
Identifying Value Mappings for Data
Integration: An Unsupervised Approach

Jaewoo Kang1, Dongwon Lee2, and Prasenjit Mitra2

1 NC State University, Raleigh NC 27695, USA
2 Penn State University, University Park PA 16802, USA

Abstract. The Web is a distributed network of information sources
where the individual sources are autonomously created and maintained.
Consequently, syntactic and semantic heterogeneity of data among sources
abound. Most of the current data cleaning solutions assume that the
data values referencing the same object bear some textual similarity.
However, this assumption is often violated in practice. “Two-door front
wheel drive” can be represented as “2DR-FWD” or “R2FD”, or even as
“CAR TYPE 3” in different data sources. To address this problem, we
propose a novel two-step automated technique that exploits statistical
dependency structures among objects which is invariant to the tokens
representing the objects. The algorithm achieved a high accuracy in our
empirical study, suggesting that it can be a useful addition to the existing
information integration techniques.

1 Introduction

As the Web has become the primary vehicle of information dissemination and
exchange, we witness increasing numbers of databases published on the Web.
No individual website, however, can satisfy the information needs of all applica-
tions. Useful information is often scattered over multiple sites. Thus, information
integration across diverse sources is essential. Integrating such heterogeneous
Web sources often involves two related subtasks: 1) reconciling structural het-
erogeneity of data by mapping schema elements across the data sources and 2)
resolving semantic heterogeneity of data by mapping data instances across the
tables. The first task is commonly referred to as the schema matching prob-
lem [2, 7, 9, 15, 17, 19, 20, 22, 23] and the second, as the object mapping prob-
lem [1,3–5,10,12,14,16,21,28].

The object mapping problem discussed in previous literature typically refers
to the problem of finding duplicate tuples within or across the tables to be
integrated. Virtually all previously proposed work assume the data values in each
corresponding columns are drawn from the same domain or at least they bear
some textual similarity that can be measured using a string distance algorithm
(e.g., edit distance, TF/IDF etc.). However, this assumption is often challenged
in practice where sources use various different representations for describing their
data. For example, “two-door front wheel drive” can be represented as “2DR-
FWD” or “R2FD”, or even as “CAR TYPE 3” in different data sources. Some

Name Gender Title Degree Status

J. Smith M Professor Ph.D. Married
R. Smith F T.A. B.S. Single
B. Jones F T.A. M.S. Married
T. Hanks M Professor Ph.D. Married

Name Gender Title Degree Status

S. Smith F Emp10 D7 SGL
T. Davis M Emp3 D3 SGL
R. King M Emp10 D7 MRD
A. Jobs F Emp3 D2 MRD

(a) Table X (a) Table Y
Table 1. University Employee Tables.

smart string distance algorithms may be able to suggest correspondences among
the first three representations, but they will fail to establish any mapping for
“CAR TYPE 3” as it bears no syntactic or semantic clue except it is about car
type. This problem poses a substantial challenge to the existing object mapping
techniques. We name this problem as the value mapping problem. This paper
concerns addressing this problem.

To gain insight into our approach, consider the employee tables in Table 1.
Values from the Status column, for instance, can be easily matched using a con-
ventional matching technique (e.g., edit distance) because the values in Y.Status
are abbreviations of ones in X.Status: (Married → MRD, Single → SGL).
However, matching values in Title and Degree columns is not so straightforward.
Most traditional techniques relying on textual similarity will fail to identify the
mapping.

To make progress in such a difficult situation, our technique exploits the co-
occurrence relation between the values in each table. For example, suppose we are
trying to find the value in Table 1(b) that maps to “Professor” in Table 1(a). To
make the exposition simpler, let us assume that we know the correspondences
between the values in the Degree columns (e.g., Ph.D. → D7, M.S. → D3,
B.S. → D2). Intuitively, we will see a higher correlation between “Ph.D.” and
“Professor” than between “Ph.D.” and “T.A.”, as is the case in Table X. If we
can measure the correlation between “D7” (which we know is “Ph.D.”) and the
two values, “EMP10” and “EMP3”, in Table Y , and can compare the measure-
ments across the tables, we may be able to find further correspondences. Now,
let us assume that the mappings between the two Degree columns were not
known a priori (i.e., the mappings for both Title and Degree are unknown.).
How should we proceed?

