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Abstract 

No single software fault-detection technique is capable of addressing all fault-detection 

concerns.  Similar to software reviews and testing, static analysis tools (or automated static 

analysis) can be used to remove defects prior to release of a software product.  To determine to 

what extent automated static analysis can help in economic production of a high-quality product, 

we have analyzed static analysis faults and test and customer-reported failures for three 

large-scale industrial software systems developed at Nortel Networks. The data indicate that 

automated static analysis is an affordable means of software fault detection. Using the 

Orthogonal Defect Classification scheme, we found that automated static analysis is effective at 

identifying Assignment and Checking faults, allowing the later software production phases to 

focus on more complex, functional, and algorithmic faults.  A majority of the defects found by 
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automated static analysis appears to be produced by a few key types of programmer errors.   

Statistical analysis results indicate that the combination of the number of automated static 

analysis faults and the number of test failures can be effective to identify problem modules.  

Our results indicate static analysis tools are complementary to other fault-detection techniques 

for the economic production of a high-quality software product. 

 

1. Introduction 

No single fault-detection technique is capable of addressing all fault-detection concerns [28]. 

One such technique is static analysis, the process of evaluating a system or component based on 

its form, structure, content, or documentation [12] and does not require program execution. 

Inspections are an example of a classic static analysis technique that rely on the visual 

examination of development products to detect errors1, violations of development standards, and 

other problems [12]. Tools are increasingly being used to automate the identification of 

anomalies that can be removed via static analysis, such as coding standard non-compliance, 

uncaught runtime exceptions, redundant code, inappropriate use of variables, division by zero, 

and potential memory leaks. We term the use of static analysis tools automated static analysis 

(ASA).  Henceforth, the term “inspections” is referred to as manual inspections. ASA may 

enable software engineers to fix faults before they surface more publicly in inspections or as test 

and/or customer-reported failures. In this paper, we report the results of a study into the value of 

ASA as a fault-detection technique in the software development process. 

                                                           
1 A human error leads to insertion of a physical fault into a software product element (e.g., specifications, design, 
code, test-case, etc.), this fault may propagate (in the form of one or more defects) to the executable code. When 
such a defect (or combination of defects) is encountered during software execution, software system may enter an 
error-state. This error-state may or may not persist, and may or may not be masked. When this error state (or a 
combination of time-separated error-states) results in an observable anomaly, we say that a failure has occurred [12]. 
In this paper, we may use terms defect and fault interchangeably. 
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The study was a research partnership between North Carolina State University and Nortel 

Networks. Since 2001, Nortel has included inspection and ASA in its development process for 

over 33 million lines of code (LOC). In our research, we examined defect data from three 

large-scale Nortel software products (over three million LOC in total) written in C/C++ that 

underwent various combinations of inspection and ASA. The goal of the study was to determine 

whether automated static analysis can help an organization economically produce high-quality 

products. 

Using the Goal-Question-Metric (GQM) paradigm [2], we broke this research goal into six 

questions. Each of these questions, including the metrics collected and analyzed to formulate the 

answer, will be discussed in detail in Section 4 of this paper. The questions are as follows: 

• Q1: Is ASA an economical means of software fault detection? 

• Q2: Will my delivered product be of higher quality if ASA is part of the development 

process? 

• Q3: How effective is ASA at detecting faults compared with inspection and testing? 

• Q4: Can ASA be helpful for identifying problem modules? 

• Q5: What classes of faults and failures are most often detected by ASA, by inspection, 

or by testing? What classes of defects escape to customers? 

• Q6: What kinds of programmer errors are most often identified via ASA? 

  

The rest of this paper is organized as follows. Section 2 discusses the background and 

related work. Section 3 discusses the implementation of ASA at Nortel, our data collection and 

analysis procedures, and limitations of our study. Section 4 reviews our findings on each of the 

six research questions. Finally, Section 5 presents the conclusions and future work. 
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2. Background and Related Work 

ASA can be used as an added filter to remove certain types of faults. ASA tools automate 

the identification of certain types of anomalies, as discussed above, by scanning and parsing the 

source text of a program to look for a fixed set of patterns in the code. ASA includes control flow 

analysis, data flow analysis, interface analysis, information flow analysis, and path analysis of 

software code. There is a range of programmer errors which can be automatically detected by 

ASA, and there are some that can never be detected by ASA [21, 28]. Additionally, one study of 

ASA tools indicates that each tool seems to find different, sometimes non-overlapping, bugs [25].   

Although detected anomalies are not always due to actual faults, often they are an indicator of 

errors.  

An important benefit of ASA tools is that they do not necessitate execution of the subject 

program yet infer results applicable to all possible executions [21].  In this context, ASA can 

complement the error-detection facilities provided by language compilers. ASA tools are 

particularly valuable for programming languages like C that do not have strict type rules, and the 

checking the C compiler can do is limited. 

There are a range of ASA tools and services deployed for C/C++ code.  For example, 

FlexeLint2 checks C/C++ source code to detect errors, inconsistencies, non-portable constructs, 

and redundant code. FlexeLint is a Unix-based tool (akin to the Window-based PC-lint). 

Reasoning3’s Illuma is an automated inspection service that finds defects in C/C++ applications. 

Organization sends their code to Reasoning who performs the ASA, removes false positives, and 

produces a report. Illuma identifies reliability defects that cause application crashes and 

data-corruption. Examples of the C/C++ error classes include: NULL pointer dereferencing; out 

                                                           
2 http://www.gimpel.com/html/products.htm 
3 http://www.reasoning.com 
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of bounds array access; memory leaks; bad de-allocation; and uninitialized variables. Klocwork4 

has two ASA tools: inForce performs its automated inspection of source code to supply metrics 

for identifying potential defects, security flaws, and code optimizations; and GateKeeper 

analyzes the source code architecture strengths and weaknesses and provides assessment details 

on code quality, hidden defects, and maintainability costs. Types of defects identified include 

actual relationships among modules (as compared to intended relationships), code clusters 

(cyclic relationships), high-risk code files and functions, potential logical errors, and areas for 

improvement. 

