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Abstract 
 
Privacy legislation in the United States is distributed throughout separate documents that 

empower different federal authorities to regulate industry. Federal authorities in turn develop 
corresponding regulations intended to ensure that organizations satisfy legislative objectives. 
Organizations in regulated industries (e.g. healthcare and financial institutions) face significant 
challenges when developing policies and systems that are properly aligned with relevant privacy 
regulations. We analyze privacy regulations derived from the Health Insurance Portability and 
Accountability Act (HIPAA) that affect information sharing practices and consumer privacy in healthcare 
systems. Our analysis shows specific natural language semantics that formally characterize rights, 
obligations, and the meaningful relationships between them required to build value into systems. 
Furthermore, we evaluate semantics for rules and constraints necessary to develop machine-enforceable 
policies that bridge between laws, policies, practices, and system requirements. We believe the results of 
our analysis will benefit legislators, regulators and policy and system developers by focusing their 
attention on natural language policy semantics that are implementable in software systems. 

 

1. INTRODUCTION 
Legislation in the United States, including the Health Insurance Portability and Accountability 

Act (HIPAA)1 and the Gramm-Leach-Bliley Act (GLBA)2, establishes high-level objectives to protect 
both commerce and consumer privacy. These objectives describe administrative responsibilities for 
federal regulators who respond by issuing standards, recommendations and rules intended to implement 
legislation in a regulatory framework. Standards establish minimum or baseline performance expectations 
for the activities of governed parties. Recommendations, or guidelines, encourage governed parties to 
better meet legislative objectives while providing freedom to accommodate unforeseen circumstances. 
Finally, rules, which may be either standards or guidelines, express how to satisfy objectives by 
associating context-sensitive information with pre-conditions, effects, or constraints.  

Companies seeking to achieve legal compliance must (a) ensure that their company policies 
comply with legal regulations (e.g., standards and recommendations) and (b) guarantee that their business 
processes and operational systems implement their policies. Non-technical stakeholders (e.g. corporate or 
executive officers, policy analysts and lawyers) interpret these legal regulations in the context of their 
organizations and develop their organizational policies accordingly. In response, technical stakeholders 
(e.g. information technology (IT) managers and system administrators) interpret organizational policies to 
configure and deploy software systems that support the organization’s overall business processes.  

Ensuring that regulations and organizational policies are properly aligned to satisfy federal law is 
a significant challenge. Baumer et al. have observed that healthcare professional perceptions of the 
misalignment between law, policies and practices with regards to HIPAA are problematic [BEP00]. They 
found that healthcare professionals are concerned that system-based protections that restrict access to 

                                                      
1 Health Insurance Portability and Accountability Act of 1996, 42 U.S.C.§1320. 
2 Gramm-Leach-Bliley Act of 1999, 15 U.S.C. §§ 6801- 6809. 



 

 

patient medical records for both medical and non-medical purposes are not satisfactory. Mercuri further 
highlights the corresponding technical challenge proposed by HIPAA [Mer04];  she identifies 
organizations that are falling back on traditional general security frameworks such as the ISO Common 
Criteria [ISOCC] given the lack of new frameworks targeted at HIPAA compliance standards. 

Deploying operational software systems that comply with legislation requires technical 
stakeholders to understand regulations in such a way that compliance can be guaranteed in the systems 
they implement. To this end, we are investigating and modeling regulatory semantics to support the 
development of a policy language that can codify law, policies, and system requirements that are properly 
aligned.  Our prior work in analyzing Internet health care [AE04, AEV05] and financial [AEB04] privacy 
policies provides a foundation for this work. These studies yielded  over 1,200 unique, semi-structured 
goal statements that were extracted from over 100 Internet privacy policies using a technique called goal 
mining (the extraction of goal statements from texts during content analysis) [AER02, AE04].   We then 
specified formal semantic models that distinguish goals as either rights or obligations; we refer to this 
specification process as semantic parameterization [BA05a, BA05b]. Rights are activities that people or 
systems are permitted to do while obligations are activities that people and systems must do. Semantic 
models have properties that are desirable for comparing and disambiguating policy statements, 
regenerating natural language policy statements, and answering specific what?, where?, how? and why? 
questions. 

In this paper, we present our most recent study in which we conducted an in-depth analysis of the 
Health Insurance Portability and Accountability Act (HIPAA). Employing our experience in applying 
semantic parameterization to goal statements, in this paper we apply semantic parameterization to the 
HIPAA Fact Sheet [HFS], to develop formal rule semantics that can bridge the gap between natural 
language privacy policies and technical system policies.  Furthermore, we validate our observations by 
cross-referencing our results with the HIPAA Privacy Rule [HPR] from which the Fact Sheet was 
originally derived. Our analysis reveals that certain keywords in regulatory text are indicative of 
compliance rules and constraints for both people and systems. In addition, we discuss the relevance of 
these semantics to existing privacy policy languages and note the importance of balancing specific rights 
with obligations to ensure that rights and obligations both have value. We believe the results our analysis 
can help legislators, regulators and policy and software developers focus their attention on developing 
language with machine-enforceable semantics. 

