due to the resource constraints and the unbounded nature of data in sensor net-
works, data reduction is crucial for both efficient storage and transmission. Multi-
variate data reduction techniques have different performance characteristics for 
different data types and sizes. We evaluated the performance of reduction methods 
using data with various waveforms and different parameters such as frequency, DC 
level and random noise. 

3. The proposed adaptive framework and the classification model can be utilized for 
the sensor network querying and monitoring in general. It enables the real-time 
monitoring of continuous sensor data and facilitates the personalized reporting of 
monitored events. By the same token, it can also be used for the analysis of histori-
cal data stored in a data warehouse in a server node. Using the method, we can 
serve ad-hoc queries such as finding windows with data similar to the input pattern 
as well as the classification of historical data. 
The rest of the paper is organized as follows. Section 2 introduces the background 

of the work. Section 3 describes our multivariate data stream classification methods. 
Section 4 compares the data reduction methods. Section 5 presents experimental re-
sults and Section 6 presents concluding remarks. 

2   Related Work  

In our problem context, sensor data is an unbounded multivariate time series data. 
Multivariate time series data classification methods were studied in [8, 10, 11, 12] 
including On-demand Classifier [10], HMM (Hidden Markov Models) [11], RNN 
(Recurrent Neural Network) and Dynamic Time Warping [11]. These methods in-
volve large numbers of parameters that need to be tuned. Due to the dynamic nature 
of sensor network environment and its diverse types of applications, the applicability 
and effectiveness of these specialized solutions, designed and tuned for particular 
tasks, is not immediately clear for the sensor network applications. 

On the other hand, many well-studied general purpose classifiers exist that works 
for string and vector-space models, including Bayesian classifiers [15], Support Vec-
tor Machines (SVM) [16] and string-distance based methods [17]. In our proposed 
approach, we transform the multivariate continuous time series data into a list of 
symbols characterizing the signal changes. This transformation allows sensor data to 
be viewed as a sequence of words consisting of the symbols, giving rise to such gen-
eral purpose classifiers. 

As for the data reduction techniques, [2, 3, 4] studied data aggregation and ap-
proximate data transmission between sink nodes and base stations (refer to Fig. 1). 
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Fig. 1. Overview of real-time data analysis in wireless sensor networks 

Many different techniques have been proposed such as clustering, wavelet, histo-
gram, regression, aggregation, sampling, principal component analysis (PCA) and 
singular value decomposition (SVD). Aggregation is an effective way to get a synop-
sis (avg, max, min), but is rather crude for applications that need detailed historical 
information [3, 4]. Spectral models such as discrete wavelet transform (DWT), dis-
crete fourier transform (DFT) and discrete cosine transform (DCT) are tuned for time 
sequences, ideally with a few low-frequency harmonics, but it is ineffective under the 
multi-dimensional attributes [9, 19]. Sampling has a good overall performance, but is 
sensitive to the changes in data distribution [15, 19]. 

Depending on the types of applications that a sensor network is running and the 
types of data the application is generating, different reduction techniques may have to 
be employed. In this work, we introduce a framework that adaptively chooses differ-
ent reduction strategies based on the classification of the data in each window. The 
techniques surveyed in this section were evaluated in the context of this adaptive 
framework. 

3   Multivariate Stream Data Classification 

3.1   Preprocessing Step 

In a hierarchically organized sensor network as shown in Fig. 1, a sensor node 
represents a collection of heterogeneous sensors collocated in the same geographical 
location. Each of these sensors monitors or detects different target objects or events. 



The sensor data generated from such a sensor node collectively forms a multivariate 
data stream. Each sensor node temporarily accumulates the sensor data and periodi-
cally sends it to the parent node in the upper layer. The parent node then collects data 
transmitted from children nodes and either relays it up to the chain (e.g., from gate-
way node to sink node), or store them in the repository or feed them to the application 
for further processing (server node). Data reduction is typically considered in the 
transmission between the sink node (Fig. 1) and the base station because the size of 
data aggregated from children nodes can be large and depending on the applications 
often times the large, exact original data is out of favor to the compact approximate 
summarization. Data reduction may also be considered in the server node where all 
the sensor data is eventually stored for a long-term analysis of historical sensor data.   