PREfix [18] analysis is based on the call graphs of a program which are symbolically 

executed. The PREfast [18] tool is a “fast” version of the PREfix tool where certain PREfast 

analyses are based on pattern matching in the abstract syntax tree of the C/C++ program to find 

simple programming mistakes. PREfix/PREfast are used to find defects, such as uninitialized use 

of variables, NULL pointer dereferences, the use of uninitialized memory, and double freeing of 

resources. 

An important issue with the use of ASA tools is the inevitability of the tool reporting 

significant amounts of false positives or bugs that the program does not contain upon a deeper 

analysis of the context. There can be as many as 50 false positives for each true fault found by 

some static analysis tools [23]. The FindBugs tool [10] reports a low of only 50% false positives. 

Often, static analysis tools can be customized and filters can be established so that certain classes 

of faults are not reported, reducing the number of false positives. Some organizations, such as 

Nortel, contract a pre-screening service to identify and remove false positives in the static 

analysis output prior to involvement by their own programming teams. 

3. Case Study Details 
                                                           
4 http://www.klocwork.com 
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In this section, we describe the details of ASA used at Nortel and of the products included in 

the data analysis, fault classification schemes and limitations of the case study. 

3.1. ASA at Nortel 

Beginning in 2001, Software Dependability Design (SWDD) group at Nortel began to work 

with development teams to include ASA in their development process prior to releasing products 

to customers. Depending upon the team, ASA could be done prior to inspection, after inspection 

but prior to system test, or during system test. For most product groups, the transition to using 

ASA was done in two phases: start-up and in-process.  

In the start-up phase, the SWDD group worked closely with the transitioning team to 

establish a clean baseline of the product. The most recently-released product (considered Release 

N-1) undergoes ASA. Because this initial static analysis run for this product is likely to yield an 

excessive amount of false positives, the total list of warnings is sent to a pre-screening service. 

The SWDD has an extended, usually contracted, core team of pre-screeners. Nortel has also 

developed centralized, in-house expertise in the use of static analysis tools and in the screening 

of the faults.  Similar to inspections, the efficacy of static analysis pre-screening is dependant 

upon the screeners’ skills and experiences. However, the skill and experience can be 

programming language-centric rather than domain-specific.  

The pre-screeners scrutinize the raw warnings and read code to analyze why the warnings 

are generated. Additionally, we noticed that the screeners recorded some obvious errors in the 

code that could not have been detected by the ASA tools. For example, faults with type "Logic 

Error and Typo" and "Wrong Output Message" were noted. These types of faults could not be 

caught by a tool and must have been identified by the screeners. However, only a few such faults 

were logged in the final report, and they have little impact on the overall analysis.  According to 

data of whether the ASA-identified faults are fixed or not, these pre-screeners were able to 
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reduce the false positive rate to approximately 1%. The pre-screening also may have eliminated 

some real faults, however, these false negatives are difficult to identify. 

Individual screeners submit their findings which are merged into one report.  The SWDD 

and development teams receive the post-screening report and fix the true faults that have been 

identified, beginning with the most severe faults. Some defects are left to maintenance releases 

or later releases to be fixed because they do not impact customer observable behavior or critical 

functions. Once the higher priority true ASA faults have been fixed (considered to be the release 

N), the product undergoes ASA again (on release N) to make sure the defects were fixed. The 

release N is the “clean baseline”.  The start-up phase typically took  between two and six 

months, depending on the team's release cycles. 

Once the team has been through the start-up phase, ASA is an additional fault removal filter 

in the development process, and ASA is done in-process. Only new and changed code undergoes 

ASA from this point forth, and ASA is then often run by the developers without the involvement 

of pre-screeners. Depending upon the developer, the frequency of doing ASA varies. ASA can 

be run when a component is complete, or a developer can run the ASA tools more incrementally 

as code is being developed. 

Researchers and practitioners in Japan used a similar phased approach of introducing ASA 

prior to system test [17]. At first, a support group worked closely with development 

organizations, introducing ASA into their process, developing filters to reduce false positives, 

and prioritizing ASA faults to fix. Ultimately, development groups used ASA more 

autonomously. Through this process, they reduced static analysis-detectable faults from a high of 

11.8% of system test failures to 0% [17]. 

 

3.2. Data Collection 
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We collected and analyzed fault data of three large-scale network service products. Data 

analysis consisted of faults reported by over 200 inspectors and testers, and by customers, for 

over three million LOC written in C/C++ developed at Nortel Networks. As will be discussed, 

each of these projects underwent a different combination of ASA, inspections and testing. ASA 

or inspection may or may not have been conducted, and ASA could have been done prior to 

inspection, prior to test, or during test. In this paper, we compare and contrast the results of doing 

ASA and the placement of ASA in the development process. FlexeLint, Reasoning's Illuma, and 

Klocwork's inForce and GateKeeper are some of the ASA tools and services used by Nortel. 

These static analysis tools are representative commercial tools which are used to detect errors in 

C/C++ source code [20].  In this study, the number of faults and their variety (in terms of types 

of faults) identified by Flexelint was about two times that identified by Klockwork, and about 

four times that identified by Reasoning's Illuma. 

The first two Nortel products we analyzed, henceforth called Product A and Product B, both 

underwent ASA. However, inspections were not performed on Product A. For Product B, the 

inspection faults were communicated via email and not archived. Data for several releases were 

available for the third product, which is referred to as Product C. We analyzed one release (C.0) 

that underwent inspection only because it was developed prior to instituting ASA. The following 

two releases (C.1 and C.2) underwent both ASA and inspections. In this case, release C.1 is 

considered as the release N-1 and C.2 is the release N and the “clean baseline”. 

