
Deterministic Prefetching for Container-Managed Persistence

Ahmet S. Bilgin1, Rada Y. Chirkova1, Munindar P. Singh1, Timo J. Salo2

1: North Carolina State University, Raleigh, NC 27695, USA
2: IBM, RTP, NC 27703, USA

{asbilgin@ncsu.edu, chirkova@csc.ncsu.edu, singh@ncsu.edu, tjsalo@us.ibm.com}

Abstract

Modern information system architectures place
applications in an application server and per-
sistent objects in a relational database. In this
setting, we consider the problem of improv-
ing application throughput; our proposed solu-
tion uses data prefetching to minimize the total
data-access time of an application, in a man-
ner that affects neither the application code nor
the backend DBMS. Our methodology is based
on analyzing and automatically merging SQL
queries to produce query sequences with low
total response time, in ways that exploit the
application’s data-access patterns. The pro-
posed approach is independent of the applica-
tion domain and can be viewed as a component
of container-managed persistence that can be
implemented in middleware.

This paper describes our proposed frame-
work for using generic data-access patterns in
merging queries, to derive query sequences with
improved total data-access time. For each
guideline that is discovered, we list the rules
to determine when the specific guideline is ap-
plicable, its key parameters, and the experi-
mental results in terms of the improved data-
access time. The approach is evaluated in
the context of financial and manufacturing do-
mains, which support the kinds of natural con-
ceptual relationships where this approach is
valuable.

This research is supported under NCSU CACC
Grant 11019

1 Introduction

Three-tier application architectures place busi-
ness logic on an application server and the nec-
essary persistent objects on backend relational
database management systems (RDBMSs). A
major performance problem is that application
object models are inherently navigational. Ob-
jects have references or relationships to other
objects, which applications follow one at time.
The navigational characteristics of applications
increase the number of roundtrips in three-tier
application architectures. These roundtrips re-
sult in unacceptable physical disk access and
network processing overhead.

In current practice, programmers can spend
inordinate amounts of time tuning their ap-
plications to reduce the abovementioned over-
head; an additional drawback of tuning is that
it must be repeated each time the database
schema or application logic are modified.

An alternative way to reduce the data-access
overhead is to reduce the number of database
roundtrips required to fulfill an application’s
request for stored objects. There are two types
of possible approaches: caching and prefetch-
ing. Caching [8, 16, 12, 13] refers to storing
recently accessed objects, thereby avoiding un-
necessary requests to the database. Prefetch-
ing [9, 2, 17, 10, 18] involves fetching data
based on a prediction of an application’s fu-
ture requests. Both caching and prefetching
can result in significant payoffs in data-access
performance [15, 1]. For instance, studies of
prefetching have reported improvements of sev-
eral times by prefetching multiple tuples at a
time instead of just the one that is requested
[2]. However, to successfully apply prefetching

requires determining the prefetching quantity,
i.e., the number of objects or pages that should
be prefetched.

Prefetching techniques are classified into
three categories [14]:

• Deterministic prediction techniques use a
fixed a strategy. Sequential prefetching
creates threads for queries that return
large quantities of data sequentially from
a single table. List prefetching reads the
data according to the index structure, so
that data pages do not need to be consec-
utive. These techniques are used by com-
mercial data servers and by object man-
agers or containers in application servers.

• Object structure-based prefetching tech-
niques predict the access via pointers from
objects to other objects, which are mostly
used in OODBMSs. In object structure-
based prefetching, the middleware object-
manager determines what to prefetch in
response to navigational access [11, 2].
Here, interrelated objects are modeled as
complex objects using the reference and
collection attributes. However, interre-
lated data is modeled via foreign keys and
the multiplicity of relations in relational
schema.

• Statistical prediction techniques generate
probabilistic information about future ac-
cesses by analyzing past accesses.

We develop deterministic prefetching, an
adaptive approach for reducing the number of
data-access roundtrips [3, 5]. This approach
combines deterministic and object structure-
based prefetching techniques for RDBMSs.
It provides guidelines that can be used to
automatically and iteratively improve data
throughput without modifying the application
code or the DBMS. Consequently, this ap-
proach can be used in middleware in managed
object environments. Instead of making (prob-
abilistic) predictions of future queries of an ap-
plication, we focus on merging (augmenting)
the individual queries efficiently to accommo-
date the result of the subsequent queries under
the assumption of perfect knowledge for future
queries. We name these augmented queries
prefetch queries.

The basic primitive step in deterministic
prefetching is to process SQL queries as re-
quested by an application to produce a se-
quence of queries that are sent to the back-
end DBMS. The typical way to process input
queries is to merge into a large query. Whether
such merging is appropriate and, if so, which
kind of merging is appropriate depends on the
queries generated by an application and the
schema of the database. The measure of perfor-
mance we consider here is total response time.
Consequently, the goal is to figure out when
what strategy would be desirable. What makes
a query a suitable candidate for merging with
other queries is the central question addressed
by this thesis.

The proposed framework comprises interac-
tive query exploration and automatic query
analysis based on application behavior, and
can be used as a component of autonomic self-
tuning data-access systems for data-intensive
applications.

Contributions We develop our approach for
settings where an application’s likely next few
queries are known beforehand (e.g., canned in-
terfaces), and the same query is expected to be
reissued many times. Application domains that
will benefit from our approach include health
care, finance, human resources, and OLTP, in
general. For these settings, we propose a set of
techniques for

• Automatically analyzing an application’s
data-access patterns.

• Using the results of the analysis and guide-
lines to prefetch the answers to future
queries using sequences of prefetch SQL
queries that yield low total response time.

Our results are not meant to be used in indi-
vidual applications to rewrite queries in a sta-
tic fashion. Instead, our objective is to create
application-independent techniques that mid-
dleware would use as the basis for providing an
online, adaptive way of implementing prefetch-
ing. Thus, our contributions are to autonomic
computing, namely to the development of au-
tomated systems in managed object environ-
ments, with the ability to iteratively analyze
data-access patterns and choose appropriate

2

guidelines for merging (or augmenting) appli-
cation queries, at runtime and with no human
intervention. The main feature of our approach
is the discovery and use of guidelines for se-
lecting, based on an application’s access pat-
terns and additional parameters, efficient ways
of merging the application’s data requests into
prefetch statements.

2 Problem Formulation
and Assumptions

Applications usually are structured: they ac-
cess objects whose relationships are expressed
as associations in the schema of the underlying
database. Stored data is accessed according to
these associations. Many important applica-
tions, including those in health care, finance, or
human resources, use the same query templates
repeatedly. For example, an application can
request the due date of a credit-card payment
after requesting the balance; or it can request
the transactions of the same card in the last
billing period. Such commonplace associations
and dependencies form a basis for formulat-
ing useful application-independent data-access
patterns. Moreover, in many applications, the
likely next few queries are known beforehand.

We confine ourselves to settings where persis-
tent objects are stored in a RDBMS and where
an application’s likely upcoming are known be-
forehand. We consider the problem of reducing
the number of data-access roundtrips in fur-
nishing the application’s data requests.

Specifically, our objective is to come up with
a set of general guidelines and techniques for
automatically analyzing the data-access pat-
terns of each given application and construct-
ing a sequence of prefetch queries with low total
response time. In simple terms, the key chal-
lenge for prefetching is determining the quan-
tity. In our approach, this translates into de-
termining “which queries” to merge and “how”
to merge them.

2.1 Prefetch Queries

We assume that applications submit their data
requests as unnested SPJ (select-project-join)
SQL queries. Each such set of queries can

be partitioned into sets of queries; each of the
sets in the partition can be combined into one
prefetch query and submitted to the DBMS.
Our goal is to find the partition Sn of a given
query set W of n queries such that it has min-
imal total response time on the database and
brings at least the correct answer. But finding
optimal partitions is not tractable. As shown
in [4], the number of partitions for a query se-
quence with n queries increases exponentially
with n. Thus it is infeasible to check the re-
sponse time of all partitions to find the optimal
partition.

2.2 Patterns of Query Sequences

Accordingly, we develop a heuristic approach,
which proposes guidelines that suggest prefetch
query partitions based on an analysis of the
pattern correlations in the query sets, the cost
of bringing redundant or useless (false) data
to the requester, the size of the buffer cache,
which accommodates the output tuples, and
the cost of the merge operation that is required
to process the set of queries together.