We propose a two-step automated technique that addresses this problem.
In the first step, it constructs a statistical model that captures the correlations
between all pairs of values in each table to be matched. In the second step, the
constructed models are aligned in the second step such that the distance be-
tween the two models is minimized. The alignment with the minimum distance
is returned as the mapping. Our algorithm is invariant to the actual tokens used
to represent the objects. Moreover, the proposed technique is not dependent
on any domain-specific knowledge, and thus is applicable to many different do-
mains without training or configuration. In this paper we make the following
contributions:

1. We present the value mapping problem as an important problem in infor-
mation integration that is a real and hindering problem in practice.

2. We propose a matching framework that does not rely on the syntactic simi-
larity of values and thus applicable to many different domains, even including
domains to which the system has not previously been exposed.

3. The proposed algorithm can complement many existing algorithms as it uti-
lizes different types of information that is not commonly used in the existing
algorithms. The prediction result (mapping) produced by our algorithm can
be combined with the results produced by other existing methods in order
to improve the accuracy of the mapping.

2 Problem & Solution Overview

Problem Definition. We have two tables: the source table, S, with columns,
s1, ..., sn, and its corresponding target table, T , with columns, t1, ..., tn. We
focus on the value mapping problem in this paper and assume schema matching
is done beforehand using existing solutions [2,7,9,15,17,19,20,22,23]; that is, the
column mapping f : si → tj is given. Also, the domain and range of a column
ci is denoted as D(ci) and R(ci), respectively. Then, formally, we consider the
following as the Value Mapping Problem:

For a pair of corresponding columns, si and tj , where f : si → tj , find
a bijective value mapping function g : D(si) → R(tj) that maps two
values representing the same real-world object.

Solution Overview. Our value mapping algorithm finds mappings using co-
occurrence information gathered from tables without interpreting individual
values. Two values are said to co-occur if they occur in the same row. A co-
occurrence model captures the co-occurrence of the values in a table. An exam-
ple of a simple co-occurrence model is a co-occurrence matrix. The rows and
columns of it represent the set of unique values in the table, and the entries
represent the co-occurrence counts of the corresponding value pairs.

Our algorithm consists of two-steps: (1) the first step, Table2CoocurrenceModel(),
takes two table instances as input and produces corresponding co-occurrence
models, and (2) the second step, ModelMatch(), using the co-occurrence mod-
els, produces the value mapping between the two models (i.e., a set of matching
value pairs). Typically, the models are matched based on a distance metric. The
distance metric captures how similar a value from one table is to another value
from the other table. Optimizing on the distance metric over all pairs of matched
values gives us the bijective mapping from values in one table to those in another.

3 The Matching Algorithms

3.1 Step 1: Modeling Co-occurrence Relation

We introduce the following co-occurrence models that can be used in the first
step of our algorithm, Table2CooccurrenceModel().

row1 row2 row3 row4

v1:M 1 0 0 1
v2:F 0 1 1 0
v3:Professor 1 0 0 1
v4:TA 0 1 1 0
v5:Ph.D 1 0 0 1
v6:M.S 0 0 1 0
v7:B.S 0 1 0 0
v8:Married 1 0 1 1
v9:Single 0 1 0 0

v1 v2 v3 v4 v5 v6 v7 v8 v9

v1 2 0 2 0 2 0 0 2 0
v2 0 2 0 2 0 1 1 1 1
v3 2 0 2 0 2 0 0 2 0
v4 0 2 0 2 0 1 1 1 1
v5 2 0 2 0 2 0 0 2 0
v6 0 1 0 1 0 1 0 1 0
v7 0 1 0 1 0 0 1 0 1
v8 2 1 2 1 2 1 0 3 0
v9 0 1 0 1 0 0 1 0 1

(a) Value-Row Matrix T1 (b) Co-occurrence Matrix C1

Table 2. Value-row matrix and Co-occurrence matrix of Table X.

