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Abstract

XML (Extensible Markup Language) is emerging as a de facto standard for information
exchange among various applications on the web because of its inherent data self-describing
capability and flexibility of organizing data. With increased impact of XML on information
exchange, it is particularly important to develop high-performance techniques to query large
XML data repositories efficiently.

The core of XML query processing is twig pattern matching, i.e. finding from XML
documents all matches that satisfy the twig (or path) pattern specified by a given query. In
this survey we will review and compare major techniques for processing XML twig queries.
We categorize these techniques into three classes based on the storage format of XML data.
First, we review the file approach, in which XML data have to be stored in commonly used
flat files, in the form of just original XML documents, for special-purpose applications. Then,
we review the relational approach, in which XML data are stored in relational databases so
that all existing important techniques that have been developed for relational databases can
be fully reused and so no extra development efforts are needed. Finally, we review the native
approach, in which XML data are stored in inverted lists and native algorithms are developed
to further improve XML query processing performance.

To the best of our knowledge, this is the first survey work that systematically reviews,
classifies, and compares state-of-the-art techniques for XML query processing.

*All copyrights of this technical report are reserved by the authors and North Carolina State University.



1 Introduction

XML (Extensible Markup Language) is emerging as a de facto standard for information exchange among
various applications on the web because of its inherent data self-describing capability and flexibility of

organizing data [Gro04a].

First, data in XML documents are self-describing. Similar to the familiar HTML (HyperText Markup
Language), XML is based on nested tags. Figure 1 (a) shows an example of an XML document, which
records information about publishers. However, unlike HTML, in which tags associated with data are used
to express the presentation style (e.g. font styles) of data, tags in XML are used to describe the semantics
of data. For example, Line 3 in Figure 1 (a) says that ‘Cambridge’ is an address of a publisher named
‘MIT Press’. Therefore, when an application receives an XML document from another application over the

web, it can understand the content of this XML document, since data in XML documents are self-describing.

Second, XML is flexible in organizing data. The nested hierarchy of tags structurizes the content of XML
documents. The role of nested tags is somewhat similar to schemas in relational databases. However, the
nested XML model is more flexible than the flat relational model. The same objects in an XML document
might have different kinds of sub-objects or different number of sub-objects of the same kind. For example,
in Figure 1 (a), the first publisher has an address sub-element but the second publisher does not. The book
under the first publisher has two author sub-elements but the book under the second publisher has only one

author sub-element.

<{Publishers>
<{Publisher @name=" MIT Press’ > <{Publisher @name=" MIT Press’ >
<address> Cambridge </address> <address> Cambridge </address>
<book> <book>
{title> database <{/title> {title> database </title>
<author> Tom </author> Cauthor friend=1> Tom </author>
<author> John </author> Cauthor id=1 loves=2> John </author>

{Publishers>

</book> </book>
</Publisher> </Publisher>
{Publisher> {Publisher>
<book> <book>
{titled Life </titled {title> Life </title>
{author> {author id=2 friend=1>

<name> Smith </name)>
<age> 18 {/age>
</author>
</book>
<name> NY Press </name)>
</Publisher>
</Publishers>

(a) XML document without ID/IDREF

Figure 1:

<{name> Smith </author)
Cage> 18 <{/aged>
</author>
</book>
<name> NY Press </name)
</Publisher>
<{/Publishers>

(b) XML document with ID/IDREF

XML documents



1.1 Data Model

1.1.1 Basic Model: Tree

The basic data model of XML is a directed, rooted, labeled, and ordered tree. Figure 2 (a) and (b) shows
the XML data tree of the XML document in Figure 1 (a) !. Figure 2 (a) is based on a node-labeled model
where labels are on nodes, and Figure 2 (b) is based on an edge-labeled model where labels are on edges.
These two models are equivalent. Most research papers use the node-labeled model, while the edge-labeled
model is also used in some scenarios, such as in the Fdge approach that will be introduced in Section 4.2.
Here we explain the XML data tree based on the node-labeled model, and analogous explanations can also

be applied to the edge-labeled model.

There are three classes of nodes in a data tree. (1) Element Node (internal node). This class of nodes
correspond to tags in XML documents, such as publisher, address, etc. Labels on element nodes are just tags
in XML documents. (2) Attribute Node (internal node). This class of nodes correspond to attributes in XML
documents, such as ‘@name’ under the first publisher element. In contrast to element nodes, attribute nodes
are not nested (i.e. an attribute cannot have any sub-elements), are not repeatable (i.e. two same-name
attributes cannot occur under one element), and are unordered (i.e. attributes of an element can freely
interchange their occurrence locations under this element). (3) Value Node (leaf node). This class of nodes
correspond to data values in XML documents such as ‘MIT Press’, ‘database’, etc.

Edges in a data tree represent structural relationships between elements/attributes/values.