Determining the efficient (near-optimal) or
optimal prefetch query partitions requires to
answer how and when to merge the individual
queries. To answer the both questions, we first
classify the queries according to the pattern
correlation set they are member of. This classi-
fication helps us in determining candidate mer-
gable queries, because merging queries from
different sets is either not effective or provides
very small improvement. Query sequences in
navigational applications exhibit the following
three basic different patterns:

Browse pattern, where a sequence of related
queries, whose input depends on the out-
come of the previous queries, are issued.
The previous (outer query) will have an
outcome, which consists of more than one
tuple. However, the subsequent query or
queries can only have input parameter(s),
which corresponds to the attribute(s) of
only one output tuple from the previous
queries, e.g., Q1, Q2, and Q1, Q7. a num
is an output column for Q1, and this out-
put is used as input variable for Q2. The
same situation holds for ag id between Q1

and Q7.

3

Input pattern, where queries have common
input parameters, e.g., Q1 and Q9 has the
same input parameter value for customer
id.

Output pattern, where queries have com-
mon output parameters that is the queries
either have common output variable which
is primary or foreign key, or they have
an output variable, which references the
other, e.g., Q1 and Q6, have output vari-
ables where a num to references a num.
This pattern is especially observed when
the sequence of queries return the same
foreign key parameters from different ta-
bles for different input parameters;

Example query set In the following query
sequence, Q1 retrieves the account numbers
and corresponding agreement ids of a cus-
tomer with id = 4000. After looking up
the answer of Q1, for specific account num-
bers a num1, a num2, and a num3, the re-
lated information about the transactions on
these accounts are retrieved by Q2, Q3, and Q4.
Moreover, the product ids, and other accounts
which are related to account number a num3,
are also retrieved by Q5, and Q6. Also for
agreements ag id1 and ag id2, the agreement
amount is returned. Then, for the same cus-
tomer, his orders and the items he ordered, are
retrieved. For some or all of the items, this
customer ordered, the components information
is retrieved, and for one of these components
(b component id1), its suppliers and the quan-
tity supplied are also retrieved by Q13.

Q1 : select a num, ag id from AccountRole,
Account where ar customer id = 4000
and ar a num = a num

Q2 : select at id, at amount from Account-
Transaction where at a num= Q1.a num1

Q3 : select at id, at amount from Account-
Transaction where at a num= Q1.a num2

Q4 : select at id, at amount from Account-
Transaction where at a num= Q1.a num3

Q5 : select product id from AccountProducts
where ap a num= Q1.a num3

Q6 : select a num to from AccountRelations
where a num from= ”Q1.a num3”

Q7 : select agreement amount from Agree-
ment where ag id= Q1.ag id1

Q8 : select agreement amount from Agree-
ment where ag id= Q1.ag id2

Q9 : select ol order id, ol item id from Or-
ders, Orderline where o customer id =
4000 AND o id = ol order id

Q10 : select b component id from Bom where
b assembly id= Q9.ol item id1

Q11 : select b component id from Bom where
b assembly id= Q9.ol item id2

Q12 : select b component id from Bom where
b assembly id= Q9.ol item id3

Q13 : select supplier id,
qty demanded from Supplier component
where comp id= Q12.b component id1

In the above query sequence example, Q1

forms a browse pattern on the same input pa-
rameter and same output parameters but with
different values for multiple queries, e.g., Q1

and the query set {Q2, Q3, Q4}, Q1 and the
query set {Q7, Q8}, Q1 and Q5, or Q1 and Q6

. Bowman and Salem [7] define a nested pat-
tern as the existence of multiple browse pat-
terns on the same input parameters, but do not
give detailed formalization of this pattern, e.g.,
Q1 has browse pattern correlation type with all
the queries from Q2 to Q8, but all these cor-
relations are different, because of the different
output parameters of the different queries. We
introduce and formalize the browse pattern as
a generalization of the nested pattern in Sec-
tion 4. The browse pattern is especially pop-
ular in web-based applications where a look-
up query is issued first and the detailed infor-
mation about one of the objects returned by
this look-up query, is requested in the subse-
quent queries. The query sets {Q1, Q9} or
{Q4,Q5,Q6} is an example for the input pat-
tern because both queries have the common
customer id or a num values as an input pa-
rameter value. The required condition to have
input pattern correlation for the given queries

4

is to have at least one common input parame-
ter among the queries and not to have browse
pattern correlations among these queries. Our
main focus in this project is the query se-
quences that has browse and input pattern cor-
relations. These patterns are easier to han-
dle and provides enough opportunity to merge
the queries. The output pattern is also an
important query pattern for business applica-
tions, but semantic caching or predicate-based
caching mechanisms [13, 8], where the database
is accessed only for the remainder of the sub-
sequent query, already deals with this pattern
correlation type.

There are three main questions that is re-
quired to be answered to determine the size and
the structure of the prefetched data:

• How much to prefetch?

• How deep to prefetch?

• In what direction to prefetch?

Query pattern correlations are useful in terms
of providing hints to answer these questions.
The input pattern provides us information
about how much more data for the given object
can be prefetched efficiently through breadth-
first traversal of the tables in the database;
and the browse pattern provides us information
about how deep we can prefetch data starting
from a root object through depth-first traver-
sal.

In a query sequence, any mixture of the
above patterns can be also observed among
subsequent queries. A query can be a mem-
ber of many patterns with different query sets,
e.g., Q4 has the browse pattern with Q1 and
the input pattern with Q5. Detecting the pat-
terns in the query sequence is important to de-
termine how to merge subsequent queries to
achieve better response time by (1) obtaining
at least the correct answer (can be more, but
not less!), and (2) decreasing the performance
implications of coding and executing the pred-
icates, joins, or union in merged queries.

3 Query Merging Opera-
tors

Forming prefetch query sequences (partitions)
requires merging the simple related queries to
bring the data that is requested and that will
be requested in the future at once. We study
three different query merging operators:

Simple-Inner-Join (SIJ) contains columns
for all of the projected tables involved in
the queries. However, in any one row
of the output, output columns from mul-
tiple queries will be filled. However, if
there is a 1:N or M:N relationship among
the join keys of merged queries, the result
data size of the merged query will explode
and data column values will be replicated
many times. We further classify SIJ as:

• complete SIJ (c-SIJ), where both the
outer query and the correlated inner
query set is merged. e.g., the outer
query Q1 and the inner query set
{Q2, Q3, Q4} is merged

• partitioned SIJ (p-SIJ), where only
the queries in the same query set is
merged, e.g., the queries in the set
{Q2, Q3, Q4} is merged

Outer-Join (OJ) contains columns for all
of the projected tables involved in the
queries. However, in any one row of
the output, output columns from multi-
ple queries can be filled with NULLs. Ta-
bles or inline views in the FROM clause
of an outer join can be classified as either
preserved row or NULL-supplying. The
preserved row refers to the table or in-
line view that preserves rows when there
is no match in the join operation. There-
fore, all rows from the preserved row table
that qualify against the WHERE clause
will be returned, regardless of whether
there is a matched row in the join. The
NULL-supplying table or inline view sup-
plies NULLs when there is an unmatched
row.

Outer-Union (OU) contains columns for all
of the projected tables involved in the
queries and an extra column as a query

5

Q9 Q10(i1) Q11(i6) Q12(i2) Q13

o1 i1 b1 b2 b3 s1 10
o1 i4 b2 b4 b7 s2 20
o2 i2
o3 i3

Table 1: Result table for Q9, Q10, Q11, Q12 and
Q13, where order id and item id is returned for
customer id 4000, component id is returned for
Q10, Q11, and Q12 with input parameter values
i1, i4, and i2, respectively. Finally supplier id
and qty demanded is returned for b3.

number indicator. However, in any one
row of the output, only output columns
from a single query will be filled; all other
columns will be null. Basically, the entire
Outer Union query consists of the union
over a set of smaller SQL queries.

Table 1 shows a sample output for the last
five queries listed in Section 2.2. In the out-
put table, we have three orders and the items
ordered by a customer (Q9). For three items
ordered, we also bring the related components
listed by (Q10, Q11, Q12), then for one of the
components, let’s suppose for b3, we have a sup-
plier and the quantity listed by (Q13). If we
use SIJ to merge for Q9 and Q10, then we can-
not bring the correct answer for the first query,
where we either bring the components for all
the items ordered or we only bring the data
related to i1. In the later case, we miss the
other items ordered by orders o1, o2 and o3,
requested by the original query Q9. Bringing
more-than-requested data can be acceptable—
depending on the size of this data, but less-
than-requested is unacceptable. Under the per-
fect knowledge assumption, where we know the
input parameters of the future queries, we can
use left outer-join or outer-union to bring the
exact data requested by the original queries.
We further classify the data that is brought by
the prefetch queries as (1) right data, which is
the requested data; (2) false data, which will
never be used; and (3) repeated data, which
was already brought. If we decide to use SIJ to
merge the queries, then we must also consider
the size of the false and repeated data.