Simple Vector Model. Consider tables in Table 1. Suppose we want to find
the value mapping between terms used in three columns, Gender, Title, and
Degree across the two tables. One simple solution is to use frequencies of values
such that values appearing more often correspond to each other while values
appearing less often correspond to each other. This approach, however, may not
work when values are evenly distributed (e.g., Gender) or when the frequencies
of several values in a column are very similar. To remedy this problem, Simple
Vector Model considers pair-wise term frequencies.

We first generate a “value-row” matrix for each table instance as shown in
Table 2. Table 2(a) shows a value-row matrix T1 generated from tables X. A
column vector of T1 corresponds to a matching row in table X, and a row vector
of T1 encodes occurrences of the corresponding value in each row of table X.
For example, T1(“M”, row1) is 1 because “M” occurs in row1 of table X. The
value-row matrix T2 of Table Y can be constructed similarly. With the value-row
matrix, one can easily calculate pair-wise co-occurrences by taking product of a
matrix Ti and its transpose TT

i : Ci = Ti × TT
i .

The co-occurrence matrix Ci captures pair-wise value co-occurrences between
all pairs of values in the corresponding table. Table 2(b) shows the co-occurrence
matrix C1 for tables X. Now let us assume that value mappings of three columns
are known as follows: Gender(M → M,F → F), Status(Married → MRD,
Single → SGL), and Degree(Ph.D → D7, M.S → D3, B.S → D2). Given
such mappings and the co-occurrence matrices, how can one find the remaining
value mappings – the ones between the values in the Title columns?

We could, perhaps, first align the rows and columns of C1 and C2 according
to the known mappings, and then, for each term vector (row) in C1, try to find
the closest term vector from C2 by comparing only the parts that we know are
correctly aligned. For example, suppose we are trying to find a value in table
X that corresponds to “Emp10” in table Y . First we take the term vector of
“Emp10” from C2 (not shown): C2(“Emp10”) = [1 1 2 0 2 0 0 1 1]. The third and
fourth entries are for “Emp10” and “Emp7” for which we do not know the correct
mapping across the tables; so we ignore them and keep only entries for known
values as follows: C2a(“Emp10”) = [1 1 2 0 0 1 1]. Then, if we measure the

typical Euclidean distances between C2a(“Emp10”) and the two term vectors
corresponding to the terms “Professor” and “TA” from C1, we get 2 for the
“Emp10-Professor” pair and 2.83 for the “Emp10-TA” pair, suggesting that the
“Emp10-Professor” pair is a better match.

One way to improve the performance of this scheme is to weight terms ac-
cording to their information content . That is, rare terms carry more weights
when they co-occur than terms that occur frequently (e.g., “male” or “female”).
In this work, we use a standard inverse document frequency weighting [6]. The
weighted value-row matrix is defined as follows: T (i, j) = 1− k

N , if term i occurs
in row j, or 0 otherwise, where k is the number of rows where term i occurs
and N is the total number of rows in the table. Note that when term i occurs
in all rows, T (i, j) is 0 for all j. We incorporated the weighting scheme in all
the models for our experimentation, but have not weighted the examples in this
paper to retain their simplicity.

Co-occurrence Matrix Model. One straightforward extension of the simple
vector model is to compare two co-occurrence matrices as a whole rather than
limiting the focus to only vector-wise comparisons. This approach works as fol-
lows. We compute the distances between the two co-occurrence matrices while
we permute the second matrix, and find the permutation that minimizes the
distance between the two matrices. The algorithm then returns the permutation
as the proposed mapping.

Latent Semantic Model. Latent Semantic Indexing (LSI) [6] is an information
retrieval technique introduced to address the inherent difficulty of handling se-
mantic heterogeneity in traditional inverted-index based text indexing schemes.
For example, if a user asks for documents about “human computer interface,”
then traditional inverted-index based techniques with term overlap measures will
fail to return documents that using “HCI” instead of its full wording because the
query terms are not appearing in these documents. LSI tries to overcome this
shortcoming by exploiting the co-occurrence information. For example, if “HCI”
frequently co-occurs with “user” and “interaction” and the “user” and “interac-
tion” co-occur frequently with “human computer interface”, it may implies that
“HCI” and “human computer interface” are semantically relevant.