Fig. 2 shows the preprocessing step for our multivariate data classification. In this 
step, the continuous sensor stream is transformed into the combinations of discrete 
symbols which represent signal changes such as upward (U for steep inclination and 
u for moderate inclination), downward (D for deep and d for moderate) or stable (S) 
for a given time interval (tk – tk-1). This transformation greatly reduces the complexity 
of the raw data while retaining the structure of the time series data. For fast trend 
analysis and pattern matching, we use a hierarchical piecewise linear representation 
[13] and n-gram model [15] which together can represent various different types of 
multivariate stream data. In this paper, we used the five character shapes (U, u, D, d, 
and S) as shown in Fig. 2(a). All the attributes in a window can be represented as in 
Fig. 2(b) using the hierarchical piecewise linear representation.  

We extended the original hierarchical piecewise linear representation, which splits 
the original patterns into a set of disjoint sub-patterns, with n-gram based sliding-
window pattern chunking in order to support partial matches and to preserve the or-
derings between the sub-patterns.  
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Fig. 2. The preprocessing step in multivariate data classification 



Fig. 2(c) shows an example of n-gram based chunking (we use the term n-shape to 
refer to this technique). Moreover, in order to improve the classification accuracy, we 
exploit the inter-dependency structure that exists among the sensors (e.g., light and 
temperature), as illustrated in Fig 2(d). We added the symbols representing the pair-
ings of sensors that have a strong correlation (we used 0.6 as a threshold) into the list 
of transformed n-shape symbols as shown in the last row of Fig. 2(c). For example, if 
sensor a1 and a2 are correlated we add a word, “a1a2 ”, to the shape list.  Once the 
data is transformed, we can simply treat them as a string of words and apply text 
classification algorithms to classify the data. In what follows, we will describe the 
details of the classification algorithms that we considered in our framework. 

3.2   Supervised methods 
NBM (Naïve Bayes Model): Bayesian classifiers are statistical classifiers and have 
exhibited high accuracy and speed when applied to a large database [15]. This tech-
nique chooses the highest posterior probability class using the prior probability of 
training data set. In this paper, input data is n-dimensional vector which consists of 
shape sequence for each attribute and correlation values. An example of input data is 
{e.g., Uu, uDDs, , etc.}. In the training phase, it learns the prior probability dis-
tribution such as, P(

1 2a a
uD | class " intrusion")= and 1 2P( a a | class " normal")= , from the 

training data. In the test step, for each unlabeled window, a posterior probability is 
evaluated for each class , as shown in (1). The test data is then assigned to class  
for which 

iC iC

iP( C | X )  is the maximum. 

i i
i

P( X | C )P( C )P( C | X )
P( X )

= , where  
1

n

i k
k

P( X | C ) P( x | C )
=

=∏ i (1) 

 
SVM (Support Vector Machine): This method is one of the most popular supervised 
classification methods. SVM is basically two-class classifier and can be extended for 
the multi-class classification (e.g., combining multiple one-versus-the-rest two-class 
classifiers). In our model, each window is mapped to a point in a high dimensional 
space, each dimension of which corresponds to a shape or a correlation pair. The 
coordinates of the point are the frequencies of the shapes and correlation coefficients 
of the correlation pairs in the corresponding dimensions. SVM learns, in the training 
step, the maximum-margin hyper-planes separating each class. In testing step, it clas-
sifies a new window by mapping it to a point in the same high-dimensional space 
divided by a hyper-plane learned in the training step. For experiments, we used the 
Radial Basis Function (RBF) kernel [16], ( )2 0i ix y

i iK( x ,y ) e ,γ γ− −= > . The soft margin 
allows errors during training. We set 0.1 for the two-norm soft margin value. 



3.3   Unsupervised Methods 
String-based Distance: This scheme measures the distance between two strings in 
order to measure the similarity. We can obtain the best matching class by comparing 
the shape and correlation feature vectors of each known class with that of input data. 
Among many possible distance measures, we used two token-based string distance 
(Jaccard and TFIDF) and two edit-distance-based ones (Jaro and Jaro-Winkler) that 
were reported to give a good performance for the general name matching problem in 
[18]. We briefly describe the metrics below. For details of each metric, refer to [17]. 