SIJ and left OJ can be used for merging
queries with browse pattern, full OJ can be

SIJ (All items) SIJ (1 item)
o1 i1 b1 o1 i1 b1

o1 i1 b2 o1 i1 b2

o1 i4 b2

o1 i4 b4

o2 i2 b3

o2 i2 b7

o3 i3 b5

Table 2: Result table for the merged queries
Q9, Q10, Q11, and Q12. The left three columns
list the output that is formed via c-SIJ that
brings all the items and their related compo-
nents ordered by a customer; the right three
columns list the same output for only one item
ordered by a customer

Left OJ Outer-Union
o1 i1 b1 9 o1 i1 null
o1 i1 b2 9 o1 i4 null
o1 i4 null 9 o2 i2 null
o2 i2 null 9 o3 i3 null
o3 i3 null 10 null null b1

10 null null b2

Table 3: Result table for the merged query
Q9 and Q10 via left OJ(Outer-Join) and
OU(Outer-Union). For the OU, we also add
an extra column to index the output with the
query number

6

used for the queries with either input or output
pattern, and OU can be used for all patterns.
Table 3 lists the output of the prefetch query
{{Q9, Q10}} formed via left OJ, and OU.

Among the above query merging operators,
full OJ is the most expensive one, because it
includes SIJ, projection, difference, and union
operators. We replace full OJ operator by the
OU operator, because it is a more basic, less-
costly operator and can do the same job. We
explain the cost model for each operator in the
Section 5. We can also use inline views while
constructing queries with outer join. The inline
view is a construct in SQL, where you can place
a query in the SQL FROM, clause, just as if the
query was a table name. A common use for
inline views is to simplify complex queries by
removing join operations and condensing sev-
eral separate queries into a single query. Inline
views are evaluated at runtime, and unlike nor-
mal views are not stored in the data dictionary;
they’re effectively named sub-queries that de-
rive their rows at run-time during the execution
of the outer query.

4 Detection of Parameter
Correlations

To detect the query patterns among queries in
a given query set, we first need to monitor the
application data request stream, and track the
input and output parameters of queries in the
application‘s data request stream. This appli-
cation data request stream can be either rep-
resented statically as a trace file, e.g., JDBC
trace driven by the DB2 Universal JDBC driver
DB2SystemMonitor interface, or dynamically
via SQL-Relay [19, 20], which is a persis-
tent database connection pooling, proxying and
load balancing system between the client appli-
cation and data server.

After tracking the input and output parame-
ter correlations of the queries, we use a list of
the following data structures to store the query
features and the pattern correlations among
queries:

• Ij
i holds the table name, column name,

value, value provider data for the jth in-
put parameter of the ith query. The value

variable holds the value of the input para-
meter, and value provider holds the cor-
related output parameter variables repre-
sented with On

m, which means that nth

output column of the mth query provides
the input.

• Oj
i holds the table name, column name

data for the jth output parameter of the
ith query.

• |Oi| stands for the number of output at-
tributes of the ith query.

• |Ii| stands for the number of input para-
meters of the ith query.

We only consider the primary and foreign
keys of the tables as entries in the input and
output parameter vectors, because we only con-
sider the small-sized queries that brings the
data according to the traversal of the keys in
the tables.

4.1 Building the Query Pattern
List

We use two different data structures to rep-
resent the patterns that are observed in a
given query set: (1) a three-dimensional vec-
tor BPi,j,index to represent the browse pattern
correlations of the given query set with corre-
sponding I and O vectors, and (2) a HashMap
from an input value to a query set that has
an input pattern for this value, which is repre-
sented as IHM(value) = {query list}. Each
BPi,j,index holds a node with the following vari-
ables, which hold the information about the
indth browse pattern correlation of the jth out-
put parameter of the ith query:

• table name is the name of the table of the
queries that have browse pattern.

• column name is the name of the column
of the queries that have browse pattern

• query list is the list of the index of the
queries that have browse pattern.

IHM(value) = {query list} is the mapping
of an input value to a query set, which is used
to list the input patterns among queries. We
assume that each key column of the tables have

7

a different value domain to have a such a map-
ping from input values.

We build the two main data structures BP
and IHM to represent browse and input pat-
tern correlations, respectively. We design an
algorithm [6], where for a given query sequence
with size n, starting from the last query in the
sequence until reaching to the first query, that
fills up the Vector and HashMap for each pos-
sible patterns that can be observed among the
columns of the queries.

The algoritm, which is explained in detail
in [6], for detecting the pattern correlations,
listed, takes O(n2) time if the number of output
columns and input parameters is small com-
pared to the number of queries. By this algo-
rithm, we first detect the browse pattern among
the output columns and input parameters of
the queries, and then we look for the input pat-
tern among the input parameters of the queries.
There can be multiple browse pattern correla-
tion for an output column of any query, where
each correlation is represented by an index in
BPij. We do not store column or table in-
formation for input pattern correlations, be-
cause as explained in the merging algorithm,
the queries with such correlations are merged
via Outer Union operator, which does not re-
quire this information. However, this algorithm
can be easily extended to hold such informa-
tion.

After the building phase of BP and IHM ,
we initialize a query set graph, which is a di-
rected graph represented by a double adjacency
list, where each node has two type of links to
other adjacent nodes: (1) vertical link connects
the queries with browse pattern correlations,
and (2) horizontal link connects the queries
with input pattern correlations. Each node
represents the index of the query, and each
query can have multiple vertical and horizon-
tal links, where each link also has an identifier
data to point to the related indexes or keys of
BP and IHM , respectively.

We will have the following entries in BP and
IHM for the sample query sequence listed in
Section 2.2:

• BP1,1,1=
(AccountTransaction, at a num, {2, 3, 4})

• BP1,1,2=

(AccountProducts, ap a num, {5})

• BP1,1,3=
(AccountRelations, a num from, {6})

• BP1,2,1=(Agreement, ag id, {7, 8})

• IHM(4000)={1, 8}

• BP9,2,1=
(Bom, b assembly id, {10, 11, 12})

• BP12,1,1=
(Supplier component, comp id, {13})

• IHM(Q1.a num3)={4, 5, 6}

4.2 Merging the Queries

After determining the query merging operator
and the queries that are to be merged, we use
the merge(lhs, rhs, pattern indicator, op type)
function listed in Appendix A to merge them,
which takes four arguments. The op type de-
notes type of the operator, which can be com-
plete SIJ, partitioned SIJ, left OJ, or OU.
The complete SIJ option is used to merge the
query with the queries in its query list of the
corresponding BP entry, and the partitioned
SIJ is used only to merge the queries in the
query list.

The merge function merges multiple queries
if the SIJ operator is used; otherwise it
merges only two queries at a time. The
pattern indicator is the indicator to determine
whether there exists a browse pattern or in-
put pattern correlation among the queries that
is to be merged; 0 is used for input pat-
tern and 1 is used for browse pattern. It
also indicates whether to use BP data struc-
ture to obtain the right-hand-side query set.
The lhs is the left-hand-side query, which
can be the outer query if flag is 1 or just
the first query to be merged if the flag is
0. The rhs is the right-hand-side query
set, which is the list of 〈column index, index〉
pairs if flag is 1, otherwise it is just a single
query index, which will be the second query
to be merged. The 〈column index, index〉
pairs are used to determine the query list of
the BPlhs,column index,index. In the following
merge algorithm, we have the variables to store
the select, from, and where part of query writ-
ten in SQL (We only list the variables that

8

is used to store select part of the queries,
the same indices also apply for the from and
where part of the queries written in SQL).