LSI uses Singular Value Decomposition (SVD) for its co-occurrence analysis.
SVD decomposes a value-row matrix T into the product of three distinct matri-
ces: T = U ×S×V T , where S is a diagonal matrix that contains singular values
in a decreasing order, and U and V are orthogonal matrices that contain corre-
sponding left and right singular vectors (principal components), respectively.

An interesting property of SVD is that we can use it to reduce the noise
in the model. Data from databases often contain errors due to various reasons.
These errors result in very small singular values occurring in the diagonal of
matrix S. We can eliminate the effect of these errors by throwing away the small
singular values, thereby reducing the dimensionality of U and V . The side effect
of this dimensionality reduction is that the resulting model captures indirect
multi-level co-occurrence patterns which are not apparent in the original co-

occurrence matrix. The Latent Semantic Model is built upon this result. Using
SVD, co-occurrence matrix C1 can be calculated as follows: C1 = T k

1 × (T k
1)T

where T k
1 is a best rank-k approximation of T1 obtained by U × S × V T using

only top k principal components and singular values (see [13] for more details).

3.2 Step 2: Matching Models

Matching process for the Simple Vector Model is relatively easy as the matching
problem naturally reduces to a linear assignment problem (e.g., bipartite-graph
matching problem). We use the Hungarian method [18] to solve the linear as-
signment problem. For the two matrix models, we first define a distance metric
to measure the closeness of the models, and discuss how to match the values
in the two tables using this distance metric. In our implementation, we used
the Euclidean distance metric as a distance measure between the two models as
follows:

Definition 1 (Euclidean Distance Metric) Let A and B be two co-occurrence
matrices with the same dimensions, and aij and bij be the co-occurrences be-
tween the ith and jth values of A and B, respectively. Let m be a mapping
function that maps an index of a value in A to the index of a matching value
in B. Then, the Euclidean Distance Metric for matrices A and B is: D(A,B) =√

Σi,j(aij − bm(i)m(j))2 2

To find the correspondences between the values in the two tables, we can
simply find the mapping function m that minimizes the Euclidean distance be-
tween the two co-occurrence matrices of corresponding tables. Given the distance
metric, our problem is nicely re-cast into a form of the graph matching problem.
A large volume of literature has devoted to finding efficient and accurate graph
matching techniques – exact or approximate.

For both the co-occurrence matrix model and the latent semantic model,
we use the Hill-climbing algorithm. The Hill-climbing algorithm is a greedy ap-
proach such that it moves, in each state transition, to a state where the most
improvement can be achieved. A state represents a permutation that corresponds
to a mapping between the two graphs. We limit the set of all states reachable
from one state in a state transition, to a set of all permutations obtained by
one swapping of any two nodes in the current state. The algorithm stops when
there is no next state available better than the current state. As we can see, the
Hill-climbing algorithm is non-deterministic; depending on where it starts, even
for the same problem, the final states may differ. In our experiments, we ran the
Simple Vector Model first, and then ran the Hill-climbing algorithm using the
result of the Simple Vector Model as its starting point.

4 Validating the Framework

4.1 Set-up

We implemented our two-step matching algorithm using Matlab 6.5. Experi-
ments were performed using a machine running Windows XP Professional with

Col. No. Col. name # of unique values Description

1 OCCU 45 occupation code
2 OCCUMG 14 occupation - major group
3 INDU 48 industry code
4 INDUMG 23 industry - major group
5 COWORK 8 class of worker (fed., priv., etc.)
6 EMPSTA 8 employment status
7 FLTPRT 4 full time, part time, etc.
8 AGE 91 age
9 EDUCA 17 highest degree earned
10 MARITL 7 marital status
11 AFEVER 5 army veteran
12 FAMINC 16 total family income
13 LABUNI 3 union member? (y/n/null)
14 SEX 2 sex
15 NUMHOU 12 # of household members
16 RACE 4 race
17 TENURE 3 own / rent / null
18 HOUSTY 5 household type