The remainder of this paper is organized as follows. In section 2 is an overview of the relevant 
related work and background to our previous research experience with analyzing privacy policies. Section 
3 describes the organization of our case study. In section 4, we present the natural language patterns 
identified in our analysis that correspond to rights, obligations and constraints. In section 5, we generalize 
our observations to describe formal semantics for rules and constraints. Finally, in section 6 we discuss 
the relevance of our work to the privacy community with our summary and future work in section 7. 

2. RELATED WORK AND BACKGROUND 
2.1 Related Work 

Several strategies have been proposed to derive formal models from the full scope of natural 
language (English), including conceptual dependencies [SH72] and conceptual graphs or semantic 
networks [SO84]. However, processing the full scope of natural language is excessive for analyzing 
privacy legislation. In privacy legislation, interesting natural language statements are limited to what tasks 
people and systems are entitled (rights and permissions) or obligated (responsibilities or requirements) to 
perform in order to satisfy legislative objectives. In addition to rules governing business processes, these 
statements include functional and non-functional system requirements. Within the limited scope of 
analyzing legislation, approaches include deriving first-order logic models [SSK86, She87, ABM98, 
KL03] and conceptual models using the Unified Modeling Language (UML) [EGB01]. 

First-order logic as a modeling notation provides sound and complete proofs of domain-specific 
properties. Generally, each variant of first-order logic provides certain benefits and limitations. In Section 
5.2, we show that arithmetic operations are required to evaluate constraints from policy statements, yet 



 

 

these expressions are not decidable in first-order logic. However, it is still worth considering the strengths 
and weaknesses of logic-based models, since they uniquely describe the representational challenges to-
date. Sergot et al. use deontic logic to model the British Nationality Act (BNA) of the United Kingdom 
[SSK86]. Deontic logic provides semantics for describing rights and obligations. They found that 
transcribing correct uses of negation from the BNA to logic were not straightforward and that 
counterfactual conditions within a single rule are prone to subjective interpretation. Sherman modeled the 
Canadian Income Tax Act in Prolog [She87] in which he noted difficulty representing time and events in 
a model based on first-order logic. Sherman’s model was also limited to absolute temporal relations 
between an event and a specific date and time. We show the additional need to specify time periods and 
relative temporal relations between events; both are specifications independent of calendar time. 
Alternatively, Antonious et al. explore the use of defeasible logic in analyzing and reasoning about 
regulations [ABM98]. Defeasible logic allows prioritizing rules so that the highest priority rule fires 
unaffected by lower priority rules and they highlight its use in resolving logical inconsistencies. Finally, 
Kerrigan and Law describe the REGNET system developed for regulatory compliance assistance and 
tested in the domain of environmental law [KL03]. REGNET supports the user by managing cross-
references, regulation subtexts and XML associations between regulation subtexts and simple logic rules. 
The system provides compliance assistance by checking the consistency of logic rules across subtexts. 

An alternative to logic-based approaches includes the work by van Engers et al. called POWER 
that uses the UML and Object Constraint Language (OCL) to model legislation for the Dutch Tax and 
Customs Administration [EGB01]. The UML provides general semantics for visual classification and 
aggregation while OCL can express logical conjunctions, disjunctions and arithmetic operations. Unlike 
our approach which seeks to produce a machine-independent but enforceable policy language, their work 
is oriented towards code generation. Furthermore, our work is motivated by grounded-theory in which our 
language semantics are developed by analyzing the semantics of domain-relevant legislation and 
regulations [GS67]. 

Apart from the analysis of legal texts, formal languages are emerging to represent privacy 
policies and rules including the Platform for Privacy Preferences (P3P) [P3P] with the P3P Preference 
Exchange Language (APPEL) [APPEL] and the Enterprise Privacy Authorization Language (EPAL) 
[EPAL]. Ragawal et al. provide a thorough evaluation of APPEL in which they expose a design flaw 
making the expression of privacy preferences error-prone and ambiguous for the user [AKS03]. 
Stufflebeam et al. provide a comparative evaluation of P3P and EPAL whereby they instantiate these 
policy languages using real-world privacy policies [SAH04]. They discover semantic limitations in both 
languages wherein the natural language policies prescribe temporal constraints on events that the policy 
languages were not designed to express. Recently, the Oasis Standard XACML 2.0 [XACML] was 
adopted that includes a Privacy Policy Profile which assigns purposes to data types and data access. 
Limitations of XACML in the domain of privacy policies are discussed in section 6. For these reasons, we 
believe the semantics for a machine-enforceable policy language must be carefully developed by 
analyzing relevant legislation and existing privacy policies. 