1.1.2 Extended Model: DAG and General Graph

XML documents allow users to define ID/IDREF attributes of elements, where the id attribute is used to
uniquely identify an element and idref attributes are used to refer to other elements which are explicitly
identified by their id attributes. ID/IDREF attributes increase the flexibility of the XML model so that
elements in XML documents may directly refer to each other freely. Figure 1 (b) shows an XML document
with ID/IDREF attributes, where the newly introduced ID/IDREF attributes are underlined.

Therefore, in addition to original tree edges in XML data trees which describe main skeleton structural
relationships in XML documents, ID/IDREF edges are also introduced into the XML data model to represent
direct reference relationships between elements, which extends the original tree model to DAG (Directed
Acyclic Graph) or even more general graph with cycles. Figure 2 (c) is just a graph with cycles, which
corresponds to the XML document in Figure 1 (b).

1.2 XML Queries

Unlike keyword search in text retrieval, which concerns only contents of text documents, XML queries concern

structure as well as contents of XML documents.

1.2.1 XPath

XPath [Gro04c] is a basic XML query language that is used to select nodes from XML documents such
that the path from the root to each selected node satisfies a specified pattern. A simple XPath query is

1We defer discussing the pairs of numbers adorning nodes until later.
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Figure 2: XML data model



specified by a sequence of alternate axes and tags. Two commonly used axes are child axis ‘)’ where ‘A/B’
denotes selecting B-tagged child nodes of A-tagged nodes, and descendant azis /)’ where ‘A//B’ denotes
selecting B-tagged descendant nodes of A-tagged nodes. An example XPath query is 7 /Publisher//title”
(its standard form should be "root/Publisher//title”, but "root” is always omitted for simplicity), which
returns all book titles of all publishers. The result of this query against the data tree in Figure 2 (a) is a set
of title nodes that have values ‘Database’ and ‘Life’.

The query pattern specified by the XPath query above is a simple path pattern shown in Figure 3 (a)
where the arrow with ‘=’ denotes the ‘//’ axis. Generally, an XPath query can specify a more complex
tree pattern (also called twig pattern) by introducing selection predicates into XPath expressions. One such
example is 7/ Publisher[@name = ‘M IT Press'|/book/title”, in which ¢/ Publisher /book /title’ is the main
path of this query and the content between ‘[" and ‘|’ is a selection predicate. This query returns all book
titles of the publisher named ‘MIT Press’. The pattern of this query is shown in Figure 3 (b). Generally,

multiple selection predicates might be involved in XPath queries.

/ /

/ /
publisher publisher,
title @name book
?
title
‘MIT Press’ o
(a) Path Query (b) Twig Query

Figure 3: Query pattern

1.2.2 XQuery

XQuery [GroO4e, Cha02] is another popular XML query language, which is an extension to XPath and
is more powerful than XPath. It is a functional language comprised of FLWR (For-Let-Where-Return)
clauses that can be nested and composed with full generality. For and Let clauses bind nodes selected by
XPath expressions to user-defined node variables. Where clauses specify selection or join predicates on node
variables. Return clauses operate on node variables to construct a new XML document as the query result.
Figure 4 (a) shows a simple XQuery, which groups books by their publisher addresses. The query pattern is
shown in Figure 4 (b), and the format of the resulting XML document is shown in Figure 4 (¢) where the ‘x’
edge means that a books node might have multiple book nodes as children. From this example we can find
that XQuery logically (rather than physically) includes two parts: twig pattern matching (defined by FLW)
and result construction (defined by Return).

Tree algebras have been developed to express more complex XQueries. [JAKC102, PAKJ*02, PWLJ04]
address transforming XQuery to an algebraic tree. The algebraic tree represents an efficient logical plan of
answering XQuery. Each node in this tree is a tree algebraic operator. The basic tree algebraic operators

are selection, projection, and grouping, each of which takes one or multiple twig patterns as inputs.



FOR $a IN distinct-values(/publisher/address)

RETURN / y
<{Books>
{PublisherAddress> $a </PublisherAddress>
{ publisher, Books
FOR $p IN /publisher address book .
WHERE  $p/address = $a ? 5 00 PublisherAddress book
RETURN  $p/book
}
{/Books>
(a) XQuery (b) Query Pattern (c) Format of Query Result

Figure 4: An example of XQuery

1.2.3 Summary

The core of both XPath and XQuery queries is twig pattern matching (also called twig query), i.e. finding
from XML documents all matches that satisfy the twig (or path) pattern specified by a given query. We
call nodes in XML data trees data nodes and nodes in query twigs query nodes. For XPath queries, the
output of twig pattern matching is a set of data nodes whose corresponding query node is the end node of
the main path in a query twig. For example, the output of matching the twig pattern in Figure 3 (b) is a
set of title nodes. We call this type of output single-node solutions. For XQuery queries, the output of twig
pattern matching is a set of tuples of data nodes that correspond to multiple query nodes in a query twig.
For example, the output of matching the twig pattern in Figure 4 (b) is a set of (address, book) tuples, but
not a set of only book or address nodes. We call this type of output tuple solutions.