Total # of unique values for each table is 315
Table 3. Census table summary: NY and CA table characteristics

2.4Ghz Pentium 4 and 1 GB of memory. We ran our tests using census data tables
obtained from the website U.S. Census Bureau3. We used two state-census-data
files, “CA” and “NY”, in our experiments. The CA table contains approximately
10,000 tuples and NY table contains about 7,500 tuples. Each table has 18
columns; there exists a one-to-one correspondence between the columns across
the tables. Table 3 shows the number of common unique values in each column
of the two tables. For example, the OCCU column has 45 unique values that are
common to both tables. There are small numbers of low frequency values (11,
out of total of 641 unique values from both the tables) that appear only in one
side of the tables, either in NY or CA; we ignore them because in this work, we
limit our focus to the problems where one-to-one correspondences exist between
the values to be mapped.

In experiments, we ran tests for both non-weighted and weighted cases (dis-
cussed in Section 3). However, since weighted models with the standard inverse
document frequency weighting outperformed non-weighted models on average
by 15%, we present the results of only weighted models in the following. We
use the precision to measure the effectiveness of various algorithms as follows:
Precision = # of correct mappings by an algorithm

of true mappings . The number of true mappings
is the total number of mappings we know exist from our encoding process. We
then divide the number of correct mappings produced by an algorithm in testing
by this number (#of true mappings) to calculate the precision.

3 http://dataferrett.census.gov/TheDataWeb/index.html

1 2 3 4 5 6 7 8 9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Precision (OCCU across NY and CA)

#of columns examined including OCCU

P
re

ci
si

on

Simple Vector Model (SVM)
Co−occurrence Matrix Model (CMM)
Latent Semantic Model (dim=20) (LSM−20)
Latent Semantic Model (dim=40) (LSM−40)
Latent Semantic Model (dim=60) (LSM−60)

2 3 4 5 6 7 8 9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Precision (OCCU & OCCUMG across NY and CA)

#of columns examined including OCCU & OCCUMG

P
re

ci
si

on

Simple Vector Model (SVM)
Co−occurrence Matrix Model (CMM)
Latent Semantic Model (dim=20) (LSM−20)
Latent Semantic Model (dim=40) (LSM−40)
Latent Semantic Model (dim=60) (LSM−60)

(a) Matching across two OCCU columns (b) Matching OCCU & OCCUMG.

Fig. 1. Precision graphs.

4.2 Experiments

We iterated the tests 20 times at each data point with random samples of 6,500
tuples chosen from each table, and averaged the results. Since to the best of our
knowledge, there is no other known un-interpreted value mapping algorithm,
we compared five algorithms of ours against each other: Simple Vector Model
(SVM), Co-occurrence Matrix Model (CMM), and three Latent Semantic Models
with ranks 20, 40 and 60 (LSM-20, -40, -60, respectively).

Figure 1(a) presents the results of mapping between the two OCCU (occupa-
tion code) columns across the tables. We ran the experiment while incrementally
adding more columns (whose mappings between the values are known) to the
tables in each step. The left-most data point (x=1) in Figure 1(a) represents
the precision of the matching where only the two OCCU columns were given
to the algorithm. All five algorithms that we compared yielded almost identical
results on the first data point because no co-occurrence information is available
to exploit.

The second data point (x=2) shows the results of the test where we com-
pared the same OCCU pairs, but with extra information of mappings between
OCCUMG pairs, i.e., the correct mappings of OCCUMGs are given to the al-
gorithms. The precisions of the algorithms improved to around 78% from 18%.
Note that the OCCUMG column contains the codes of major occupation groups
while OCCU contains detailed occupation codes. It is very likely that significant
amount of information about the contents of the OCCU column is captured in
the contents of the OCCUMG column.