Table 1. Terms for string-based distance 

Name Descriptions Name Descriptions 
x , y  Shape and correlation for 

each sensor attribute. 
x ,yCC All characters in x  common with 

 y

xC  All characters of x . xT  All shape list for x . 

x ,yX  # of transpositions of char in x  relative to  y

 
Using the terms of Table 1, the four metrics (2-5) can be defined as follows. 

Jaccard ( x , ) = y x y

x y

T T

T T

∩

∪
 (2) 

TFIDF ( x , ) =y ( ) ( )
x y

xw T T
V w,T V w,T

∈ ∩
× y∑ , where 

( ) ( ) ( )

( ) ( )( )
1

1
y

' y

w
x w,T

w,T ww

log IDF
V w,T log TF

log TF log IDF
= + ×

+ ×∑
(symmetrical for ( )yV w,T ), 

is the frequency of w in , and 
xw,TTF xT wIDF  is the inverse of the fraction of 

names in a corpus containing . w

(3) 

Jaro ( x , ) = y 1
3 2

x ,y y ,xx ,y CC ,CCx,y y ,x

x y x ,y

CC XCC CC
C C CC

⎛ ⎞−
⎜ ⎟× + +
⎜ ⎟
⎝ ⎠

 (4) 

Jaro-Winkler ( x , ) = y ( ) ( ) ( )( )4
1

10
max L ,

Jaro x, y Jaro x, y+ × − , where L is the 

longest common prefix of x and  y
(5) 

4   Multivariate Data Reduction Techniques 

In section 3, we introduced our multivariate data stream classification methods. In our 
framework, depending on the classification, we adaptively apply different reduction 



strategies that are appropriate to the given window. In this section, we describe vari-
ous reduction techniques that we considered for our framework.  
 
DWT (Discrete Wavelet Transformation): DWT is a linear signal processing tech-
nique using a hierarchical decomposition function. DWT is closely related to the DFT 
(Discrete Fourier Transform) and performs well with a low frequency data type. It 
will not perform well if the input signals have spikes or abnormal jumps [9, 15, 19].  
The hierarchical pyramid algorithm is generally used for halving the data at each 
iteration. DWT is generally fast (  for an input vector of length n) and requires 
only a small amount of space.  

( )O n

HCL (Hierarchical Clustering): Clustering can be used for data reduction as a group 
of similar objects in a cluster can be replaced with a single centroid. In particular, we 
used hierarchical clustering method. This method uses the greedy, bottom-up ap-
proach, and constructs hierarchical clusters using single, average and complete-
linkage method [15].  
Sampling: Different types of sampling can be applied such as reservoir sample [19], 
cluster sample and stratified sample. An advantage of sampling for data reduction is 
that the cost of obtaining a sample is proportional to the size of the sample. The com-
plexity of sampling is potentially linear and we can easily control sampling rate ac-
cording to the error ratio.  
SVD (Singular Value Decomposition):  SVD is a powerful technique in matrix com-
putation and analysis (e.g., solving systems of linear equation, pattern recognition, 
data compression and matrix approximation) [20], which is defined as follows:  

Given an m  real matrixn× X , we can express it as TX U V= ∑ where and V  
are column-orthonormal matrices containing left and right principal components 
(their column vectors), is a diagonal matrix containing singular values in a decreas-
ing order. Singular values capture the variation of the input data along the direction of 
corresponding principal components. Hence, smaller singular values and their corre-
sponding principal components typically represent the noise in the data. Using only k 
largest components and singular values, we can compute a matrix 

U

∑

'X  which is a best 
rank-k approximation of the original matrix X . In our framework, thus, only top-k 
components and singular values are retained for transmission and storage.  

5   Experimental Results 

5.1   Data Set 

In our experiment, we used six different time series data obtained from [21] and syn-
thetic stream data generated using a synthetic stream generator [26]. Fig. 3(a) shows 
an example of data from [21] which consists of the six different classes of control 
patterns (Normal (a), Cyclic (b), Increasing trend (c), Decreasing trend (d), Upward 
shift (e), Downward shift (f)).  Fig. 3(b) shows a stream generated using the stream 
generator. We created five synthetic data sets using the stream generator. Each data 
set is created applying the different combinations of parameters including waveform 



(one of sine, cosine, square, triangular and saw-tooth), frequency (in Hz), DC level 
and random noise. 
  