2.2. Background 
Because the full scope of natural language can be overly complicated, we focus our attention on 

the subset of natural language necessary to encode rights, permissions, and obligations. Semantic 
parameterization transforms restricted natural language statements (RNLS) into unique and comparable 
semantic models. The semantic models are formally represented by a context-free grammar called the 
Knowledge Transformation Language (KTL) that has been used to compare and query policy statements 
and generate natural language policy statements from semantic models [BA05b]. An Eclipse plug-in 
supports composing KTL expressions, querying such expressions to answer open-ended questions, and 
generating natural language. Semantic parameterization has been validated using a database of over 1,200 
policy goals [BA05a]. In that evaluation, we identified a need to formally represent numerical ranges, 
cardinal numbers and temporal relationships which we now address in this work. To date, the breadth of 
the natural language subset supported by KTL has been sufficient to describe actors and objects and their 



 

 

roles in a variety of activities, however, we still require an in-depth evaluation of rules and constraints 
necessary to specify system requirements and machine-enforceable policies. 

Restricted natural language statements (RNLS) are useful to derive semantic models since they 
reduce the complexity commonly found in unrestricted natural language. RNLS(s) reduce complexity by 
describing exactly one activity but allowing for external references to other RNLS(s). In the unrestricted 
statement UNLS #1, the main activity “providers may charge patients” is re-stated in RNLS #1 but with 
the nested activities “providers copy records” and “providers send records” externalized into RNLS #2 
and #3. When formulating RNLS(s), the implicit actors must be made explicit as seen in RNLS #2 and #3. 
Additional unstated information often becomes obvious and stating such information externalized 
RNLS(s) will inevitably clarify and disambiguate the meaning of the original statement. 

 
UNLS #1: Health care providers may charge patients for the cost 

of copying and sending their records. 
 
RNLS #1: Health care providers may charge patients for the cost 

of (RNLS #2) and (RNLS #3). 
RNLS #2: Health care providers copy patient records. 
RNLS #3: Health care providers send patient records. 

 
Semantic models represent information using a unary root relation and two binary, asymmetric 

relations: the associative and declarative relations. The root relation identifies the main idea in an 
expression. The associative relation is used to build conceptual relations between two concepts while the 
declarative relation is used to assign concepts to these conceptual relations. The operands for all relations 
are restricted to a single part of speech. For example, activities found in RNLS(s) are represented using an 
activity model that defines the following associated relations: α(activity, actor), α(activity, action), 
α(activity, object). Using this model, we can decompose RNLS #2 for example into the following 
declarative relations: δ(actor, health-care-provider), δ(action, copy), δ(object, patient-record). Finally, 
the root relation is used to distinguish the activity as the main idea σ(activity). The activity model with a 
actor, action and object is a simple example with more sophisticated examples found in earlier work 
[BA05a, BA05b]. 

The Knowledge Transformation Language (KTL) provides semantics for combining the set of 
formal relations that describe a semantic model into a single expression. The operators in KTL were 
designed to maintain a correspondence with simple natural language sentences. For example, the 
associative relations α(C, Pi) for an arbitrary concept C and parameters Pi for 1 ≤ i ≤ n is expressed in two 
ways: 1) using set-associative operators (curly brackets) for a set of parameters such as C { P1 P2 … Pn } 
which reads “C has Pi” or 2) for a single parameter using the reverse-associative operator (a colon) such 
as Pi : C which reads “Pi of C”. The declarative relation δ(Pi, Cj) for an arbitrary concept Cj for 1 ≤ j ≤ m 
and parameters Pi is also expressed in two ways: 1) using the declarative operator (equals) for a logical 
set of concepts such as Pi = C1 & (C2 | … Cm) which reads "Cj is Pi" or 2) using the reverse-declarative 
operators (square brackets) for a logical set of parameters such as Cj [ P1 & (P2 | … Pn) ] which reads "Cj 
that is Pi". Valid semantic models always maintain these correspondences with simple natural language. 
For the complete context-free grammar describing full KTL see Appendix A. As a more sophisticated 
example, the KTL expression describing the sum of relations for RNLS #1, #2 and #3 are provided below: 
 

activity [ right : health-care-provider ] { 
 actor = health-care-provider 
 action = charge 
 object = patient 
 target = (cost : activity { 
  actor = health-care-provider 
  action = copy 



 

 

  object = patient-record 
 } & cost : activity { 
  actor = health-care-provider 
  action = send 

   object = patient-record 
  }) 
 } 

 
Semantic models support queries that ask what, where, how and why questions. Queries are either 

Boolean questions in that they ask very specific questions yielding a yes or no response or they are wh-
questions which are open-ended queries yielding values from semantic models. The query algorithm 
matches values in a semantic model against query variables that are normal identifiers prefixed by a 
question mark. For example, the query that asks the question “Who may charge patients and for what 
costs?” is represented in KTL as follows: 

 
activity [ right : ?whom ] { 
 action = charge 
 object = patient 
 target = cost : ?what 
} 

 
Queries provide the foundation for building more advanced applications. The template method for 
generating natural language policy statements is one such application [BA05b]. As we discuss in Section 
5, we foresee queries playing a key role in constraints and the pre-conditions of rules in a machine-
enforceable policy language. Finally, throughout our analysis, the incremental and structured 
representations provided by RNLS(s) and semantic models made it easier for us to recognize the 
necessary semantics to formalize rules and constraints from natural language regulatory text. 