As shown in Figure 1(a), the match precision reached almost 100% at the
third data point (x=3) for all but Latent Semantic Model with dimension 20
(LSM-20), after taking the third column (INDU) into account. It appeared that
the added information given from the two extra columns was just enough for
finding the correct mapping for all 45 unique values between the two OCCU
columns. Note that the total number of possible mappings in this test was 45!.

Considering the gigantic search space, the result was quite encouraging. For each
test in the remaining data points from 4 to 9, similarly we added extra columns
by one at a time in each step in the order of columns in Table 3.

Now, assume that mappings for both OCCU and OCCUMG are unknown.
How would the performance of each algorithm change? Figure 1(b) shows the
result. There are two notable differences in this result from the previous result.
First, the performance of SVM deteriorated significantly; it only achieved up
to 80% accuracy while the other previous top performers still yielded close to
100% accuracy as before. Second, the performance of the three top performers
at the first data point (x=2) improved significantly from approximately 18%
accuracy (x=1 in Figure 1(a)) to 48% accuracy, where only the two unknown
columns, OCCU and OCCUMG, were given. In contrast, the total number of
unknown values increased to 59 (sum of the numbers of unique values in OCCU
and OCCUMG) from 45 (unique values in OCCU), and the size of the search
space increased to 45! × 14! from 45!. What accounted for this performance
improvement?

One explanation to the question can be found from the models themselves.
Recall that both CMM and LSM consider the co-occurrences between the pairs
of unknown values as well as those between the pairs of the unknown and known
values, while SVM only considers the co-occurrences of the unknown and known
value pairs. Although the mappings of the two columns (OCCU and OCCUMG)
were not given a priori, their strong correlations made it easier to find the
correct mappings. The same explanation applies to the first difference where
SVM deteriorated significantly while the others did not. SVM was penalized by
not considering the value co-occurrences of the two unknown columns whose
values are highly correlated.

The three top performers, CMM, LSM-40, and LSM-60, yielded almost iden-
tical performance results. They achieved 100% accuracy at the third data point
(x=4) where we had two extra columns, INDU and INDUMG, in to consid-
eration. Let us now consider the case where we have three columns unknown:
OCCU, OCCUMG and INDU. The results of the tests are shown in Figure 2(a).
The results shown on the first data point (x=3) are from running the algorithms
with just the three unknown columns; the subsequent data points show the re-
sults with increasing numbers of extra columns, as usual.

In addition to the three graphs reported in this paper, we performed addi-
tional tests with up to seven unknown columns. The performance order of the
algorithms was same to the three column unknown test shown in Figure 2 and
the best performer was LSM-60. There was no severe performance degradation
among the top performing algorithms. LSM-60 still achieved slightly over 70%
accuracy in the seven column unknown test.

Another important criterion in choosing right algorithms could be the com-
putational complexity. Figure 2(b) shows the five algorithms’ execution times
measured in the test where we mapped the first seven columns across the ta-
bles.Unlike CMM, LSM showed a stable performance over the full range of tests.
This result is quite striking because both LSM and CMM run the same Hill-

3 4 6 8 10 12 14 16 18
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Precision (OCCU OCCUMG INDU across NY and CA)

#of columns examined including OCCU OCCUMG INDU

P
re

ci
si

on

Simple Vector Model (SVM)
Co−occurrence Matrix Model (CMM)
Latent Semantic Model (dim=20) (LSM−20)
Latent Semantic Model (dim=40) (LSM−40)
Latent Semantic Model (dim=60) (LSM−60)

7 8 10 12 14 16 18
0

50

100

150

200

250

300

350

400

450
Exec Time (first seven columns across NY and CA)

#of columns examined including first seven columns

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

SVD
CMM
LSM−20
LSM−40
LSM−60

(a) Matching OCCU, OCCUMG & INDU (b) Execution time

Fig. 2. Result of matching three unknown columns: OCCU, OCCUMG & INDU and
execution time.

climbing algorithm in the course of matching the two models of the corresponding
tables. Moreover, LSM has an additional cost of doing Singular Value Decompo-
sition (SVD) while CMM does not. Apparently in our test, the noise canceling
helped to speed up the Hill-climbing process by smoothing the gradient search
space of the Hill-climbing algorithm.