Another important thing is that current XPath and XQuery do not support ID/IDREF axis queries, i.e.
they always assume queries work on tree-shaped XML data model. In fact, this assumption has also been
taken by most research papers on XML query processing. The first reason for taking this assumption is
that general graph-shaped data model significantly increases the complexity of XML query processing. The
second reason is that graph-shaped XML documents with ID/IDREF attributes are not usual in practical
applications. So we will continue to take this assumption in this survey except explicitly claimed.

In the remainder of this survey we review major techniques for processing XML twig queries. We
categorize these techniques into three classes based on the storage format of XML data. Section 3 introduces
the file approach, in which XML data must be stored in commonly used flat files, as required by special-
purpose applications. Sections 4 and 5 introduce the relational approach and the native approach, in which
XML data are stored in relational databases and inverted lists, respectively. With value indexes and structural
indexes available in these two approaches, XML queries can be answered much more efficiently than in the
file approach. Before we begin to review these approaches, we first introduce numbering schemes.

2 Numbering Schemes

In this section, we introduce numbering schemes that can overcome the weakness of the file approach and

have been taken as an important foundation for many techniques in the relational and native approach.

Edges in XML data trees represent structural relationships between data nodes. The key idea of answering
XML twig queries is just determining structural relationships, or more specifically reachability, between any
pair of nodes in XML data trees. For example, in order to answer a path query ‘A//B’, given any pair of
A-tagged node and B-tagged node, say (a,b), in a data tree, we need to determine whether there exists a



path from a to b.

A straightforward method of determining reachability is ¢ree navigation [MW99], which consists of either
traversing the subtree rooted at an A-tagged node to see if a B-tagged node can be found (forward navigation),
or, more intelligently, backtracking from a B-tagged node upwards to see if an A-tagged node can be found
(backward navigation). Backward navigation is usually more efficient because each node in a tree has only
one incoming path from the root but multiple outgoing paths. However, if A-tagged nodes are more selective
than B-tagged nodes, i.e. most A nodes have B descendants but most B nodes have no A ancestors, then
forward navigation might be more efficient. Therefore, a trade-off has to be determined, which is just the
motivation of hybrid navigation [MW99]. However, on the whole, the navigational method is not efficient,
since both forward and backward navigations involve traversing a large amount of irrelevant nodes, i.e. nodes
tagged with neither A nor B. For example, for a path ‘{/A/D/E/F/B’ in a data tree, irrelevant nodes tagged
with D, E or F have also to be traversed for answering a query ‘A//B’ when the navigational method is

used.

Another method of determining reachability is precomputing, for each node in a data tree, a set of nodes
that can be reached from this node, i.e. materializing transitive closure of this data tree. The transitive
closure is typically very large and so could waste storage space. Therefore, we need a less exhaustive method
to compactly represent transitive closure. Numbering Schemes is just one such method.

[Die82] is the origin of numbering schemes for trees. It proposed a kind of numbering scheme we call
PrePost Coding, which uses tree-traversal orders of nodes to compactly represent transitive closure of
trees. Specifically, each node in a tree is labelled with a pair of numbers, (start, end), where start and
end correspond to preorder and postorder traversal numbers of this node in the tree, respectively. [ZND01]
introduced PrePost coding into XML applications. As can be seen from Figure 2 (a), the following property
always holds.

Property 1 (Ancestor-Descendant Relationship) In a data tree, node a is an ancestor of node b if

and only if a.start < b.start < a.end.

Obviously, PrePost Coding has two big advantages. (1) (start, end) numbers (also called PrePost
numbers) only need modest storage space: 2 x |V, where |V| is the number of nodes in the data tree. (2)
Using PrePost numbers, we can efficiently determine the ancestor-descendant relationship between any pair
of nodes in constant time by using only two number comparison operations. In addition, PrePost coding
can also be easily extended to check the parent-child relationship if we attach another number, level, to each
node, which denotes the depth of this node in tree.

Property 2 (Parent-Child Relationship) In a data tree, node a is a parent of node b if and only if
a.start < b.start < a.end and a.level + 1 = b.level.

In fact, in addition to commonly used ‘/’ and ’//” axes, PrePost coding extended with the number level
is able to process all other axes defined in XPath, such as following, following-sibling, etc [Gru02, GvKT04].