3. ANALYZING PRIVACY LEGISLATION 
In the United States, the “law” is fairly complex since it is distributed across many documents 

that can both supersede and extend each other. In addition, the law is constantly evolving through court 
decisions based on real-world events. The legislative lifecycle begins with a congressional document such 
as the Health Insurance Portability and Accountability Act passed by the U.S. Congress in April 2000. 
Federal regulators, directed by such legislation as HIPAA, then develop regulations for governing the 
behavior of individuals and organizations. In the case of HIPAA, two important regulations were adopted 
by the U.S. Department of Health and Human Services (HHS) including the HIPAA Security Rule [HSR] 
and the HIPAA Privacy Rule [HPR]. The Security Rule specifies a number of physical and electronic 
safeguards that in general will increase the security of protected health information systems. In contrast, 
the Privacy Rule describes context-sensitive rights and obligations affecting information sharing practices 
that are required to protect individually identifiable health information. Finally, to assist with public 
consumption of the law, regulators (e.g., HHS) also provide various Fact Sheets targeted at specific 
interest groups (e.g., patients, hospitals, insurers) that attempt to address the most pertinent questions 
from each group’s unique perspective.  

For this study, we analyzed the following HIPAA-related documents: 
 

• Fact Sheet: Protecting the Privacy of Patients’ Health Information” [HHS04] 

• HIPAA Privacy Rule: Section 160, Subparts C, E and Section 162, Subparts E [HPR] 

In order to address the diversity of documents and their relative importance, we designed our case 
study to be formative with the purpose of identifying additional semantics for representing formal policy 
rules. The Fact Sheet was prepared by the HHS to define rights and obligations established in the HIPAA 
Privacy Rule. The Fact Sheet is more amenable to analysis than the rule because it results from an effort 



 

 

that includes “answers to hundreds of common questions about the rule as well as explanations and 
descriptions about key elements of the rule” [HHS04]. The Fact Sheet was written to comply with law 
while highlighting information most relevant to consumers and patients in a reader-friendly document. An 
important difference is the Fact Sheet excludes a complex matrix of cross-references distributed through 
the original Privacy Rule. Our analysis of the Privacy Rule shows a total of 439 cross-references across 
22 sections of the rule with a maximum 71, mean 19.9, and median 17 cross-references. In addition, 38 
cross-references referred to non-HIPAA documents. Each cross-reference qualifies the meaning of the 
containing statement by referring to a definition or statement in another section or more rarely in another 
document. Finally, the HIPAA Privacy Rule has eighteen times more words than the Fact Sheet, making 
the fact sheet a reasonable introduction for a formative study.  

The analysis procedure that we applied to the Fact Sheet is described in three steps which were 
repeated throughout that document: 1) identify a natural language statement that expresses rights, 
permissions, or obligations; next apply semantic parameterization to the statement to 2) derive semantic 
models for the actors, actions, and objects of each statement and 3) derive rules with pre-conditions and 
effects built from temporal constraints that interrelate individual semantic models. The two applications 
of semantic parameterization both produce reusable natural language patterns that make the process more 
consistent and hence repeatable.  

Applying the semantic parameterization process to the entire Fact Sheet yielded encodings for 15 
rights, 19 obligations and 12 rules. In addition, several reusable patterns were identified including seven 
patterns for rights, seven for obligations and nine for rules. These patterns are presented in Section 4. The 
process required 11 person hours; the first author spent only 4 hours initially with an additional 7 hours 
spent by both the first and second authors collaborating. Finally, we indexed the original Privacy Rule 
using the twenty-three patterns to validate our observations of these patterns in the original regulation text. 

4.  PATTERNS FOR RIGHTS, OBLIGATIONS AND RULES 
The natural language patterns correlate unique word sequences with specific parts of speech (e.g., 

modals, verbs, prepositions) to rights, obligations and rules. The patterns for encoding rights and 
obligations are similar because they all identify a primary actor, action, and some relationship to other 
objects or activities. The patterns for encoding rules more frequently coincide with the patterns for 
encoding obligations than those for encoding rights. In the following examples, an actor is either a 
provider of health-related services or products or a consumer or patient. 