5 Related Work

There are vast amount of related work to ours – notably (1) schema matching
(e.g., [2, 7, 9, 15,17,19,20,22,23]) and (2) object mapping (e.g., [1, 3–5,10,12,14,
16,21,28]) problems.

(1) In this work, we assumed that we knew the correspondences between the
columns across the tables. However, in general settings, such correspondences
are not known but have to be found first. To generate such correspondences,
various schema matching techniques have been proposed. Some employs Ma-
chine Learning (e.g., LSD [9]), rules (e.g., TranScm [23]), Neural Network (e.g.,
SemInt [19]), structural similarity (e.g. Cupid [20]), or interactive user feed-
back (e.g., Clio [15]). Recent development (e.g., iMAP [7]) even enables to find
not only 1-1, but also more complex n-m schema matches (e.g., name = con-
cat(first, last) or euro = 1.32 × dollar). For a good survey and compar-
ison, see [8, 26]. In particular, our proposals in this paper is an extension of
authors’ previous attempt [17] to the object mapping problem – in [17], the
schema matching problem in the presence of opaque column names and data
values are addressed.

(2) Our “value mapping” problem is more closely related to the object map-
ping problem (i.e., value is the object to map), which is also known as various
names in diverse contexts: e.g., record linkage [11,28], citation matching [21,25],
identity uncertainty [25], merge-purge [16], duplicate detection [1, 24, 27], and

approximate string join [5,14]. Common to all these is the problem to find simi-
lar objects (e.g., values, records, tuples, citations). Although different proposals
have adopted different approaches to solve the problem in different domains,
by and large, they focus on syntactic similarities of objects under comparison.
On the other hand, our value mapping solutions can identify mappings where
two objects have little syntactic similarity. To cope with such difficulties, we
proposed to explore statistical characteristics of objects such as co-occurrence
frequency or entropy.

6 Conclusion

In this paper, we investigated the value mapping problem to locate matching
pairs of values from two information sources. We proposed a two-step matching
algorithm to discover the mapping. Since our algorithm does not depend on
the syntactic distance among values, it works well for opaque or domain-specific
values encountered while integrating heterogeneous sources. Our algorithm uses
value co-occurrences as the basis for establishing value mappings. Specifically,
we proposed three co-occurrence models – Simple Vector, Co-occurrence Matrix,
and Latent Semantic Models – and conducted an extensive experimentations to
find their effectiveness. The Latent Semantic Model performed slightly better
than the Co-occurrence Matrix Model and both outperformed the Simple Vector
Model. The two algorithms identified unknown value mappings with 70-100%
accuracy. We believe our algorithms form an important contribution towards
enabling automated integration of information from diverse websites.

References

1. R. Ananthakrishna, S. Chaudhuri,
and V. Ganti. “Eliminating Fuzzy
Duplicates in Data Warehouses”. In
VLDB, 2002.

2. P. Andritsos, R. J. Miller, and
P. Tsaparas. Information-theoretic
tools for mining database structure
from large data sets. In ACM SIG-
MOD, 2004.

3. M. Bilenko and R. J. Mooney. “Adap-
tive Duplicate Detection Using Learn-
able String Similarity Measures”. In
ACM KDD, Washington, DC, 2003.

4. S. Chaudhuri, K. Ganjam, V. Ganti,
and R. Motwani. “Robust and Ef-
ficient Fuzzy Match for Online Data
Cleaning”. In ACM SIGMOD, 2003.

5. W. W. Cohen. “Integration of Hetero-
geneous Databases Without Common
Domains using Queries based on Tex-

tual Similarity”. In ACM SIGMOD,
1998.

6. S. C. Deerwester, S. T. Dumais, T. K.
Landauer, G. W. Furnas, and R. A.
Harshman. “Indexing by Latent Se-
mantic Analysis”. J. of the Amer-
ican Society of Information Science,
41(6):391–407, 1990.