For Products A, B, C.1 and C.2, the ASA faults were sent to a pre-screening service. The 

faults that were analyzed in our research were the true positives that remained after the 

pre-screening. For each release, we scrutinized and classified a multitude of ASA faults, 

inspection records, and Change Request (CR) records. Failures resulting in CR-s are documented 
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system test or customer-reported failures. The summary of the data that was analyzed for each 

product is shown in Table 1. 

Table 1: Summary of the data analyzed 

Product/Release ASA Inspection  CR 
A FlexeLint, Klocwork Not performed Yes 
B FlexeLint No  

(email only) 
Yes 

0 Not performed Yes Yes 
1 FlexeLint, Reasoning, Klocwork Yes Yes 

 
C 

2 FlexeLint, Klocwork Yes Yes 
 

3.3. Fault Classification Schemes 

To answer Q5, we aim to classify the defects that can be detected via ASA. Each ASA tool 

defines its own unique defect types. However, these defect types are related to the lower-level 

types of faults that can be identified by ASA, and our goal is to place faults detected by ASA in 

the scheme of the entire development process.  

Fault classification schemes (taxonomies) are intended to have categories that are distinct, 

i.e. orthogonal, to remove the subjectivity of the classifier [16]. There are many different fault 

classification schemes presented in the literature. Basili et al. [3] proposed a classification 

scheme in research on requirements defects. The scheme consists of five defect classes: 

Omission, Incorrect Fact, Inconsistency, Ambiguity, and Extraneous Information. Travassos et al. 

[27] tailored the five defect classes to Object-Oriented design in 1999. Schneider et al. [26] 

researched the defect classification scheme for fault detection in user requirement document, and 

Ackerman et al. [1] developed another defect classification scheme for requirements defects. 

IEEE also provides a classification scheme of anomalies found in software and its documentation 

[13]. The level of abstraction used in the IEEE classification scheme is not abstract enough for 

our research. Also, Fenton et al. indicated that the proposed scheme of classification of 



 10

symptoms blurs the distinction between mode and effect [8]. There is also the classification of 

Beizer [Bei90], and so on. 

The goal of IBM's Orthogonal Defect Classification (ODC) [5] scheme is to categorize 

defects such that each defect type is associated with a specific stage of development. El Emam et 

al. [6] investigated the defect classification scheme that has been applied in ODC indicating the 

use of this defect classification scheme is in general repeatable in many areas of software 

engineering. ODC has eight defect types. Each defect type is intended to point to the part of the 

development process that needs attention. The relationship between these defect types and 

process associations are shown in Table 2, which adapted from [5]. Therefore, ODC scheme can 

better reflect the development phase a defect was injected into the system. In our research, we 

analyzed software faults and failures and assigned each an ODC category. 

Table 2: ODC Defect Types and Process Associations, adapted from [5]  

Process Association Defect Type 
Design Function 
Low Level Design Interface, Checking, Timing/Serialization, Algorithm 
Code Checking, Assignment 
Library Tools Build/Package/Merge 
Publications Documentation 

 

3.4. Limitations 

There are certain limitations to the approach we used that the reader needs to understand 

before results are presented. First, we classify faults into ODC categories based upon our 

subjective assessment of fault descriptions and of the ASA defect types. This categorization is 

most subjective in our analysis of customer-reported CR failures. Frequently, causal analysis (or 

root-cause analysis) data was not available in the information provided for the CR failures. 

Therefore, most CRs were classified post hoc as Function failures due to the lack of information 
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on exactly what was fixed and the cause of the initial fault. Second, the defects were classified 

without considering the severity or impact of the potential failure. Additionally, our results 

focused on the use of three ASA tools (FlexeLint, Klockwork, and Reasoning’s Illuma), and 

therefore may not be representative of all ASA tools. Finally, the results relate to very large 

software systems written in C/C++ and therefore may not be representative of other types of 

software. 

 

4. Results 

In this section, we use the Nortel Networks data to provide insight to the six questions posed 

in Section 1. The basic goal is to determine whether ASA can help an organization economically 

produce a high-quality product. Sub-sections 4.1 through 4.6 each address one of the six 

questions. Using the GQM, in each sub-section, the question is restated and the metrics that were 

collected and analyzed are listed. Metrics data are analyzed, and the implications of this data 

analysis to the posed question are discussed. 

 

4.1. Economics of Fault Detection 

Q1: Is ASA an economical means of software fault detection? 

Metrics: Quantity of defects found by inspection; quantity of defects found by ASA; preparation 

time; meeting time; static analysis tool cost; pre-screening cost 

Finding and fixing a problem, injected in an early phase of software development, in later 

phase, can be expensive because the longer the defects resides in the product, the larger the 

number of elements that will likely be involved in a fix [4]. Ideally, one would like not to inject 

problems in the first place. Barring that, one would like to detect them in the same phase in 
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which they are generated. This is the reason why inspections and other non-execution based 

methods of fault-detection are used in practice in phases where code execution is may not be an 

option, or may increase fault-detection power. In general, inspections are considered an 

affordable fault detection technique [22, 24]. Hence, to examine the affordability of other types 

of static analysis, we compare their cost to that of inspections [7] Industrial data has shown that 

inspections are among the most effective of all verification and validation (V&V), measured by 

the percentage of faults typically removed from an artifact via the technique [24]. 

Most software inspections are performed manually. Software review meetings require 

preparation and the simultaneous attendance of all participants (or inspectors). Effectiveness of 

inspections is dependant upon satisfying many conditions, such as adequate preparation, 

readiness of the work product for review, high quality moderation, and cooperative interpersonal 

relationships [22]. Effectiveness of ASA is less dependent upon these human factors due to the 

automation. However, ASA is not free from this dependence due to the need to identify the true 

defects from all those identified by the tool. 