4.1. Patterns for Rights (R) 
Rights define what an actor is allowed to do in terms of their capabilities. For example, an actor, 

such as a patient, may be capable of “seeing” their medical records however they may not have the 
expressed right to perform this activity. The following seven natural language patterns were identified 
that consistently encode rights: 
 

R1: <actor> should/may be able to <verb> … 
R2: <actor> may <verb> … 
R3: <actor> can/could <verb> …  
R4: <policy> permits <actor> to <verb> … 
R5: <actor> would not have to <verb> … 
R6: <policy> does not restrict… <actor> … 
R7: <policy> does not require <actor> … 

 
Among the seven patterns, three cases are highlighted. The most general case includes patterns R1, 

R2 and R3 where a right is expressly stated for a particular actor or group of actors. In this case, the 
modalities “should,” “may,” and “can” suggest that the actor has both the capability and the right to 
perform the action (a verb). In the Fact Sheet, the first case represented by pattern R1 appears in the 
following statement S1: 
 



 

 

S1: Patients generally should be able to see and obtain copies of their 
medical records… 

 
In S1, the “patient” is the actor and their rights include the actions (both verbs) to “see” and “obtain” 
copies of their medical records. The patterns for R2 and R3 work similarly and in all cases the rule is the 
implied authority granting these rights to actors.  

In most circumstances, the policy is the implied authority transferring rights to actors and is not 
expressively stated in the natural language statements. The pattern R4 is different, however, since it 
explicitly identifies the policy, or in this case the rule, as the authority transferring rights to actors. In the 
following example S2, the pattern R4 distinguishes this statement as a right of the provider: 
 

S2: …the rule permits doctors and other covered entities to communicate 
freely with patients about treatment options… 

 
The last three cases demonstrate how the language used for obligations (see Section 3.2), such as 

“would have to,” “restrict,” or “require,” is negated to establish a right. In other words, if an actor is not 
obligated to perform some action then, unless otherwise stated, they have the implied right to perform or 
not perform the action at their discretion. In the following example S3, the pattern R6 identifies this 
statement as a right of the provider: 

 
S3: …the rule does not restrict the ability of doctors, nurses and 

other providers to share information needed to treat their 
patients… 

 
As we will see in Section 3.2, negating specific keywords for rights also establishes symmetric 
obligations for the associated activities.  

Each of these patterns was indexed in the Privacy Rule text to validate the consistent usage of 
these patterns to specify rights in the regulation text. In Table 1, the number of times a pattern was 
conferring a right to an actor is documented with correct and incorrect instances in the text. The patterns 
including the modal “may” were generally consistent despite the fact that “may” can be used to mean a 
general possibility as opposed to a specific right of an actor. 
 

Pattern Rights Other 
<actor> should/may be able to… 0 0 
<actor> may… 190 17 
<actor> can/could… 0 9 
<policy> permits… 3 1 
<actor> would not have to… 0 0 
<policy> does not restrict… 0 0 
<policy> does not require… 0 0 

 
Table 1: Patterns for Rights in the Privacy Rule 

 

4.2. Patterns for Obligations (O) 
Obligations define the required behavior of an actor in one or more activities. The following 

seven patterns were identified in the Fact Sheet that consistently encode obligations. 
 

O1: <actor> should <verb> … 
O2: <actor> should be <verb’ed> … 
O3: <actor> will/would <verb> … 



 

 

O4: <actor> must/must be <verb’ed> … 
O5: <actor> which is charged with <verb’ing> … 
O6: <policy> requires <actor> to <verb> … 
O7: <actor> may not <verb> … 

 
The patterns for obligations have several notable characteristics. First, pattern O1 and O2 are 

similar except that the verb in O2 is in the past-tense form and is preceded by the verb “be”. It is 
foreseeable that pattern O4 could have a similar relation with the modal “must” accompanied by a present-
tense verb. The following statements S4 and S5 show the original context for O1 and O4, respectively. 

 
S4: …covered entities generally should provide access to these records 

within 30 days… 
S5: …personal health information generally must be used only for 

purposes related to health care… 
 
Similar to the patterns for rights, the patterns for obligations include pattern O6 that explicitly 

identifies the policy as the authority transferring obligations to actors. Statement S6 provides an example 
where pattern O6 occurs in the Fact Sheet. In addition, pattern O7 uses the language seen in rights with 
negation to establish an obligation for the actor. Statement S7 provides and example for pattern O7. 
 

S6: …the rule requires covered entities to have written privacy 
procedures… 

S7: …personal health information generally may not be used for purposes 
not related to health care… 

 
The patterns for obligations were also indexed in the Privacy Rule to validate semantic 

consistency. Table 2 shows each of the patterns and the number of times they were used for assigning an 
obligation to an actor in the rule. 

 
Pattern Obligations Other 
<actor> should… 0 1 
<actor> will/would… 18 31 
<actor> must/must be… 189 0 
<actor> which is charged with… 3 1 
<policy> requires… 1 0 
<actor> may not… 30 0 

 
Table 2: Patterns for Obligations in the Privacy Rule 

 

4.3. Patterns for Constraints (C) 
For our purposes, rules associate pre-conditions with effects. Both pre-conditions and effects 

contain constraints that may describe activities, such as “a patient makes a request to a provider,” or state 
such as “information is classified protected”. If a pre-condition is true then a set of corresponding effects 
are also true. In the results of our analysis, pre-conditions and effects often included temporal constraints 
between the times of activities and other activities or calendar times. Temporal constraints serve to create 
events from activities and/ or states by relating them to explicit times or sequences of events. In a rule, the 
pre-conditions will contain one or more conditions some of which describe activities, states and/ or have 
temporal constraints. 