7. R. Dhamankar, Y. Lee, A. Doan,
A. Y. Halevy, and P. Domingos.
“iMAP: Discovering Complex Map-
pings between Database Schemas”. In
ACM SIGMOD, 2004.

8. H. Do, S. Melnik, and E. Rahm.
“Comparison of Schema Matching
Evaluations”. In GI-Workshop “Web
and Databases”, Oct. 2002.

9. A. Doan, P. Domingos, and A. Y.
Halevy. “Reconciling Schemas of
Disparate Data Sources: A Machine-
Learning Approach”. In ACM SIG-
MOD, 2001.

10. A. Doan, Y. Lu, Y. Lee, and J. Han.
“Object Matching for Data Integra-
tion: A Profile-Based Approach”. In
Workshop on Info. Integration on the
Web, 2003.

11. I. P. Fellegi and A. B. Sunter. “A
Theory for Record Linkage”. J. of the
American Statistical Society, 64:1183–
1210, 1969.

12. H. Galhardas, D. Florescu, D. Shasha,
and E. Simon. “An Extensible Frame-
work for Data Cleaning”. In IEEE
ICDE, 2000.

13. G. H. Golub and C. F. van Loan. “Ma-
trix computations”. The Johns Hop-
kins University Press, 1999.

14. L. Gravano, P. G. Ipeirotis,
N. Koudas, and D. Srivastava.
“Text Joins for Data Cleansing and
Integration in an RDBMS”. In IEEE
ICDE, 2003.

15. M. A. Hernandez, R. J. Miller, and
L. M. Haas. “Clio: A Semi-Automatic
Tool for Schema Mappiong”. In ACM
SIGMOD, 2001.

16. M. A. Hernandez and S. J. Stolfo.
“The Merge/Purge Problem for Large
Databases”. In ACM SIGMOD, 1995.

17. J. Kang and J. F. Naughton. “On
Schema Matching with Opaque Col-
umn Names and Data Values”. In
ACM SIGMOD, San Diego, CA, Jun.
2003.

18. H. W. Kuhn. “The Hungarian Method
for the Assignment Problem”. Naval
Research Logistics Quarterly, 2:83–97,
1955.

19. W.-S. Li and C. Clifton. “SEMINT:
A Tool for Identifying Attribute Cor-
respondences in Heterogeneous Data-

bases using Neural Networks”. VLDB
J., 10(4), Dec. 2001.

20. J. Madhavan, P. A. Bernstein, and
E. Rahm. “Generic Schema Matching
with Cupid”. In VLDB, 2001.

21. A. McCallum, K. Nigam, and L. H.
Ungar. “Efficient Clustering of High-
Dimensional Data Sets with Applica-
tion to Reference Matching”. In ACM
KDD, Boston, MA, 2000.

22. S. Melnik, H. Garcia-Molina, and
E. Rahm. “Similarity Flooding: A
Versatile Graph Matching Algorithm
and Its Application to Schema Match-
ing”. In IEEE ICDE, 2002.

23. T. Milo and S. Zohar. “Using Schema
Matching to Simplify Heterogeneous
Data Translation”. In VLDB, 1998.

24. A. E. Monge. “Adaptive Detection
of Approximately Duplicate Database
Records and the Database Integration
Approach to Information Discovery”.
PhD thesis, University of California,
San Diego, 1997.

25. H. Pasula, B. Marthi, B. Milch,
S. Russell, and I. Shpitser. “Iden-
tity Uncertainty and Citation Match-
ing”. In Advances in Neural Informa-
tion Processing Systems. MIT Press,
2003.

26. E. Rahm and P. A. Bernstein. “On
Matching Schemas Automatically”.
VLDB J., 10(4), Dec. 2001.

27. S. Sarawagi and A. Bhamidipaty. “In-
teractive Deduplication using Active
Learning”. In ACM SIGMOD, 2002.

28. W. E. Winkler. “The State of Record
Linkage and Current Research Prob-
lems”. Technical report, US Bureau
of the Census, Apr. 1999.