To determine the average cost of detecting a fault via inspections, we manually examined 

inspection records for Releases C.1 and C.2, a total of approximately 1.25 million LOC. This 

economics analysis was not performed on other products or releases because of the lack of either 

ASA faults or inspection data, as discussed in Section 3.2. 

The inspection records for Releases C.1 and C.2 contained quantifications of preparation 

time and meeting time of each inspection participant, and a profile of the faults, including 

location, type, complexity, and description identified in the inspection meeting. To obtain the 

average dollar cost of detecting a fault, we added the preparation and meeting time by all 

participants and divided by the number of faults found in the inspection, as shown in Equation 1 
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where n is the number of inspection participants. We computed the cost per fault considering an 

average annual base salary plus benefits cost of $150,000 per inspection participant5. 

Avg. Cost of Fault Detection Inspection = 

    
FoundFaultsQuantity

uteminBenefitsSalaryeparingPrTimeMeetingTimeutesmin
n

i
n∑

=

++
1

)/)(()(
          (1) 

We computed the average cost of fault detection for ASA based on the cost of the tool 

license, the pre-screening cost to eliminate false positives (on a per LOC basis which is how the 

screeners are paid), and the number of remaining true positive faults. The computation is shown 

in Equation 2: 

Avg. Cost of Fault Detection ASA = 
FoundFaultsPositiveTrueQuantity

LOCLinePerCostLicenseTool ))((+  + cost of ASA use?          

(2) 

To protect proprietary information, we only provide a ratio of the costs, as shown in 

Equation 3. 

Cost Benefit: 
Inspection

ASA

DetectionFaultofCostAvg
DetectionFaultofCostAvg

.
.

                                  (3) 

Based upon our data, the computed ratios are 0.72 for C.1 and 0.61 for C.2, indicating that 

the cost of ASA per detected fault is of the same order of magnitured as the cost of inspections 

per fault detected.. These results indicate that ASA is a relatively affordable fault detection 

technique. 

 

4.2. Final Product Quality 

                                                           
5 Based upon Nortel recourse costs. 
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Q2: Will a product be of higher quality if ASA is part of the development process? 

Metrics: Quantity of defects found by system testing; quantity of defects found by customer 

testing; churned thousand lines of code (KLOC) 

Table 3 provides a comparison of the final product quality. The measure used for final 

product quality is the number of total failures per churned KLOC (KLOCC). We use failures per 

KLOCC as a measure of final product quality because it reflects the impact of change on the 

product. In the table, we use Product C.0 as the baseline product because this product/version 

was developed prior to ASA being instituted into Nortel’s process. We normalized the failures 

per KLOCC metric relative to that of Product C.0 to protect Nortel’s proprietary quality 

information. This gives us the Relative Quality column of Table 3. 

 

Table 3: Relative final product quality 

 Relative Quality 
failures/KLOCC 

Process step 1 Process step 2 

Product B 0.25 Inspections ASA (during Test) 
Product C.2 0.32 Inspections ASA (during Test) 
Product C.06 1.0 Inspections  
Product C.1 1.25 ASA (prior to Inspections) Inspections 
Product A 1.84  ASA (during Test) 
 

 Normalized 
failures/KLOCC 

Underwent 

Product A 1.84 ASA (during Test) 
Product B 0.25 ASA (during Test), Inspections 
Product C.07 1.0 Inspections 
Product C.1 1.25 ASA (prior to Inspections), Inspections 
Product C.2 0.32 ASA (during Test), Inspections 

 

                                                           
6 Product C.0 is the baseline because it was developed prior to ASA process 
7 Product C.0 is the baseline because it was developed prior to ASA process 
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We see two interesting things: a) there is a wide variance in the relative quality of the 

products, and b) it would appear that just making ASA part of the process does not guarantee 

better quality of a product. The data suggest that doing ASA after inspections (Product B, 

Product C.2) may be more beneficial than prior to inspections (Product C.1). Additionally, the 

product with the lowest quality was Product A, which did not have any inspections in its 

development process. These results reinforce the benefits of holding inspections. 

 

4.3. Fault Detection Yield 

Q3: How effective is ASA at detecting faults compared with inspection and testing? 

Metrics: Quantity of ASA faults; quantity of inspection faults; quantity of test failures; 

quantity of customer-reported failures 

We examined fault detection yield as a measure of how well a fault detection practice 

identifies faults present in the artifact. Fault detection yield refers to the percentage of defects 

present in the code at the time of the fault-detecting practice that were found by that practice [11], 

as shown in Equation 4. 

Fault detection yield = 
PhasesFollowingbyandacticePrbyDetectedFaultsTotal

acticePrbyDetectedFaultsQuantity ))(100(        (4) 

Fault detection yield cannot be precisely computed until the product has been used extensively in 

the field, and this measure falls as more defects are found in the field. Additionally, we 

calculated the software defect removal efficiency [14] as a measure of how well a process 

removes faults before delivery. Software defect removal efficiency is the percentage of total bugs 

eliminated before the release of a product, as shown in Equation 5. High levels of customer 

satisfaction correlate strongly with high levels of defect removal efficiency [14]. 
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Defect removal efficiency = 
DetectedFailuresandFaultsTotal

FaultsforFieldExceptDetectedFaultsQuantity ))(100(       (5) 

For all products, ASA was performed during test with the exception of Product C.1. The 

faults/failures yield and process yield are shown in Table 4. For Product C.2, the fault detection 

yield of test is relatively low because, in this case, ASA was performed during the test so that the 

denominator of the Equation 4 includes the number of ASA faults. However, the Defect 

Removal Efficiency for Product C.2 is 99.4%, which is essentially the same as that of other 

releases. Additionally, the top companies can achieve a greater than 95% software defect 

removal efficiency for commercial software [14, 15]. The values of Defect Removal Efficiency 

in the table are higher than industry benchmarks indicating the high final quality of these 

products/releases. 