• selecti is the select part of the individual
query qi

• selecti,j is the select part of the merged
query qi,j

• selectQ is the select part of the query list
of BPi,column index,index.query list. Q
also includes qi if complete SIJ is used

• inlineV iewi is the inline view that corre-
sponds to the individual query qi, which is
used to build the from part of the merged
query. Each inlineView also has select,
from, and where subparts, which are all
initialized as ∅

• namei is the alias name of the inlineView
of the query qi

• |Oi,j | is the number of the output columns
of the merged query

• query identifier is the index of the each
individual query added to the select part
of the merged query, which is used to dis-
tinguish the output tuples of each individ-
ual query

• ou selecti is the select part of the each in-
dividual query, which is padded with query
identifier and the other columns, to make
it union with the other queries

• qmerged is the output of the algorithm,
which is the merged query

Using the merge algorithm, we produce the
following sample prefetch queries by merging
the queries listed in Section 4.1:

• {Q9, Q10, Q11, Q12} with complete SIJ:
select
ol order id, ol item id, b component id
from Orders, Orderline, Bom
where o customer id = 4000 AND o id =
ol o id AND b assembly id = ol item id;

• {Q10, Q11, Q12} with partitioned SIJ:
select b component id
from Orders, Orderline, Bom
where o customer id = 4000 AND o id =
ol o id AND b assembly id = ol item id;

• {Q12, Q13} with left OJ:
select b component id, qty demanded
from
(select b componentid from Bom
where b assembly id= Q8.ol item id3) as
m Bom
left outer join
Supplier component on
m Bom.b component id = comp id AND
comp id= Q11.b component id1;

• {Q12, Q13} with OU:
select 12, b component id,NULL,NULL
from Bom where b assembly id=
Q8.ol item id3

union all
select
13, NULL, supplier id, qty demanded
from Supplier component where
comp id= Q11.b component id1

5 Cost Model for Merging
Operators

The query pattern will classify the query and
under the appropriate classification, the cost of
using a specific query merging operator deter-
mines the efficiency of merging. We evaluate
the execution cost and fetching all the rows of
a SQL query q as follows as in [7]:
cost(q)=U0 + server cost(q) +
transfer cost(|R|, ‖R‖)

For an individual query, server cost(q) gives
the server cost of a query in terms of physi-
cal and logical disk page accesses as estimated
by RDBMS. The overhead associated with a
single open request is also measured and rep-
resented by U0. The transfer cost(|R|, ‖R‖)
estimates the transferring of |R| rows of ‖R‖
bytes, which is the average row length for q.
The transfer cost estimates bringing the data

9

from data server process space to client appli-
cation process space, which can also include
the network latency of TCP/IP protocol if the
client and the server resides on different com-
puters, but does not include the latency of
printing the data.

For each prefetch query qmerged, depend-
ing on the appropriate merge operator used,
we re-estimate the server cost(qmerged) +
transfer cost(|R|, ‖R‖). To explain the details
for estimating the cost of executing prefetch
queries, which are merged with one of the three
merging operators, we first list the following
parameters and data structures:

• Local query parameters:

– I is explained in Section 4

– O is explained in Section 4

– |Ri| stands for the number of output
tuples of the ith query

– ‖Ri‖ stands for average output tuple
size of the ith query

– |Oi| is explained in Section 4

– |Ii| is explained in Section 4

• Local database parameters:

– J(a, b) stands for the average join ra-
tios among keys of different tables,
where J(a, b) represents the join rate
between key a and key b

– T (table name) stands for the table
sizes of the given database in terms
of number of tuples

– B(table name) stands for the table
sizes of the given database in terms
of number of data pages

• Local query set parameters:

– n is the number of the queries in the
given query sequence.

– BP is the three dimensional vector
of browse pattern relationships in a
query set, which is explained in Sec-
tion 4

– IHM is an HashMap for the input
pattern relationships in a query set,
which is explained in Section 4

c id a num ag id
c id 1 10 −

a num 2 1 1
ag id − 1.5 1

Table 4: Average join ratios for some of the
keys, which were used in Section 2.2

– Nbpi,j,index is the number of queries
in the query list of BPi,j,index

– bfi,j,index is the branch factor, which
is the ratio of Nbpi,j,index to the num-
ber of different output tuples, which
is estimated as J(I1

i , Oj
i). Then we

have the following formula:
bfi,j,index = Nbpi,j,index

J(I1
i
,Oj

i
)

• Global database parameters:

– L is the network latency in terms of
bits per second

– Buf is the size of the buffer cache in
terms of data pages

J table is one of the most important pa-
rameters in estimating the cost of executing
merged queries. For example, in Table 4
J(ag id, a num) = 1.5, which means that there
are 1.5 account number in average for each
agreement number, and J(a num, ag id) = 1,
which specifies that there is 1 agreement num-
ber in average for each account number. By
producing J table, we can also derive indirect
join ratios such as J(c id, ag id) = 10 according
to Table 4. J can be also used to estimate the
number of output tuples of a query, that does
not have selective predicates (filter ratios), i.e.,
the predicate account balance ≤ $1000.0 while
requesting the accounts of a customer. For the
Q1 listed in Section 2.2, we have bf1,1,1 = 3

10 =
0.3, and bf1,2,1 = 2

10 = 0.2.

5.1 Cost Formula for SIJ

If there is an entry as BPi,column index,index =
(table name, column name, {j, . . .}), where j
is the member if the query list, then the num-
ber of output tuples for the merged query
(|Ri,j |) is |Ri| × |Rj |, and the ‖Ri,j‖ is |Ri| +
|Rj |. In estimating the server cost of the

10

prefetch query, we consider the following sit-
uations:

• The number and size of the shared tables,

• The size of the tables
Ocolumn index

i .table name (let‘s denote it
as ti) of qi and table name of qj (let’s de-
note it as tj), which are the tables that
are used to build the extra join predicate
of the prefetch query.

We assume that underlying query optimizer
is responsible for the join optimization of the
prefetch query. We also assume that tables ti
and tj are joined via nested-loop join method.
Nested-loop join is the efficient method to
merge if the size of the outer query is not big
and one of the queries has an index on the join
key. So based on the general block nested loop
join cost formula, which is (N×(1+ M

Buf−2)), if
ti and tj has N and M pages, respectively with
the buffer size of Buf , and there exits no in-
dexes on the join attributes. Depending on the
size of the buffer the join cost can be reduced
to N + M page accesses, or depending on the
existence of index on the inner table (tj), the
cost is reduced to N + (|Rti

|) × c, where |Rti
|

is the number of tuples in table ti and c is the
cost of looking up a tuple in tj using the index.

In terms of the initial overhead U0, instead
of having 1 + Nbp U0, we just have one U0 in
qmerged.

5.2 Cost Formula for left OJ

If the left OJ is used to merge the
queries, then we use J to derive |Ri,j | and
‖Ri,j‖. For the entry BPi,column index,index =
(table name, column name, {j}), we use
J(I1

i .column name, Ocolumn index
i .column name)

to estimate number of different output
column name values and use  to estimate
the average number of tuples with the specific
column name value, where  is defined as:
d |Ri|

J(I1
i
.column name,O

columnindex

i
.column name)

e
We also assume that 1 byte null indica-

tor is used for null column values of the
prefetch query. |Ri,j | is then estimated as
× (J(aj , O

|Oj |
j)− 1) + |Ri|, and ‖Ri,j‖ is esti-

mated as

(×|Rj |×(‖Ri‖+‖Rj‖)+(|Ri|−)×(‖Ri‖+|Oj |×bytes(null))
|Ri,j |),

where bytes(null) function estimates the size
of the null field indicator which is one byte
at most of the commercial data servers that
use some compression techniques, and aj is
BPi,column index,index.column name.

Estimating the server cost of a prefetch query
requires considering the similar situations as
listed for SIJ. In addition to these cases, we
also consider the sizes of the inline views in ad-
dition to the sizes of the tables while joining,
which are estimated by |R| parameter of the
queries.

5.3 Cost Formula for OU

Estimating the cost formula for OU is
the easiest one, where |Ri,j | is simply
|Ri| + |Rj |, and ‖Ri,j‖ is estimated as
|Ri|×(‖Ri‖+|Oj |×bytes(null))+|Rj |×(‖Rj‖+|Oi|×bytes(null))

|Ri|+|Rj | .
We only consider the transfer cost of the result
of query, while merging the queries via OU.

6 How to Find Efficient
Prefetch Queries

Our approach to reduce the response time of
the applications depends on the idea of merg-
ing the queries as an alternative of prefetching.
During the process of merging queries, we use
the query optimizer in the RDBMS that stores
persistent objects, and we do not consider the
problem of answering the original query from
the merged queries (for possible solutions to
this problem see, e.g., [8]). The three main
tasks, our system has to aware of, are:

• What are the generic domain-independent
guidelines for merging and which parame-
ters are useful to determine these guide-
lines?

• What is the complexity of merging, which
includes determining the queries to be
merged, initializing and re-estimating the
parameters of the queries and query set
each time after merging some of the
queries in the query set, and adding new
merged queries to the query set?

11

• What is the distance between the benefit
of using original query sequence and esti-
mated benefit of merging?

In addition to the main task, deriving generic
domain-independent guidelines requires the fol-
lowing tasks:

• generating meaningful combinations of
query sequences with any of the patterns
for the given database

• testing the queries to understand when
and how they become a candidate mer-
gable query with the other candidate
queries

• evaluation of the parameter values

We use the extended SPECJ benchmark
data model to generate meaningful combina-
tions of query sequences, which is explained in
the next section. We also mention the process
of how the benefit of merging is estimated by
the guidelines after the evaluation of parameter
values.