The following nine patterns C1 through C9 were extracted to identify rules in the Fact Sheet.  
 

C1: <actor> should be able to <action>… if <actor/ object>… <verb> 



 

 

C2: <actor> may <verb>… but <actor> would not have to <verb>… 
C3: <actor> will <verb>… on/upon <event>… 
C4: <actor> may <verb>… for/for each <event>… 
C5: <actor> must <verb>… to ensure that <actor>… will <verb>… 
C6: <actor> would have to <verb>… before <verb>… 
C7: <actor> must first <verb>… before <verb>… 
C8: <actor> must <verb>… by <date>… 
C9: <actor> should <verb>… within <timeframe>… 

 
There are two classes of rules distinguishable by how the rule semantics are associated with 

temporal constraints. The first class of rules have the event A in the pre-conditions all occurring before the 
event B in the effects as evidenced by patterns C1 through C7. In this case, the rule is equivalent to a 
temporal constraint between two activities. In patterns C1 and C2 the first activity is the effect for the 
second activity, the pre-condition. In patterns C3 and C4, the temporal constraints associated with the 
terms “on,” “upon,” “for,” and “for each” establish the first activity as the effect of the latter activity, the 
pre-condition. In patterns C5 through C7, however, the first activity is the pre-condition for the latter 
activity, the effect. The rule semantics for patterns C1 through C7 are shown in Expression E1. The less-
than sign signifies a comparison between the finish time Tf of event A and the start time Ts of event B. 

 
E1: if { A } then { Tf : A < Ts : B } 

 
 The second class of rules shows that an activity that finishes at time T must occur before a 

deadline T1 or within a timeframe (T2, T3). In pattern C8, the activity must occur before the deadline while 
in pattern C9 the activity should occur within the timeframe. Similar to the patterns C1 through C7, the 
rules corresponding to C8 and C9 also have an equivalent set of temporal constraints. For sometime T0, the 
rule semantics for patterns C8 and C9 are shown in Expressions E2 and E3, respectively. 

 
E2: if { T0 > T1 } then { T : G < T1 } 
E3: if { T2 < T0 & T0 < T3 } then { T2 < T : G < T3 } 
 
In the above two cases, the activities were described in natural language without explicit 

reference to the start or finish time of these activities. Because the formalism of our approach affords (and 
requires) a higher degree of formality and specification, these statements would require further 
elaboration by the regulator. In other words, transcribing natural language policy statements into KTL 
exposes ambiguities in the original language and causes the elicitation of specific details necessary to 
remove such ambiguity. Finally, in both cases the rules and temporal constraints define behavior that is 
expected to occur, and if such rules were violated then the regulations from which they were derived 
would have been violated as well. 

5. ANALYSIS OF CONSTRAINTS 
Applying Semantic Parameterization to the Fact Sheet yielded insights into natural language 

dynamics in policy statements that are required to specify rules with constraints in both pre-conditions 
and effects. We seek to generalize our observations and in particular we identify the need to represent 
cardinality, arithmetic operators, comparison relations, and ordinality as observed first in the Fact Sheet 
and later in the HIPAA Privacy Rule. 

5.1 Cardinality 
Numbers in policy statements can be divided into two categories: symbolic and cardinal numbers. 

Symbolic numbers such as zip codes or social security numbers are strictly representational in nature and 
may be treated as unique identifiers for a concept such as region or person, respectively. Cardinal 
numbers, however, signify a quantity of some concept. For example, the HIPAA Fact Sheet states several 
penalties (sanctions) for not complying with an obligation including fines from 100 dollars to 100,000 



 

 

dollars and time in prison less than 10 years. In these cases, the concept is a penalty such as a fine in a 
number of dollars or a prison sentence in a number of years. In general, cardinal numbers always pair a 
numerical quantity, such as 100,000, with a conceptual unit, such as dollars, and typically imply some 
named quantity such as a fine. Cardinal numbers serve as the operands to arithmetic operators and 
comparison relations and may be used to establish an ordinal relation across a set of entities. In the 
Privacy Rule, we identified 64 different instances of cardinal numbers. 

5.2 Arithmetic Operators, Comparison Relations 
Natural language policy statements include adjectives (in inflected form) and prepositions that, 

used in conjunction with cardinal numbers or named quantities, indicate an increase or decrease 
(arithmetic) operation or a greater than or less than (comparison) relation. While a few keywords are 
generic such as more and less, most are relevant only to a specific named quantity. For example, the 
keywords before, during, and after are relevant to the named quantity time; younger and older are 
relevant to age; shorter, longer, wider, and taller are relevant to width, height, length, etc. In general, if 
the keyword is preceded by a numerical quantity and followed by a named entity with an implied 
reference to an appropriate named quantity in natural language, the keyword refers to an arithmetic 
operation. For example, a deadline described by the statement “30 days after the request” signals an 
arithmetic operation where “30 days” is added to “the time of request” to establish the deadline.  