These results indicate that the defect removal yield of ASA is essentially the same as that of 

inspections. Execution-based testing is two to three times more effective than ASA at finding the 

defects remaining by that phase. However, the yield is higher when ASA is performed after 

inspections. One speculation for this observation is that inspections may remove enough faults to 

make it easier to discern true from false positives in the ASA output. 

Table 4: Defect removal yield for different fault removal techniques 

Product / 
Release 

Phase ASA 
performed 

ASA Faults 
(%) 

Inspection 
Faults 

(%) 

Test 
Failures 

(%) 

Defect 
Removal 
Efficiency

(%) 
A during test 23.39 Not performed N/A8 
B during test Cannot compute due to unavailability of 

inspection records 
97.76 

0 Not performed Not performed 39.55 96.73 98.02 
1 prior to inspection 31.00 20.48 98.18 99.00 

 
C 

2 during test 36.53 33.21 62.57 99.40 

                                                           
8 The test yield and process yield could not be calculated due to lack of the information on whether a failure is 
detected by test or customer. 
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4.4. Problem Module Identification 

Q4: Can ASA be helpful for identifying problem modules? 

Metrics: Quantity of ASA faults for individual modules, quantity of test failures per module, 

quantity of customer-reported failure per module 

We are missing a whole set of references to works of Khoshgoftaar et al. They have done a 

host of studies on how to predict error-prone modules (using Nortel and other data). I think we 

need to include that information somewhere and also compare our and their results. 

 

Other studies have also analyzed the ability of ASA defects to identify problem modules.  

Static analysis defects were used to predict the pre-release defect density of Windows Server 

2003 [19]. The research demonstrated a positive correlation between the ASA defect density and 

pre-release testing defect density and that discriminant analysis of ASA defects could be used to 

separate high- from low-quality components with 83% accuracy. Additionally, a preliminary 

investigation had been done on static analysis at Nortel [20]. Failure data from two releases of a 

large 800 KLOC product that underwent ASA during test were analyzed [20]. In addition, the 

ASA faults, code churn, and deleted LOC were used to form a multiple regression equation 

which was effective for predicting the actual defects of the product. Finally, discriminant 

analysis indicated that ASA faults, code churn, and deleted LOC could be used as an effective 

means of classifying fault-prone programs. We continued this research by examining the 

potential of ASA faults alone for the identification of problem modules. 

First, a Spearman rank correlation is computed on Product B to examine the relationship 

between ASA faults and the quantity of test/customer-reported failures at the module level. As a 
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commonly-used robust correlation technique [9], Spearman rank correlation can be applied even 

when the association between elements is non-linear. We examined data of product B because 

only Product B had clear module partition information. The numbers of ASA faults and 

test/customer-reported failures were counted for each module of Product B. The partition of the 

modules was provided by the development group. The correlation results of the ASA faults with 

test failures, customer-reported failures, and total failures is shown in Table 5. The relatively 

large correlation coefficient and small p-values indicate that a statistically significant 9 

correlation exists between ASA faults and test/customer-reported failures. These results indicate 

that when a module has a large quantity of ASA faults, the module is likely to be problematic in 

test and in the field. 

Table 5: Spearman rank correlation for Product B (for modules) 

  # of ASA 
faults 

# of test 
failures 

# of 
customer- 
reported 
failures 

# of total 
failures 

Correlation Coefficient 1.000 .708 .604 .730 # of ASA faults 
Sig. (2-tailed) . .000 .002 .000 

Correlation Coefficient  1.000 .686 .992 # of test failures 
Sig. (2-tailed)  . .000 .000 

Correlation Coefficient   1.000 .750 # of customer- 
reported failures Sig. (2-tailed)   . .000 

Correlation Coefficient    1.000 # of total failures 
Sig. (2-tailed)    . 

 

Afterwards, discriminant analysis was used as a tool to detect the fault-prone modules. In all 

the analysis, if there is no customer-reported failure in a module then the module is classified as 

not fault-prone otherwise it is classified as fault-prone. Discriminant analysis is a statistical 

                                                           
9 All statistical analysis was performed using SPSS®. SPSS does not provide statistical significance beyond 3 
decimal places. So (p=0.000) should be interpreted as (p<0.0005). Statistical significance is calculated at 95% of 
confidence. 
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technique used to categorize modules into groups based on the metric values. The metrics used in 

the discriminant analysis include the following: 

• the number of ASA faults; 

• the number of test failures; 

• the ASA fault density (number of ASA faults / source lines of code (SLOC)); 

• the test failures density (number of test failures / SLOC); 

• the normalized ASA faults density (number of ASA faults / churned SLOC); and 

• the normalized test failures density (number of test failures / churned SLOC). 

We built the discriminant function using either one of the above metrics only or the combination 

of two of them. Table 6 illustrates the summary of the discriminant functions built using the 21 

models. 