6.1 Extended SPECJ Benchmark

We generate use cases and construct a testbed
to experiment with the parameters that affect
the cost of prefetch queries. We extend and
adapt SPECJ benchmark data model to accom-
modate variety of use cases that is required to
answer how much, how deep, in what direction
to read ahead. SPECJ is a popular benchmark
that is commonly used for testing the perfor-
mance of commercial Java enterprise applica-
tion servers. We extend and adapt the data
model of this benchmark in the following way:

• add parameters to iteratively change mul-
tiplicity of relationships;

• include all different type of relationship
multiplicities, e.g., 0..1 to 1, 1..* to 1;

• adapt entity structure to accommodate
both breadth-first and depth-first traver-
sals;

• include keys with different number of at-
tributes and foreign keys w/o index;

Figure 1 shows the main entities of our data
model.

Figure 1: Main entities in extended SPECJ
benchmark data model with their keys

6.2 Efficiency of a Query

We define the real efficiency of merged query
qi,j as ei,j , which is calculated as:
ei,j = Cost(qi)+Cost(qj)

Cost(qi,j)

Basically ei,j is the ratio of the cost of
processing the queries individually to the cost
of processing the queries together. If ei,j > 1,
then processing the queries together is cheaper.
We also define ei,j = 0 if two queries are dis-
joint, which means that there is not any pat-
tern correlation. Real efficiency is computed
after the execution of the queries.

We also define the estimated efficiency of
merged query fi,j , which is the multiplication
of all the guideline factors, which are mentioned
in Section 7. The six proposed guideline factors
are denoted as gfi (i ranging from 1 to 6). The
estimated efficiency is given by fi,j =

∏6
i=1 gfi.

Each guideline factor has a basic lookup table
to determine its value, so that the efficiency of
the merging is estimated. We set the unrelated
guideline factors for each merging operator to
1.0, e.g., if SIJ is used to merge the queries,
then gf6 = 1.0, or if OU is used to merge, then
gf1 = gf2 = gf3 = gf4 = 1.0.

In principle, additional guideline factors can
be specified based on additional experiments.
Doing so may increase the accuracy of the es-

12

timated efficiency with respect to the actual
efficiency.

6.3 Basics of the Algorithm to
Find Prefetch Queries

In each step of the algorithm, we can merge
one query with multiple query sets via SIJ, or
we can merge one query with another query via
left OJ, or OU. So even there exist three queries
that have the same input pattern correlation,
we merge them one by one returning to the
reestimation of the parameters phase (step 3)
in the following algorithm. We apply the fol-
lowing steps to find the sequences of prefetch
queries:

1. Step 1: By tracking the variable correla-
tions in the application, the pattern corre-
lations are detected

2. Step 2: The query set graphs including
pattern correlation information is initial-
ized

3. Step 3: By using the database parame-
ters, and detected pattern information, lo-
cal query and query set parameters are de-
termined or recalculated

4. Step 4: For each connected graph in the
set of query set graphs, in a bottom-up
manner (from the leaf level to root level),
estimate the efficiencies of merging queries
(fmerged) with the appropriate operators

(a) Step 4.1: If Nbp > 1, then consider
SIJ operator for merging

(b) Step 4.2: Determine complete or
partitioned SIJ for merging, and the
query subset(s) that are to be merged

(c) Step 4.3: If the query qi has Nbp =
1 and |Ri| > 10, then consider left OJ
or OU operator for merging with qj

(d) Step 4.4: If input pattern exists,
consider OU operator for merging qi

and qj

(e) Step 4.5: Replace the queries that
are merged with the new merged
query, and go to Step 3

7 Experimental Results
and Guideline Factors

Our main task during designing the experi-
ments was to understand the effect of para-
meters to query elapsed time via exploring
meaningful query sequences, which were de-
rived from the extended and adapted SPECJ
benchmark data model. In the experiments,
we used a 1.7 GHz Pentium M, 512 MB mem-
ory, 60 GB 5400 rpm hard disk with Windows
XP operating system, and ran tests against
IBM DB2 v8 Enterprise Data Server by us-
ing the interactive SQL engine (DB2 Control
Center) to execute the queries. For the guide-
lines, we did not consider the network latency
and JDBC overhead. We reset the content of
the buffer cache before each query execution
by submitting unrelated “dummy” queries to
fill the buffer. Initially we populated data to
the SPECJ data model with an orders injec-
tion rate of 150, and default buffer cache size
was 256 4kB pages.

We determined six guideline factors used to
predict the efficiency of merging. Although, in-
put pattern correlation is common in all query
sets, it is the browse pattern correlation that
provides more benefit when used with SIJ op-
erator, which is due to the elimination of more
database requests.

Any two queries can be merged with OU op-
erator. However, the efficiency of using OU
operator is limited as explained by gf6.

7.1 GF 1: When to Merge under
Browse Based on Number of
Queries

Guideline factor 1, abbreviated gf1, is used
to examine the effect of |R|, Nbp, and bf
parameter values to the efficiency of query
sets merged via SIJ. In Table 5, we consider
merging multiple queries with SIJ (only con-
sidering multiple queries reveals the efficiency
of using SIJ operator) and examine the Nbp
values that make gf1 = 1.0, which means
that for the given BPi,column index,index =
(table name, column name, {query list}) en-
try, what is the required size of the query list
(Nbpi,column index,index) for different |Ri| and

13

|Rj | values where gf1 is 1.0 and j is the in-
dex of one of the queries in the {query list}.
As Table 5 lists, if both queries have R ≥ 100,
then the query set should not be merged via SIJ
even when bf is 1.0; because the required Nbp
value is 112.79 (the redundant data explodes
due to result of the join), which is impossible
if |Ri| returns 100 tuples. However, merging
is always the efficient way if |Ri| is 1.0. Also
if both queries return 10 tuples, then required
Nbp value is 2.57, so we need bf = d 2.57

10 e = 0.3
to make the processing of queries together effi-
cient.

|Ri| |Rj | Nbp gf1

1 1 0.68 1.0
1 10 0.70 1.0
1 100 0.78 1.0
10 1 1.16 1.0
10 10 2.57 1.0
10 100 5.01 1.0
100 1 7.27 1.0
100 10 15.80 1.0
100 100 112.79 1.0

Table 5: The value of the Nbp parameter that
makes the guideline factor 1.0. Assumptions
are ‖Ri‖ = 8 bytes, ‖Rj‖ = 8 bytes, there ex-
ists index on both join tables, whose sizes are
10000 tuples

In Table 6, we examine the effect of branch
factor for different Nbp values. In the follow-
ing table, we just show the index of the query
as Nbpi, and eliminate the column index and
index for the sake of clarity. As the table lists,
if the Nbpi value increases with the same bfi

value, e.g., the gf1 is 1.27, when the query list
have 20 queries, and it is lower than 1, when
the query list has just 2 queries. Below table
uses the fixed values such as |Rj | = 10 (we al-
ready gave the efficiency estimates for different
|R| values in Table 5), ‖Ri‖ = 8 bytes, and
‖Rj‖ = 8.

7.2 GF 2: Complete or Parti-
tioned SIJ

Guideline factor 2 or gf2 is used to determine
whether to use complete SIJ (c-SIJ) or parti-
tioned SIJ (p-SIJ) to merge the query set. It

Nbpi

|Ri| = bfi gf1

2
10 = 0.2 0.94
20
100 = 0.2 1.27
3
10 = 0.3 1.12
30
100 = 0.3 1.96
4
10 = 0.4 1.53
40
100 = 0.4 3.19

Table 6: The value of the guideline factor with
different Nbpi

|R|i = bfi values. The i variable is
the query index of the Nbp and bf vectors

can be observed from Table 7 that, for small
(‖Ri‖ × |Rj |) values, gf2 for complete SIJ is
higher, where i is the query index that has the
corresponding BP entry and j is the query in-
dex of one of the queries in the query list of
the same entry. The bottom line in using the
complete SIJ is when we have (270 bytes × 1)
or (24 bytes × 10), and bf = 0.3, ‖Rj‖ = 8
bytes, and |Ri| = 10. The partitioned ap-
proach can be used, when bringing the data re-
quested by qi eliminates the efficiency of merg-
ing with complete SIJ, which is the case when
24 ≤ ‖Ri‖ < 1KB according to Table 7.