Alternatively, the keywords may appear in a comparison relation between two entities. For 
example, in the Fact Sheet the statement “patients would have to sign a specific authorization before a 
covered entity could release their medical information” compares the time of two events establishing that 
one event occurs before another. Evidence for the use of these and similar keywords has been indexed in 
the HIPAA Privacy Rule and the results appear in Table 3 with totals for the number of instances that 
were arithmetic (A), comparative (C), and neither (N). 

 
Keyword A C N Example from HIPAA Privacy Rule 

less 5 1 0 • not less than 30 days before… 
• less that 6 years from… 

more 27 10 0 • no more frequently than once every… 
• contains more than 20,000 people… 

before 1 9 9 • at least 15 days before the… 
• not less than 30 days before… 

after 20 8 2 • 180 days after the effective date… 
• after the compliance date… 

older 0 1 0 • age 90 or older… 

smaller 0 1 0 • geographic subdivisions smaller than 
a state… 

longer 2 7 0 
• no longer than 30 days from the 

date… 
• no longer needed for the purpose… 

during 12 4 0 • during the first year after… 
• during normal business hours… 

within 25 0 5 • within 180 days of when… 
• within the time limit set… 

 
Table 3: Inflected-form adjectives used in arithmetic, comparative operations. 

 
In KTL, an explicit arithmetic operator exists that will add or subtract two quantities of the same 

type of entity (see Expression E4, where a and b are actual numbers). In addition, context-sensitive or 



 

 

implicit arithmetic operators can be defined that add or subtract quantities by allowing an implicit 
reference to a numerical quantity. In this case, a path from the root concept to a named quantity in a 
semantic model is used to identify the implicit numerical quantity. For example, for some number b, the 
statement “b minutes after an event” has the root concept event with a path to the time of the event (see 
Expression E5). Since time is a continuous yet segmented quantity (e.g., segmented into seconds, minutes, 
etc.), it is handled as a separate type from other concepts. Finally, comparative relations are defined in the 
same fashion with both explicit (see Expression E6) and implicit operators. Where the evaluation of an 
arithmetic operation is a numerical quantity, the evaluation of a comparative relation is a Boolean. 

 
E4: [a] dollar + [b] dollar ↔ [a + b] dollar 
E5: event + [b] minute ↔ [a] minute [time : event] + [b] minute 
E6: [a] dollar < [b] dollar ↔ true if and only if a < b 
 

5.3 Ordinality 
Ordinality refers to the order of an entity within a set of comparable entities. Ordinality appears in 

HIPAA with adjectives such as first, second, and last based on contextual criteria relevant to ordering a 
set of entities. For example, the first event always refers to the earliest event in a set of events ordered by 
time. Ordinality depends on the existence of comparison relations to create an order, and as a result, the 
inflected-form adjectives each have an ordinal form that describes the first or last entity in an order. For 
example, the forms least and most are generic while others refer to specific concepts such as earliest and 
latest for time, oldest and youngest for age, shortest, longest, widest and tallest for width, height, length, 
etc. In the Privacy Rule, the ordinals first and last were most common with 7 and 3 occurrences, 
respectively. Typical usage for ordinals in the Rule include “the first disclosure during the accounting 
period” and the “individual’s last known address.” In Expression E7, a partial-order is established over a 
set of elements defined by a query (all event models), a comparative operator (less-than) and a conceptual 
reference (the time of the event). In this order, the first event is also the earliest event in the set of events. 
 

E7: order { event } by { < time : event } 
 

 6. DISCUSSION 
The analysis of the HIPAA Fact Sheet and Privacy Rule provided three important insights: 1) 

rules may be more effectively expressed using temporal constraints, 2) constraints expressed in regulation 
text include cardinality, arithmetic operators, comparison relations, and ordinality, and 3) rights must be 
balanced with corresponding obligations otherwise they have no value to stakeholders.  

Rules in the form of pre-conditions with effects are desirable in formal models to enable logical 
inference. In general, such rules establish a correlation between evidence that is a weaker relationship 
than causation. In other words, a rule may establish that “if we observe evidence A then we also expect to 
observe evidence B.” The actual justification for observing B in the context of A, however, is not 
expressed by a rule. In some circumstances, this may be sufficient: for example, if the relationship is 
unknown or the explicit definition of the relationship is unnecessary. However, as observed in our 
analysis of HIPAA these relationships are often stated and deemed relevant to the interpretation of the 
regulations. For example, in Section 4.3 we observed that each rule, by separating the relevant 
information into pre-conditions and effects, conditionally exposes the corresponding temporal constraint. 
In fact, more important than establishing a correlation is that the temporal constraint is usable to detect 
policy violations without additional inference per se; whereas the rule only describes an indirect property 
of the desired environment. 