Table 6: Summary of the discriminant analysis 

  # of 
ASA 
faults 

# of test 
failures 

ASA 
faults 

density

test 
failures 
density 

normalized 
ASA faults 

density 

normalized 
test 

failures 
density 

Eigen .671 1.156 .702 .918 .700 1.107 # of ASA 
faults Correct 83.3 % 87.5 % 83.3 % 83.3 % 79.2 % 91.7 % 

Eigen  .916 .917 .929 .923 .984 # of test 
failures Correct  87.5 % 87.5 % 87.5 % 87.5 % 91.7 % 

Eigen   .009 .182 .288 .245 ASA faults 
density Correct   33.3 % 70.8 % 70.8 % 66.7 % 

Eigen    .180 .190 .299 test failures 
density Correct    70.8 % 70.8 % 62.5 % 

Eigen     .028 .259 normalized 
ASA faults 

density 
Correct     50.0 % 66.7 % 

Eigen      .240 normalized 
test failures 

density 
Correct      66.7 % 
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For each analysis, the eigenvalue and the percentage of correctly classified modules are 

shown in the table. The eigenvalue is a measure of how good the discriminative function is with 

respect to the classification of the data. The larger the eigenvalue, the greater the discriminatory 

power of the model. We found that the model using the number of ASA faults and the number of 

test failures, henceforth referred as Model 1, has the highest eigenvalue, indicating the 

discriminative ability of this model is the best. With this model, 87.5% of the modules are 

correctly classified. Additionally, 91.7% of the modules are correctly classified if the model uses 

the number of ASA faults and normalized test failures density, or the number of test failures and 

normalized test failures density, henceforth referred as Model 2 and 3. However, the eigenvalues 

of these two models are relatively smaller than that of Model 1. The model parameters of the 

discriminant functions for Models 1 through 3 are shown in Table 7. For all the three best models, 

no high quality module was incorrectly classified as fault-prone. However, 33% of the 

fault-prone modules were incorrectly classified as not fault-prone using Model 1 and there were 

22% false negatives among the fault-prone modules using Model 2 and Model 3. 

Table 7: Model parameters of the discriminant functions 

Model Metrics Eigenvalue False 
Positives 

False 
Negatives 

1 ASA faults; 
test failures 

1.156 0 % 33 % 

2 ASA faults; 
normalized test failures density 

1.107 0 % 22 % 

3 test failures; 
normalized test failures density 

0.984 0 % 22 % 

 

These statistical analysis results indicate that although the number of ASA faults itself is not 

a very good measure of fault-prone module identification, the combination of the number of ASA 
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faults and the number of test failures can be effective to identify problem modules. Developers 

can test and rework more on the identified fault-prone modules to improve their reliability. 

 

4.5. Classes of Faults and Failures 

Q5: What classes of faults and failures are most often detected by ASA, by inspection, or 

by system testing? What classes of defects escape to customers? 

Metrics: Quantity of ASA faults by ODC type; quantity of inspection faults by ODC type; 

quantity of system test failures by ODC type; quantity of customer-reported failures 

by ODC type 

We counted and classified (according to the ODC) the ASA and inspection faults and the 

test and customer-reported failures for the three products. In this section, we present our 

classification of the types of defects detected by each of these phases. 

 

4.5.1. ASA Detected Faults 

Each ASA detected fault had a documented problem report that contained detailed 

information such as fault descriptions, location, preconditions, impact, severity, suggestion, and 

code fragment.  The report for each problem was manually read, and then faults were classified 

according to ODC categories. Finally, the faults were counted to form a profile of faults. A 

summary of the results of this analysis is shown in Table 8. For the purpose of protecting 

proprietary information, only percentage is displayed in the tables. Because Flexelint was the 

only tool used on all three products, the table also shows a comparison of Flexelint only. 
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Table 8: Mapping of ASA faults identified by all ASA tools to ODC defect types 

 A (%) B (%) C.1 (%) C.2 (%) 
Assignment 
  -- All 
  -- Flexelint 

 
70 
73 

 
77 
77 

 
73 
53 

 
73 
71 

Checking 
  -- All 
  -- Flexelint 

 
30 
27 

 
23 
23 

 
27 
47 

 
27 
29 

Other ODC types 0 0 0 0 
 

The results shown in both tables indicate that ASA is effective at identifying two of the eight 

ODC defect types: Assignment and Checking. As we discussed in Section 2.4, Checking defects 

would most likely be injected in the low level design or coding phase while Assignment defects 

would be injected in the coding phase. Therefore, it is logical that static analysis would be able to 

detect these types of faults. 

 

4.5.2. Inspection Detected Faults 

Inspections were done with checklist independent of whether ASA was done or not. Unlike 

ASA data, not all inspection processes and results were logged formally. Some of them were 

communicated via emails and could not be analyzed. However, the minutes of inspection 

meetings for Product C were well recorded in text files via a recording tool. Product C.1 and C.2 

underwent both ASA and inspection while product C.0 underwent inspection only. Similar to the 

analysis on ASA, every inspection file was manually read, and inspection faults were counted 

and classified according to ODC. The results of this classification are shown in Table 9. Note 

that inspectors also documented comments about code readability and/or maintainability, such as 

indentation, redundant code segment, naming convention, coding standard, and programming 
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style, in the inspection records. These readability/maintainability comments account for about 

25-35% of the statements in inspection records but are not recorded in the ODC classification. 

The results indicate that inspection most often identifies Algorithm, Documentation, and 

Checking faults. Approximately 90% of all the faults belong to these three types, and the 

distribution between these three types seems to remain relatively constant irregardless of when 

ASA was performed. 

Table 9: Classification of inspection faults 

ODC Type C.0 (%) 
No ASA 

C.1 (%) 
After ASA 

C.2 (%) 
Prior to ASA 

Algorithm 30.60 38.27 37.44 
Documentation 29.85 37.65 25.99 
Checking 27.61 17.59 18.94 
Assignment 5.22 4.01 7.93 
Function 0.75 1.23 0.88 
Interface 1.49 0.62 0 
Build/Package/Merge 4.48 0.62 8.81 
Timing/Serialization 0 0 0 
 

4.5.3. System Test Failures 

A detailed CR was created for each test and customer-reported failure. Besides the static 

information similar to those in ASA fault reports, dynamic information such as failure status, fix 

and submit history, and discussion minutes, were updated frequently during the process of fault 

removal. A priority (i.e. severity) rating was also assigned to the failure by the tester or by an 

agreement between design management and test management. In general, the priority indicates 

the impact of the failure on the operation of the system. However, sometimes the priority may be 

elevated if an important customer or many customers are affected. The scale is from 1 to 4 with 1 

being the highest priority. Priority 1 means system will not perform its critical mission, and 

Priority 2 indicates the failure will affect service or will have significant functional impact. The 
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remaining lower priority CRs (priorities 3 and 4) report the failures that do not impact a release 

or milestone declaration. 