‖Ri‖(bytes) × |Rj | gf2(c-SIJ) gf2(p-SIJ)
8 × 1 1.77 1.26
40 × 1 1.34 1.21
270 × 1 1.00 1.18
4K × 1 0.09 1.14
8 × 10 1.12 1.07
24 × 10 1.03 1.06
40 × 10 0.97 1.05
1K × 10 0.14 0.99
4K × 10 0.02 0.97
8 × 100 0.73 0.67

Table 7: The guideline factor for complete
SIJ and partitioned SIJ approach for different
‖Ri‖(bytes)×|Rj | values. The assumptions are
bf = 0.3, ‖Rj‖ = 8 bytes, and |Ri| = 10

7.3 GF 3: Effect of Table Sizes
and Indexes to Merging

Guideline factor 3 or gf3 is used to determine
the effect of table sizes and index existence on
the join keys of the extra join predicate, when

14

SIJ or left OJ is used to merge the qi and the
corresponding query set assuming buffer size
is 256 4K pages. In Table 8, the quadruple
variable i, ti, j, tj denotes the indexes of the
queries with i and j, and the size of the ta-
bles that are joined as a side effect of merging
with ti and tj . For example, for the merged
query Q8,9,10,11 formed by merging the indi-
vidual queries in Section 4.1 via SIJ, we have
the new join predicate Bom.b assembly id =
Orderline.ol item id, where ti = Orderline
and tj = Bom. As listed by the table, the
increase in the size of the join table slightly de-
creases the gf3. If no index exists on any of the
join keys, then queries should not be merged
with SIJ or left OJ. The gf3 is largely depends
on the query optimizer’s decisions such as using
index-based nested loop joins.

i, ti, j, tj gf3

(1, 10000, 1, 10000) 1.12
(1, 10000, 1, 100000) 1.06
(1, 100000, 1, 10000) 1.10
(1, 100000, 1, 100000) 1.06
(1, 100000, 1, 1000000) 0.96

(1, 10000, 0, 10000) 0.83
(0, 10000, 1, 10000) 0.77
(0, 10000, 0, 10000) 0.39

Table 8: The guideline factors for quadruple
variable i, ti, j, tj , where i is the index flag for
outer join table, j is the index flag for inner
join table (1 means index exist, 0 means index
does not exist), ti, and tj is the size of the outer
and inner join tables, respectively, in terms of
number of tuples assuming nested loop join is
used to join the two tables. The assumptions
are bf = 0.3, |Rj | = 10, |Ri| = 10, ‖Ri‖ = 8
bytes, ‖Rj‖ = 8 bytes, and buffer size is 256
4KB pages

7.4 GF 4: Merging with More
than One Query Sets

Guideline factor 4 or gf4 is used to determine
the effect of merging more than one query set
with the same query (multiple BP entries of
the same query qi). In Table 9, bfi,;,1 denotes
the branch factor of the BPi,column index,1,
where column index is not specified. We also

fix the values as |R| = 10, and ‖R‖ = 8 bytes
for all queries. If both bf ≥ 0.3, then the effi-
ciency of merging two query set is higher than
efficiency of merging one inner query set. The
bottom line in merging two query sets is the bf
pair (0.3, 0.2), whose gf4 value is lower than
the pair (0.4, 0.1).

The gf4 is the guideline factor that is most
amenable to extension such as analyzing the
effect of merging query sets from BP entries
with different column index values and from
different index values, which effects the number
of extra join predicates and the variety of tables
that are joined.

bfi,;,1 bfi,;,2 gf1
4 gf2

4 gf
{1,2}
4

0.5 0.5 1.76 1.76 2.09
0.3 0.3 1.13 1.12 1.26
0.3 0.2 1.13 0.94 1.02
0.4 0.1 1.50 0.67 1.08
0.3 0.1 1.13 0.67 0.88

Table 9: The value of the guideline factors,
when two query sets with of different bf entries
with index 1 and 2 are merged with a query,
assuming |R| = 10 for both query sets and the
query qi. The gf

{1,2}
4 denotes the guideline fac-

tor for the query that is formed via merging the
two query sets

7.5 GF 5: Using Left OJ or OU

Guideline factor 5 or gf5 is used to determine
whether to left OJ or OU is the effective op-
erator for merging in cases where SIJ is not
appropriate, which are the cases when the mul-
tiplication of all previous guideline factors are
smaller than 1.0 and BPi,column index,index en-
try has only one query qj in its query list. As
listed by Table 10, Left OJ is better option than
OU if |Ri| is in the order of 10 tuples and ‖Oj‖
does not have more than 16 attributes, where
‖Oj‖ affects the size of the NULL data. The
high |Ri| values increase the server cost of the
left OJ due to the join of inline views, so de-
crease the gf5 for left OJ. OU can be used, if
|Ri| is in the order of 100 tuples and ‖Oj‖ does
not have more than 8 attributes.

15

‖Oj‖ × |Ri| gf5(left OJ) gf5(OU)
1 × 10 1.19 1.16
8 × 10 1.16 1.11
64 × 10 0.75 0.66
1 × 100 1.11 1.15
8 × 100 0.91 1.03
64 × 100 0.36 0.58
1 × 1000 0.87 1.01
8 × 1000 0.44 0.89
64 × 1000 0.18 0.51

Table 10: The guideline factors for left OJ and
OU approach for different ‖Oj‖ × |Ri| values
where Nbp value for the corresponding BP en-
try of qi is 1 and ‖Oj‖ is the number of out-
put attributes of qj of the query list, assuming
each output attribute requires 4 bytes without
NULL and 1 byte with NULL (null indicator),
|Rj | = 10, ‖Ri‖ = 8 bytes

7.6 GF 6: Efficiency of OU

Guideline factor 6 or gf6 is used to determine
whether to use OU as the effective operator
for merging when input pattern or browse pat-
tern between two queries qi and qj are ob-
served. The bottom line in using OU is, when
(‖Oi‖ × |Rj | + ‖Oj‖ × |Ri|) has the values
(16×10+8×100 = 960), assuming all columns
require 4 bytes and NULL column value re-
quires 1 byte.

‖Oi‖ × |Rj | + ‖Oj‖ × |Ri| gf6(OU)
1 × 10 + 1 × 10 1.21

1 × 100 + 1 × 100 1.09
8 × 10 + 8 × 10 1.11

8 × 100 + 8 × 100 0.95
8 × 10 + 8 × 100 1.03
16 × 10 + 8 × 100 1.01
8 × 100 + 1 × 10 1.04

Table 11: The guideline factor for OU approach
for different ‖Oi‖ × |Rj | + ‖Oj‖ × |Ri| values
where ‖Oi‖, and ‖Oj‖ is the number of output
attributes of two queries qi and qj with input
pattern or browse pattern, assuming each out-
put attribute requires 4 bytes without NULL
and 1 byte with NULL (null indicator). |R|
stands for the number of output tuples for each
query

8 Sample Query Sets and
Using Guidelines

We use query templates to represent the tested
set of queries, where each query template de-
notes the queries, which have the same from
part and has the same where part with the
same input parameters but with different in-
put parameter values. We generate query se-
quences that consist of minimum 5 queries (we
used no maximum value because of the para-
meter Nbp) by using the following query tem-
plates, which was derived from the extended
SPECJ data model:

T1 : select a num, ag id from AccountRole,
Account where ar customer id = c idx

and ar a num = a num

T2 : select at id, at amount from Account-
Transaction where at a num= a numx

T3 : select ap product id from AccountProd-
ucts where ap a num= a numx

T4 : select a num to from AccountRelations
where a num from= ”a numx”

T5 : select ap product id, pc type id from Ac-
countProducts, ProductCategory where
ap a num= a numx and ap p id = pc p id

T6 : select a num from Account where
a ag id= ag idx

T7 : select ar customer id from AccountRole
where ar a num= a numx

T8 : select agreement amount from Agree-
ment where ag id= ag idx

T9 : select asset id from AgreementAssets
where ag id= ag idx

T10 : select asr asset id, agrass ag id from
Asset-
Role, AgreementAssets where asr c id=
c idx and asr asset id = agrass asset id

T11 : select * from Products where p id=
product idx

T12 : select asr c id from AssetRole where
asr asset id= asset idx

16

T13 : select * from Assets where asset id=
asset idx

In the query template sequences, we have a
customer, who can have many accounts, which
is stored in AccountRole. Also each account
can be shared by many customers. Each ac-
count can have many account transactions,
can be related with other accounts (stored in
AccountRelations), can have many attached
products that define the properties of the ac-
count (stored in AccountProduct), and can be
used according to only one agreement. Each
agreement is accepted, if the specific assets
are provided in AgreementAssets by the cus-
tomers. Each asset can be owned by many cus-
tomers and each customer can have many as-
sets (stored in AssetRole). Also products can
be member of many product categories.