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(a) Six different time series data 
 

(b) Random waveform generator 

Fig. 3. Data set: SCCTS and digital signal generator 

5.2   Classification: Accuracy measure 

We performed k-fold cross-validation in order to evaluate the accuracy of each classi-
fication method. For the k -fold cross-validation, an input data set (S) is randomly 
partitioned into k mutually exclusive subsets (S = {S1,S2,…,Sk}) of equal size. Train-
ing and testing is performed k times. In iteration i, the subset Si is reserved as the test 
set, and the remaining subsets are collectively used to train the classifier. The accu-
racy of the classifier is then the overall number of correct classifications from the k 
iterations, divided by the total number of samples in the initial data.    

The result of experiments is shown in Fig 4. Fig 4(a) shows the accuracy of the six 
classifiers discussed in Section 3 using only the n-shape tokens and not considering 
the correlation tokens (see Fig 2(c).) Fig 4(b) shows the result using both types of 
tokens. Different lengths of shape tokens are compared. For example, “3-shape” in 
the x-axis represents the classifications using only shape tokens up to length three 
(i.e., 1-3 shapes). 
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Fig. 4. Accuracy comparison (number of shapes and correlations between attributes) 



As expected, the accuracy was gradually improved as longer shape tokens were 
taken into consideration. The longer tokens are likely to capture more temporal local-
ity of patterns. The accuracy was generally higher when the correlation tokens were 
used along with the shape token. Noticeable improvements were observed in 3 and 4-
shape experiments as shown in the figure. 

Comparing supervised and unsupervised methods, supervised methods (NBM and 
SVM) were more accurate than unsupervised methods. SVM showed the best per-
formance among the tested methods. Among the unsupervised methods, classifiers 
using token-based string distance metrics were more accurate than the ones using 
edit-distance metrics. For this experiment, we used the classification library and 
package provided by [22, 23]. 

5.3   Data Reduction: Data Type vs. Error Ratio 

Different reduction methods may have different performance characteristics over 
different types of data. In our adaptive framework, we choose the best reduction strat-
egy for each window according to the classification result for the window. To be able 
to choose appropriate methods for a particular class, we need to know which reduc-
tion method performs well on the windows of which class. Our adaptive framework 
learns such associations by evaluating different reduction methods over the training 
dataset. The evaluation result is presented in Fig 5. In the experiment, we compared 
the four reduction methods discussed in Section 4. The algorithms were implemented 
using the standard algorithms provided by [24, 25].  

The first graph (top left) shows the execution times of each method. Sampling was 
the best performer in this test for the obvious reason, while DWT was the worst. The 
remaining three graphs show the performance of the methods in terms of the amount 
of information lost during the reduction. We used the following metric to measure the 
relative error (σ ) incurred by the reduction. 

µ
F

F

A A

A
σ

−
= , where ( )

1
2 2

ijF ij
A a= ∑  (7) 

where A  is the original matrix and µA  is the approximation of A  recovered (decom-
pressed) from the reduction of the original matrix. For example, µA  can be computed 
by the interpolation of samples if sampling was used. If SVD was used, µA  can be 
computed by multiplying left and right top-k principal components scaled by the 
singular values.  

The second graph (top right) shows the relative errors of the four methods when 
applied to a data set with low frequency streams. In this test, HCL, Sampling, and 
SVD were generally good while Sampling slightly outperformed the others. The third 
graph (bottom left) shows the result with high frequency data sets. Unlike the previ-
ous test, in this test, SVD clearly outperformed the others especially for the large 
windows. The last graph (bottom right) shows the result with data contains both high 
and low frequency streams. While SVD was slightly better than DWT and Sampling, 
the three performed equally well. For windows of this type of data, any of the three 
can be equally effective.  
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Fig. 5. Comparing data reduction methods (data types vs. error ratio) 

6   Conclusions 

In this paper, we proposed an adaptive framework for sensor network data classifi-
cation and reduction. For classification, we employed the hierarchical piecewise lin-
ear representation to transform the continuous sensor streams into a discrete symbolic 
representation, which allows us to choose a classifier from a large pool of well-
studied classification methods. We tested four different data reduction techniques 
over a set of input data with different data characteristics. SVM performed the best in 
our classification test while SVD and Sampling were the best performers in the reduc-
tion test. 