Because only the CR data for Product B contained clear and detailed fix information, we 

investigated the test failures and customer-reported failures for Product B. The CR data for 

Product A did not distinguish between system test and customer-reported failures. The CR data 

for Product C did not provide enough information for distinguishing by ODC. We examined CRs 

and scrutinized the description of the problem being addressed by the updates and the description 

of the resulting code fix to classify the failures for Product B. The results of our ODC 

classification of test failures can be found in Table 10. Overall, eighty-five percent of the test 

failures are of a high priority. The results indicate that a large majority of test failures is in 

Function and Algorithm types. 

Table 10: Priority summary of CR data for Product B (Test Failures) 

Priority (%) Defect Type 
1 2 3 4 Total 

Function 1.21 48.89 5.63 0 55.73 
Assignment 0 3.22 0.60 0 3.82 
Interface 0 0.20 0 0 0.20 
Checking 0 0.80 0 0 0.80 
Timing/Serialization 0 0 0 0 0 
Build/Package/Merge 0 1.61 0.10 0 1.81 
Documentation 0 0 0 0 0 
Algorithm 0 29.78 7.85 0 37.63 
Total 1.21 84.51 14.29 0 100 

 

Customer-reported failures were classified for Product B as well. The summary of the results 

is shown in Table 11. Ninety-seven percent of the customer-reported failures are high priority 

failures. 
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Table 11: Priority summary of CR data for Product B (Customer-Reported Failures) 

Priority (%) Defect Type 
1 2 3 4 Total 

Function 24.24 42.42 3.03 0 69.70 
Algorithm 6.06 24.24 0 0 30.30 
Other ODC types 0 0 0 0 0 
Total 30.30 66.67 3.03 0 100 

 

The results indicate that most all failures surfaced by customers can be classified as 

Function or Algorithm defects. However, this phenomenon may be the results of a lack of data in 

the CR record to more accurately classify the defect and when the defect might have been 

injected. Function defects are injected in the design phase and can be hard to detect until system 

testing when functionality is validated against requirements. Algorithm defects are injected in the 

low-level phase and had the potential to be found in earlier V&V practices. 

The comparison between different fault removal filters is shown in Table 12. The results 

indicate that ASA tools predominantly identify two ODC defect types: Checking and Assignment. 

Approximately 90% of all the faults identified by inspection belong to Algorithm, Documentation, 

and Checking faults. A large majority of test/customer-reported failures is in Function and 

Algorithm types. Additionally, if ASA is performed prior to inspection (such as was done with 

Product C.1), fewer Checking faults are identified by the inspection. 

Table 12: Mapping of defects found by different filters to ODC defect types 

Defect Type ASA 
(%) 

Inspection 
(%) 

Test  
(%) 

Customer 
(%) 

Function 0 1.09 55.73 69.70 
Assignment 72.27 4.37 3.82 0 
Interface 0 0.87 0.20 0 
Checking 27.73 20.52 0.80 0 
Timing/Serialization 0 0 0 0 
Build/Package/Merge 0 1.77 1.81 0 
Documentation 0 35.37 0 0 
Algorithm 0 36.03 37.63 30.30 
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4.6. Programmer Errors 

Q6: What kinds of programmer errors are most often identified via ASA? How often does 

ASA find these errors? 

Metrics: Quantity of ASA faults classified by defect type 

To avoid the impact of definition difference in defect types among different static analysis 

tools, data of only one tool was analyzed to answer this question. Here we chose Flexelint data 

because Flexelint was the only tool that was used on all three products and the types of faults 

identified by Flexelint was much more than those identified by the other two tools. We merged 

the same or very similar static analysis faults for all the three products to perform an aggregate 

analysis of the types of defects identified by the tool. The detailed summary of fault types is 

shown in Appendix A, ranked with most frequent faults at the top of the list. While FlexeLint has 

more than 800 defect types, only 33 of these were found in our projects. Severity information 

was added by the pre-screeners. The faults were given one of the following severity ratings based 

on their potential failure impact. 

 Critical: a fault that could cause an application core dump, service outage, or system 

reboot; 

 Major: a fault that could cause a segmentation fault or performance degradation, such 

as memory leaks, resource leaks, data corruption; 

 Minor: a fault that may result in erratic and unexpected behavior but may have little 

impact on the system; and  
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 Coding Standard: code that violates a coding standard that has the potential to 

decrease the maintainability and readability of the software.  (Note:  No coding 

standard violations were identified.) 

Table 13: Pareto effect in ASA faults 

 % all 
faults 

% critical 
faults 

% major  
faults 

% minor 
faults 

Top 1 fault: 
Possible use of NULL Pointer 

45.92 60.86 37.96 46.32 

Top 5 faults: 
Top 1 fault +  
Possible Access Out-of-Bounds 
(Custodial) pointer not freed or returned  
Memory leak 
Variable not initialized before using 

77.26 85.11 76.56 74.24 

Top 10 types: 
Top 5 faults +  
Inappropriate deallocation 
Suspicious use of ; 
Data overrun 
Type mismatch with switch expression 
Control flows into case/default 

89.87 90.42 89.42 90.04 

  

Our results are consistent with the 80-20 rule/Pareto Principle in that a great majority of the 

faults identified by ASA is produced by a few key types of programmer errors, as shown in Table 

13. “Possible use of NULL pointer” is the most often identified fault via ASA, accounting for 

approximately 46% of all faults. About 90% of faults are focused on ten fault types, no matter 

what level of severity. To improve the code quality in future projects, we can use this information 

as feedback to programmers so that they pay more attention to these specific types of errors. 