The query templates include input parame-
ter values in the format of a numx, ag idx and
so on, where x can be any values denoting
the output parameter value of the dependent
query. We denote the queries that use the same
query template but with different O parameter
as Ti[On

m], where i denotes the query template
index, n denotes the original query index in
the query sequence, and m denotes the output
column index as explained in Section 4. We
also use BP and IHM structures for query tem-
plates to represent the pattern correlations. As
a shortcut, we use Ti[∗] to denote a extended
template that brings all the columns in the an-
swer. In the following query sequences, all run
times are shown in terms of 10−4 seconds. The
value 6.9 means that the runtime is 6.9× 10−4

seconds.
The sequence

{T IHM(cid 4000)
1 , T

BP1,1,1
2 [at id], T

BP1,2,1
9 } uses

three query templates,
but consists of 5 queries, which actually repre-
sents {{Q1}, {Q1

2}, {Q2
2}, {Q3

2}, {Q1
9}}, because

Nbp1,1,1 = 3, and Nbp1,2,1 = 1. For this se-
quence, the other parameters are |RT1 | = 10,
|RT2 | = 10, |RT9 | = 10, ‖RT1‖ = 8 bytes,
‖RT2‖ = 4 bytes, ‖RT9‖ = 4 bytes, all ta-
bles contain 10.000 tuples, and buffer size is
256 4KB pages. The default execution time
(without merging) of this sequence is 29.1. By
using our guidelines, we determine to merge
T1 with T2 via complete SIJ, so that the ex-

ecution time of the prefetched query sequence
{T1, T2}, {T9} is 26.5. We merge T1 with T2,
because bf1,1,1 = 0.3, Nbp1,1,1 = 3 (gf 1), there
exists indexes, table sizes of the new join con-
dition in the merged query are small (gf 3),
and we use complete SIJ, due to the small size
of redundant data that is returned (gf 2). We
do not merge both query sets T2 and T9 with
T1 via complete SIJ (gf 4), because bf pair is
(0.3,0.1), which provides poor efficiency. Fi-
nally, we do merge the merged query {T1, T2}
with T9 via OU by using gf 5 and gf 6, where
‖OT9‖ = 1, and |RT1,2 | = 100. The total ex-
ecution time of the result prefetched query is
24.7, which is {T1, T2, T9}.

By using the above query templates, but
with different Nbp1,2,1, which is 3, with
the table sizes AccountRole = 100000,
Account = 10000, AccountTransaction =
100000, AgreementAssets = 100000 and hav-
ing indexes among join keys, the best execu-
tion strategy becomes merging both query sets
T2 and T9 with T1 via complete SIJ, where the
execution time is reduced from 44.3 (without
any merging) to 39.9. If AccountTransaction
has 1000000 tuples, then the best execution al-
ternative still remains same according to gf 3
and gf 4, but with less efficiency: the exe-
cution time only reduces from 46.4 (without
any merging) to 43.3. However, if we have
AccountTransaction has 1000000 tuples, and
Account has 100000 tuples, then the best ex-
ecution strategy is {T1, T9}, {T2}, where query
sets T1 and T9 is merged via complete SIJ and
the three queries in {T2} is submitted individ-
ually due to high server cost of processing the
extra join condition.

We test another query template sequence
{T IHM(cid 4000)

1 ,TBP1,1,1
5 ,TBP5,1,1

11 }, which cor-
responds to the query sequence
{{Q1}, {Q1

5}, {Q1
11}, {Q2

11}, {Q2
5}, {Q3

11},
{Q4

11}, {Q3
5}, {Q5

11}, {Q6
11}}, with the parame-

ter values bf1,1,1 = 0.3, bf5,1,1 = 0.4, ‖RT11‖ =
40 bytes, |RT1 | = 10, |RT5 | = 10, |RT11| = 1.
The default execution time is 56.0 for this se-
quence. Then by using the values bf , and
the answer size of the inner queries (gf 1 and
gf 2), we merge the queries {Q1

5, Q
1
11, Q

2
11} in

each sub-sequence via complete SIJ. However,
we do not merge the three prefetched queries
with Q1, due to size of the inner prefetched

17

queries, which is (40 + 8) × 10 (gf 2). The ex-
ecution time of the prefetched query sequence
{{Q1}, {Q1

5, Q
1
11, Q

2
11}, {Q2

5, Q
3
11, Q

4
11},

{Q3
5, Q

5
11, Q

6
11}}, which consists of 4 queries

now, is 41.9. For the same sequence if bf5,1,1 =
0.2, then the best execution alternative is
{{Q1, Q

1
5, Q

2
5, Q

3
5}, {Q1

11}, {Q2
11}, {Q3

11}, {Q4
11},

{Q5
11}, {Q6

11}}, with execution time of 52.7,
where prefetched query is formed via com-
plete SIJ (gf 1 and gf 2). Here the prefetched
query {{Q1, Q

1
5, Q

2
5, Q

3
5} provides better effi-

ciency than {Q1
5, Q

1
11, Q

2
11} according to gf 1,

and partitioned SIJ is not efficient for form-
ing {Q1

11, Q
2
11} in each sub-sequence because

|RT11| = 1.

The default
execution time of the query template sequence
{T IHM(agid 000001)

9 [∗],TBP9,1,1
12 ,TBP9,1,2

13 }, where
‖RT9‖ = 40, ‖RT12‖ = 4, ‖RT13‖ = 40
bytes, |RT9 | = 10, |RT12 | = 10, |RT13 | = 1,
‖OT9‖ = 5, and both bf values are set to 0.3,
is 57.7. The best execution strategy for this
sequence is formed, when T9 and the query set
T13 is merged via complete SIJ and the three
queries in {T12} is merged via partitioned SIJ,
which gives the execution time 48.9 with two
prefetched queries. In this scenario, we do not
merge all the queries in the original query se-
quence as one query via complete SIJ, because
p-SIJ is more efficient way of merging {T12} af-
ter T9 and the query set T13 is merged (gf 2).
However, if we increase the ‖RT9‖ to 270 bytes,
then best execution strategy is formed by merg-
ing T9 with only one query Q1

12 in T12 via left
OJ (gf 5), submitting the other two queries in
T12 individually, and merging the three queries
in {T13} via p-SIJ, which gives the total exe-
cution time 52.5 instead of 59.1.

Another query template sequence
{T IHM(cid 4000)

1 ,TBP1,1,1
2 [at id],T IHM(cid 4000)

10 ,
T

BP10,2,1
6 ,TBP6,1,1

2 } with bf1,1,1 = 0.3, bf10,2,1 =
0.1, bf6,1,1 = 0.1, and |R| = 10 for all
queries, has the default execution time 43.6.
By using gf 1, we merge T1 and the query
set T

BP1,1,1
2 , then by using gf 5, we first

merge T6 and T
BP6,1,1
2 via left OJ, then we

merge T10 and {T6, T2} again via left OJ
to form {T10, T6, T2}; and finally this last
prefetched query can be merged with {T1, T2}
via OU (gf 6), which reduces the total exe-

cution time to 34.1. As another query tem-
plate sequence, we consider {T IHM(cid 4000)

1 ,
T

BP1,1,1,IHM(a num 1)
2 , T

BP1,1,2,IHM(a num 1)
3 ,

T
BP3,1,1
11 , T

BP1,1,3,IHM(a num 1)
4 ,

T
IHM(cid 4000)
10 , T

BP10,2,1
6 } with bf1,1,1 = 0.1,

bf1,1,2 = 0.1, bf1,1,3 = 0.1, bf3,1,1 = 0.3,
bf10,2,1 = 0.3, and |R| = 10 for all queries,
which has the default execution time 68.1. By
using gf 1 and gf 2, we merge T3 and the query
set T11 to form {T3, T11}, and T10 and the query
set T6 to form {T10, T6} via complete SIJ; the
output of {T3, T11} will be on the order of 100
tuples, so by using gf 6, we first merge T2 and
T4 via OU, then by using gf 5, we merge T1 and
{T2, T4} via left OJ. Now we have three queries
with the execution time of 57.2. Furthermore,
by using gf 5, we can form {T3, T11, T2, T4} via
OU with execution time of 55.4. We do not
merge {T3, T11, T2, T4} with {T3, T11}, by using
gf 6.

We run our test query sequences mainly to
determine the effect of the boundary parameter
values such as using 0.3 for bf , when |R| is in
the order of 10. If bf is set to 0.5, then the ef-
ficiency of merging dramatically increases. Al-
though using left OJ and OU can provide im-
provement in the execution time, the best re-
sults are obtained in the existence of browse
pattern correlation and by using SIJ.