Our analysis also revealed that in HIPAA constraints are often described using cardinal numbers, 
arithmetic operations, comparison relations and ordinals to distinguish entities in regulations. 
Understanding the relationship between constraints and the original regulation text is important in order to 



 

 

evaluate the ability of emerging policy languages to sufficiently express compliance requirements. EPAL 
1.1 [EPAL] and Oasis XACML 2.0 [XACML] express numbers as attributes, however, they do not 
support the designation of units for these numbers — a source of potential ambiguity if one policy 
describes a time in minutes and another policy describes time in hours, for example. With regards to 
arithmetic operators and comparison relations, P3P [P3P] relies on the W3C APPEL 1.0 Working Draft 
[APPEL] for rules that do not include either, although support for comparison relations are declared as 
items for future work. Alternatively, the EPAL 1.1 standard defers to XACML for conditions that allow 
both arithmetic operators and comparison relations. Finally, P3P, APPEL, EPAL and XACML all lack 
semantics to express ordinality over a set of related elements. Since regulations clearly indicate the need 
for this functionality, a complete and effective policy language will need to be equally expressive.  

Lastly, we observed that rights and obligations are complementary and that they must be balanced 
to ensure rights are both accountable and enforceable. For example, in the HIPAA Privacy Rule the 
patient may request that the healthcare provider restrict access to their protected health information, 
however, the provider is not obligated to honor that request [HPR]. Rights without complementary 
obligations are meaningless since governed parties are not required to respond to the invocation of such 
rights. In terms of designing and engineering software systems, these rights may be effectively ignored. 
On the other hand, obligations without an explicit and complementary right do have value and must be 
properly incorporated into system specifications.  
 

7. SUMMARY & PLANS FOR FUTURE WORK 
The process of ensuring that software systems (and related business processes) comply with 

privacy law includes understanding the formal relationships between legislation, regulations, 
organizational policies and system specifications. In this paper, we analyze privacy regulations to identify 
formal semantics that govern both business processes and software systems. These semantics specify 
rights and obligations that define what people and systems are permitted to do and what they must do, 
respectively. Furthermore, we identified natural language constraints including cardinal relations, 
arithmetic operators, comparison relations and ordinal relations to characterize how rules describe 
measurable expectations of people and systems. From here, we foresee several open problems inviting 
future work including the development of methods to improve the machine-enforceable quality of policy 
texts in addition to methods that assist policy analysts and software developers ensure their systems 
comply with policy. Two problems in this area include the role of ambiguity in policy texts and the 
conceptual gap between policy texts and system specifications.  

Legislation and regulation text is often considered too ambiguous for enforcement and 
compliance purposes. In some cases, the ambiguity is desirable because it is impossible to enumerate all 
intended interpretations of law when developing regulations. However, there exist different types of 
undesirable ambiguity that require unique approaches to disambiguate and clarify the intended meaning. 
For example, using a general word such as “covered entities” may be ambiguous in context if the only 
intention is to refer to “those covered entities that exclusively provide financial services.” Alternatively, 
using adjectives such as “to respond quickly” or “to respond within reasonable time” are subjective and 
therefore prone to ambiguous interpretations. In the future, we seek to build upon our observations from 
this work to enable categorizing types of ambiguity and developing methods to automatically detect and 
interactively clarify ambiguous language. One approach may be to detect and define non-functional 
qualities in terms of functional constraints over quantities, such as the functional constraints discussed in 
Section 5. 

Requirements in software engineering are functionally equivalent to machine-enforceable 
obligations, in that they describe what systems must do to satisfy stakeholder needs. However, legislation 
and regulations rarely reach the detail required to specify complete system requirements. The HIPAA 
Security Rule is fairly unique in that it includes the requirement for Role-based Access Control (RBAC) 
in healthcare systems that store patients’ protected health information [HSR]. On the other hand, 
legislation and regulations do specify non-functional requirements that may be used to develop sound 



 

 

strategies or industry practices in the form of functional system requirements. For example, the HIPAA 
Privacy Rule states that covered entities must limit employee access to protected health information to 
only certain purposes. Compliance requires an approach (such as a methodology and/ or framework) that 
enables regulators, compliance officers and system administrators to trace from the obligation to a set of 
system requirements and evaluate the solution's ability to sufficiently offset the risks of associated 
vulnerabilities.  

As previously mentioned, our research was conducted using grounded-theory [GS67]; that is, we 
developed our language semantics by analyzing the semantics of domain-relevant legislation and 
regulations. We believe the work presented in this paper can be extended towards addressing such 
challenges as bridging the gap from privacy regulations to system requirements. To date, we have shown 
that KTL catalogs the requirements for a privacy expression language; however, to further validate this 
work, we intend to compare KTL to other business rule languages that allow for expression of deontic 
logic modes. 
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