A limitation of this analysis is that the screening of the ASA output and the assigning of a 

severity rating is a manual process and subjective. Different products were screened and 

evaluated by different screeners. Therefore, the same or very similar fault might be evaluated as 

different severity. For example, the fault “Possible Use of Null Pointer” occurred many times in 
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all the three products. Most of the faults in this type were assessed as Critical faults in Product A 

and Product C.1. However, screeners for Product B deemed 72.3% of faults in this type were 

Minor faults, and 92.8% of faults in this type were considered Major faults in Product C.2. 

5. Conclusions  

To examine the value of automated static analysis, we analyzed the automated inspection 

faults, manual inspection faults, and CR data for three large products. Several valuable 

conclusions can be drawn from our analysis as follows. These results can be beneficial to the 

understanding and utilization of automated static analysis. Economic analysis shows that ASA 

has a lower average fault detection cost than inspection indicating that ASA is an economical 

means of software fault detection. 

• Although we can not conclusively illustrate that a product will be of higher quality if 

ASA is part of the development process, our analysis reinforce the benefits of holding 

inspections. 

• The defect removal yield of ASA essentially the same as that of inspections. Testing is 

two to three times more effective than ASA at finding the defects remaining by that 

phase. 

• The statistical analysis results show that although the number of ASA faults itself is not a 

very good measure of fault-prone module identification, the combination of the number 

of ASA faults and the number of test failures can be effective to identify problem 

modules. 

• The mapping of ASI faults to ODC defect types indicated that ASI tools predominantly 

identify two ODC defect types: Checking and Assignment. 
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• Approximately 90% of all the faults identified by manual inspection belong to Algorithm, 

Documentation, and Checking faults. 

• A large majority of test/customer-reported failures is in Function and Algorithm types. 

• The 80-20 rule/Pareto effect found in faults and failures distribution analysis can be 

considered as useful feedback to help us improve the code quality in future projects. 

In conclusion, our results indicate that ASA is an economical complement to other verification 

and validation techniques. 

6. Future Work  

In this research, our results focused on the use of three ASA tools for C/C++ programs. We 

will examine the defect data identified by more static analysis tools for other programming 

languages besides C/C++. Also, we will enhance economics analysis by using more data and 

more refined methods or models considering the severity or impact of the defects. Additionally, 

the raw output generated by static analysis tools can be examined to find out whether there are 

common factors that lead to a raw ASI citing becoming a true positive defect, and whether there 

is an indicator in the raw tool output that could help focus the screening. 
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Appendix A.  Detailed classification of static analysis faults ordered by total occurred 

times (% of total static analysis faults found)10 

Fault Description Critical 
(%) 

Major 
(%) 

Minor 
(%) 

Total 
(%) 

ODC 
Classification 

Possible use of NULL Pointer 11.91 14.73 19.28 45.92 Assignment 
Possible Access Out-of-Bounds 0.49 3.46 6.18 10.13 Checking 
(Custodial) pointer has not been freed or 
returned 

1.04 6.87 0.20 8.11 Assignment 

Memory Leak 2.92 3.76 0.79 7.46 Assignment 
Variable not initialized before using 0.30 0.89 4.45 5.64 Assignment 
Inappropriate deallocation 0.74 1.88 0.79 3.41 Assignment 
Suspicious use of ; 0.10 0.35 2.03 2.47 Checking 
Data Overrun 0.05 0.15 1.93 2.13 Checking 
Type mismatch with switch expression 0.10 1.93 0.15 2.18 Checking 
Control flows into case/default 0.05 0.69 1.68 2.42 Checking 
Possibly passing a null pointer to function 0.35 0.00 1.04 1.38 Checking 
Ignore return value of function 0.10 0.84 0.40 1.33 Assignment 
Passing null pointer to function 1.09 0.00 0.00 1.09 Checking 
Unusual use of a Boolean 0.00 0.54 0.54 1.09 Checking 
Pointer member neither freed nor zero'ed by 
destructor 

0.00 0.94 0.00 0.94 Assignment 

Loop not entered 0.00 0.20 0.59 0.79 Checking 
Unreachable code 0.00 0.30 0.49 0.79 Checking 
Boolean argument to relational 0.00 0.30 0.05 0.35 Checking 
Unparenthesized parameter 0.00 0.00 0.35 0.35 Checking 
Boolean  test of assignment 0.00 0.30 0.00 0.30 Checking 
Possibly negative subscription 0.00 0.25 0.05 0.30 Checking 
Constant value Boolean 0.00 0.00 0.25 0.25 Checking 
Boolean within 'String' always evaluates to 
[True/False] 

0.00 0.10 0.10 0.20 Checking 

Referencing data from already freed pointer 0.20 0.00 0.00 0.20 Assignment 
Logic Error and Typo 0.05 0.10 0.00 0.15 Checking 
Possible division by 0 0.00 0.15 0.00 0.15 Checking 
Non-negative quantity is never less than zero 0.00 0.00 0.10 0.10 Checking 
Null Pointer Dereference 0.05 0.05 0.00 0.10 Assignment 
Variable Depends on Order of Evaluation 0.00 0.00 0.10 0.10 Checking 
Dereferencing a constant string to a pointer 0.05 0.00 0.00 0.05 Assignment 
Resources not freed 0.00 0.05 0.00 0.05 Assignment 
Unrecognized format 0.00 0.00 0.05 0.05 Checking 
Wrong Output Message 0.00 0.00 0.05 0.05 Checking 
Total 19.57 38.80 41.62 100.00  
 

                                                           
10 Note: Static analysis tools assign a probability to certain warnings for certain defect types. For example, defect 
type "Access of Out-of-bounds" has three different probabilities of warnings (Likely, Possible and Conceivable). 
We grouped all these into one type - "Possible Access of Out-of-bounds". 