9 Discussion and Conclu-
sion

In this project, we restated the problem of de-
termining “how much”, and “when” to prefetch
as “which queries”, and “how” to merge. We
assume that the query sequences of an appli-
cation is known beforehand. We formalize the
given query sequence as a query set and ana-
lyze the processing strategies for a given query
set in three categories:

• process each query individually,

• process all the queries together, and

• partition the query set into subsets, which
we call prefetch queries, and process the
queries in each subset together.

18

In our current settings, we focused on query
response time minimization. We considered
and analyzed two query-access pattern corre-
lations: (1) Browse, (2) Input, and four query
merging operators: (1)c-SIJ, (2)p-SIJ, (3)Left
OJ, and (4)OU. The read-ahead queries are
formed via merging the queries with merging
operators that are pattern-related. We also
modeled the cost function for each of the query
merging operators. We generated our test cases
for integrated SPECJ (a manufacturing data
model) and financial services data model.

This problem has two dimensions. First di-
mension is the problem we are already consid-
ering, which is query merging, and the second
dimension is the join order optimization prob-
lem. The underlying query optimizer is respon-
sible for the second dimension of the problem.
So in our current parameters, we focus on the
parameters that is least affected by the second
dimension of the problem, such as focusing only
on the size of the tables used in the extra join
condition, which is the result of merging SIJ or
left OJ, instead focusing the size of all tables
in the from part of the SQL query.

Our next basic goal is to discover new guide-
lines or revise the existing guidelines by in-
troducing network latency and JDBC over-
head and having experiments with a realistic
business applications instead of generating the
query sequences by ourselves. Another consid-
eration to take into account can be the proba-
bilities among related queries instead of assum-
ing that the query sequence is given. In such
settings, we will generate the efficiency among
potential queries that may be merged and also
requested with the given probabilities.

References

[1] Sibel Adali, K.S. Candan, Y. Papakon-
stantinou, and V.S. Subrahmanian. Query
caching and optimization in distributed
mediator systems. In ACM SIGMOD
Conf. on management of data, pages 137–
148, 1996.

[2] Philip A. Bernstein, Shankar Pal, and
David Shutt. Context-based prefetch - an
optimization for implementing objects on

relations. VLDB Journal, 9(3):177–189,
2000.

[3] A. Soydan Bilgin. Incremental read-
aheads. In Proc. ICDE/EDBT Ph.D.
Workshop, Boston, MA, March 2004.

[4] A. Soydan Bilgin. Complexity analysis of
query merg-
ing problem. http://www4.ncsu.edu/ as-
bilgin/complexity.pdf, Unpublished man-
uscript, May 2005.

[5] A. Soydan Bilgin, Rada Y. Chirkova,
Timo J. Salo, and Munindar P. Singh.
Deriving efficient sql sequences via read-
aheads, full version. In Proc. DAWAK,
Zaragoza, Spain, September 2004.

[6] A. Soydan Bilgin, Rada Y. Chirkova,
Timo J. Salo, and Munindar P. Singh.
Deterministic prefetching techniques for
rdbms. http://www4.ncsu.edu/ asbil-
gin/prefetching.pdf, Unpublished manu-
script, April 2005.

[7] Ivan T. Bowman and Kenneth Salem. Op-
timization of query streams using seman-
tic prefetching. In ACM SIGMOD, Paris,
France, June 2004.

[8] Shaul Dar, Michael J. Franklin, Bjorn T.
Jonsson, Divesh Srivastava, and Michael
Tan. Semantic data caching and replace-
ment. In Proceedings of the 22th Inter-
national Conference on Very Large Data
Bases, pages 330–341. Morgan Kaufmann
Publishers Inc., 1996.

[9] Daniela Florescu, Alon Levy, Dan Suciu,
and Khaled Yagoub. Optimization of run-
time management of data intensive web
sites. In Proc 25th VLDB Conf, pages
627–638, Edinburgh, Scotland, September
1999.

[10] Laura M. Haas, Donald Kossmann, and
Ioana Ursu. Loading a cache with query
results. In Proc 25th VLDB Conf, pages
351–362, 1999.

[11] Wook-Shin Han, Yang-Sae Moon, and
Kyu-Young Whang. Prefetchguide:
capturing navigational access patterns

19

for prefetching in client/server object-
oriented/object-relational dbmss. Inf.
Sci., 152(1):47–61, 2003.

[12] Olga Kapitskaia, Raymond T. Ng, and Di-
vesh Srivastava. Evolution and revolutions
in LDAP directory caches. In Advances
in Database Technology - EDBT 2000,
7th International Conference on Extend-
ing Database Technology, Konstanz, Ger-
many, March 27-31, 2000, Proceedings,
volume 1777 of Lecture Notes in Computer
Science, pages 202–216. Springer, 2000.

[13] Arthur M. Keller and Julie Basu. A
predicate-based caching scheme for client-
server database architectures. VLDB
Journal, 5(1):35–47, 1996.

[14] Nils Knafla. Prefetching techniques for
client/server,
object-oriented database systems, 1999.
http://www.dcs.ed.ac.uk/home/nk/papers/th.pdf.

[15] Tom M. Kroeger, Darrell D. E. Long, and
Jeffrey C. Mogul. Exploring the bounds of
web latency reduction from caching and
prefetching. In USENIX Symposium on
Internet Technologies and Systems, 1997.

[16] Qiong Luo,
Sailesh Krishnamurthy, C. Mohan, Hamid
Pirahesh, Honguk Woo, Bruce G. Lind-
say, and Jeffrey F. Naughton. Middle-tier
database caching for e-business. In Pro-
ceedings of the 2002 ACM SIGMOD in-
ternational conference on Management of
data, pages 600–611. ACM Press, 2002.

[17] Mark Palmer and Stanley B. Zdonik. Fido:
A cache that learns to fetch. In Proc 17th
VLDB Conf, pages 255–264, Barcelona,
Spain, 1991.

[18] Dazhi Wang and Junyi Xie. An approach
toward Web caching and prefetching
for database management systems, 2001.
www.cs.duke.edu/ junyi/cps216/report.pdf.

[19] Qingsong Yao and Aijun An. Sql-relay:
An event-driven rule-based database gate-
way. In WAIM, Chengdu, China, August
2003.

[20] Qingsong Yao and Aijun An. Character-
izing database user’s access patterns. In
DEXA, Zaragoza, Spain, September 2004.

20

A Algorithms

21

if pattern indicator == 1 then
A randomly chosen individual query is used to build the select, from, and, where part of the
merged query set because the queries in the set only differ by the value of the input
parameter
Randomly choose j, which is the index of the query qj from the query set of
BPi,column index,index.query list;

end
i = lhs;
if SIJ AND pattern indicator == 1 then

if complete SIJ then
selectQ = selecti

⋃
SELECTj

else
partitioned SIJ selectQ = SELECTj

end
fromQ = fromi

⋃
fromj ;

if fromj ⊆ fromi then
whereQ = wherei;

else
whereQ = wherei + wherej ;
foreach 〈column index, index〉 pairs do

tname j, cname j, tname i, cname i are temporary variables used to add a new join
predicate to the SQL of the merged query tname j=
BPi,column index,index.table name;
cname j= BPi,column index,index.column name;
tname i= Ocolumn index

i .table name;
cname i= Ocolumn index

i .column name;
whereQ = whereQ + tname i.cname i = tname j.cname j − Selection predicates
that contain tname j.cname j;

end
end
qmerged = selectQ + fromQ + whereQ;

end
if Left OJ AND pattern indicator == 1 then

selecti,j = selecti
⋃

selectj ;
inlineV iewi = selecti + fromi + wherei;
foreach 〈columnindex, index〉 pairs do

tname j= BPi,column index,index.table name;
cname j= BPi,column index,index.column name;
if selectj does not contain tname j.cname j then

inlineV iewj .select = inlineV iewj .select
⋃

tname j.cname j;
end

end
inlineV iewj = inlineV iewj .select + fromj + wherej ;
fromi,j = inlineV iewi AS namei + LEFT OUTER JOIN inlineV iewj AS namej ON;
foreach 〈columnindex, index〉 pairs do

cname j= BPi,column index,index.column name;
cname i= Ocolumn index

i .column name;
fromi,j = fromi,j + namei.cname i = namej .cname j;

end
qmerged = selecti,j + fromi,j ;

end

22

if OU then
j = rhs;
selecti,j=query identifier + (selecti

⋃
selectj);

match selecti with selecti,j and put the matched columns in ou selecti;
For unmatched columns, put NULL in ou selecti;
match selectj with selecti,j and put the matched columns in ou selectj ;
For unmatched columns, put NULL in ou selectj ;
qmerged= ou selecti + fromi + wherei UNION ALL ou selectj + fromj + wherej ;

end
Algorithm 1: merge(lhs, rhs, pattern indicator, op type)

23