References 

1. D. Barbara, and W. DuMouchel, et al.: The New Jersey Data Reduction Report, Data Engi-
neering Bulletin (1997) 

2. P. Furtado, and H. Madeira.: Analysis of Accuracy of Data Reduction Techniques. In 
DaWak (1999) 



3. A. Deligiannakis, Y. Kotidis, and N. Roussopoulos.: Compressing Historical Information in 
Sensor Networks. In ACM-SIGMOD (2004) 

4. A. Deligiannakis, Y. Kotidis, and N. Roussopoulos.: Hierarchical in-Network Data Aggrega-
tion with Quality Guarantees. In EDBT (2004) 

5. A. Mainwaring, and J. Polastre, et al.: Wireless Sensor Networks for habitat monitoring. In 
WSNA (2002) 

6. B. Xu, and O. Wolfson.: Time-Series Prediction with Applications to Traffic and Moving 
Objects Databases. In MobiDE (2003) 

7. R. Cardell-Oliver, and K. Smettem, et al.: Field Testing a Wireless Sensor Network for 
Reactive Environmental Monitoring. In ISSNIP (2004) 

8. Y.Chen, and G. Dong, et al.: Multi-Dimensional Regression Analysis of Time-Series Data 
Streams. In VLDB (2002) 

9. F. Korn, H.V. Jagadish, and C. Faloutsos.: Efficient Supporting Ad Hoc Queries in Large 
Datasets of Time Sequences. In ACM-SIGMOD (1997) 

10. C. C. Aggrawal, J. Han, and P. S. Yu.: On Demand Classification of Data Streams. In KDD 
(2004) 

11. M. W. Kadous and C. Sammut.: Classification of multivariate time series and structured 
data using constructive induction. Machine Learning Journal (2005) 

12. P. Geurts.: Pattern Extraction for Time Series Classification. PKDD (2001) 
13. Xianping Ge.: Pattern Matching in Financial Time Series Data. In Final Project Report for 

ICS 278 UC Irvine (1998) 
14. R. Agrawal, G. Psaila, E. L. Wimmers, and Mohamed Zait.: Querying Shapes of Histories. 

In VLBD (1995) 
15. J. Han, and M. Kamber.: Data Mining Concepts and Techniques. Morgan Kaufmann Pub-

lishers (2000) 
16. N. Cristianini, and J. Shawe-Taylor.: An Introduction to Support Vector Machines. Cam-

bridge University Press (2000) 
17. W. W.Cohen, P. Ravikumar, and S. Fienberg.: A Comparison of String Distance Metrics 

for Naming-matching tasks. In IIWEB (2003) 
18. B.W. On, D.W. Lee, J.W. Kang and P.Mitra.: Comparative Study of Name Disambiguation 

Problem using a Scalable Blocking-based Framework. In JCDL (2005) 
19. M. Garofalakis, and P. B. Gibbons.: Approximate Query Processing: Taming the Tera-

bytes! In VLDB Tutorial (2001) 
20. G. Strang.: Introduction to Linear Algebra, 3rd Edition, Wellesley-Cambridge Press (1998) 
21. Hettich, S. and Bay, S. D.: The UCI KDD Archive [http://kdd.ics.uci.edu]. Irvine, CA: 

University of California, Department of Information and Computer Science (1999) 
22. A Library for Support Vector Machines: http://www.csie.ntu.edu.tw/~cjlin/libsvm 
23. SecondString (Jave-based Package of Approximate String-Matching): http://secondstring. 

sourceforge.net 
24. JAMA: A Java Matrix Package: http://math.nist.gov 
25. Multivariate Data Analysis Software: http://astro.u-strasbg.fr/~fmurtagh/mda-sw/ 
26. FFT Spectrum Analyser: http://www.dsptutor.freeuk.com/analyser/SA102.html 