Another famous numbering scheme for trees is Dewey Coding [OCL04], which was originally developed
for general knowledge classification. [TVB102] introduced it into XML query processing. With this coding,
each node is associated with a vector of numbers that represents the path from the root to this node. This
coding method is illustrated in Figure 5. We can show that in a data tree, node a is an ancestor of node b

if and only if a.vector is a prefix of b.vector.
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Figure 5: Dewey Coding

An advantage of Dewey Coding over PrePost Coding is that Dewey Coding is easier to maintain when
dynamic updates occur on data trees. Using Dewey Coding, when a new node is inserted somewhere in
a data tree, only nodes in subtrees rooted at the following sibling nodes of this new node need to change
their Dewey vectors. In contrast, using PrePost Coding, when a new node is inserted, most nodes in a data
tree might need to update their (start, end) numbers. ORDPATH Coding, which is a variant of Dewey
Coding but even easier to maintain than Dewey coding, has been integrated into the XML query processing
component of Microsoft SQL Server 2005 [OOP04].

However, compared with PrePost, Dewey has some obvious weaknesses. (1) The path vector associ-
ated with each node needs more storage space than (start, end) numbers in PrePost Coding. (2) PrePost
provides more efficient support in checking the ancestor-descendant relationship between two nodes, since
number comparison operation can be implemented more efficiently than the operation of checking the pre-
fix containment relationship between two path vectors. Due to the nice properties of PrePost, most XML

research papers use PrePost as their numbering schemes. Our survey will continue this tradition.

In addition to numbering schemes for trees, numbering schemes have also been developed for DAGs
[ABJ89] and for even more general graphs with cycles [CHKZ03]. [STW04, STWO05] applied 2-hop labels
developed in [CHKZ03] to deal with general XML data graphs. However, the size of 2-hop labels is usually
very large, which limits its application in practice.

3 XML Query Processing: the File Approach

XML data are originally created in the form of XML documents (Figure 1) and stored in flat files. Generally,
various indexes need to be built on XML data to facilitate answering XML queries, since indexes can locate
goal data quickly without exhaustively scanning the data. Such indexes include classical B+-tree index
(Section 4), which is an index on data values (value indexing), and recently developed numbering schemes
(Section 2), which is an index on structure of XML documents (structure indexing). However, indexes
themselves are redundant data. In some application scenarios, XML data must be exchanged in the form of
flat files only, without any redundant data such as indexes being allowed to associate with them. In those

cases where indexes are not available, entire XML documents have to be scanned to answer queries.

One example of such applications is SDI (Selective Dissemination of Information) [AF00, DFFT02, DF03,



DAF*03, BGKS03, TRP*04]. SDI is essentially an XML Publish/Subscribe system. Figure 6 illustrates its
structure. The filtering system stores XPath queries from subscribers. It matches each incoming streaming
XML document D from publishers with each subscribed XPath query. If a match is found in D with
some XPath query @, then D will be sent to subscribers of ). In order to reduce network bandwidth,
publishers disseminate only XML documents, without any redundant data such as indexes associated with
these documents. In this scenario, only tree navigation methods, specifically only the forward navigation
method (Section 2), can be used, since scanning XML documents sequentially in document order is essentially
a depth-first traversal of XML data trees.

Streaming XML Filtered XML
Documents Documents

@ \> Filtering / -
g0 = Syste —— O

@ %set of Subscribed XPath Queb> O

XML Publishers XML Subscribers

Figure 6: SDI application

3.1 Single-Query Processing

3.1.1 The Automata Approach

The automata approach is a natural implementation of forward navigation, which has been widely researched
[AF00, DFFT02, DF03, DAF*03, BGKS03, HBGT03]. This approach expresses an XPath query as an
automaton and runs XML documents on this automaton as if XML documents were strings.

When a streaming XML document arrives, SAX parser [Org04] parses it sequentially on the fly. SAX is
an event-based XML parser. A StartElement event is triggered when the opening tag of an XML element
is encountered, which returns the tag name and all associated attributes (if any) of this element to the
event handler. Similarly, an EndFElement event is triggered when the closing tag of an XML element is
encountered, which returns the tag name of this element to the event handler. The event handler then uses

opening/closing tags returned by events to activate corresponding state transmissions of automaton.

Figure 7 illustrates this approach. Figure 7 (b) is an automaton equivalent to XPath query ‘//A//B/C’
where ¢// axes are represented using x-edges (‘+’ denotes any tag name), and the leaf query node is taken
as an accept state (State 3). The key idea of this approach is using a run-time stack, in which each stack
element is a set of automaton states. When an opening tag is encountered, each state in the stack-top
element is transformed to new states (or to this state itself if there is a *-edge outgoing from it) based on
this tag. These newly generated states are collected into a new stack element which is in turn pushed into
the run-time stack as the new stack top. Instead, when a closing tag is encountered, the stack-top element
is simply popped out of the stack. For SDI applications whose goal is just to check if there exists one match
between the published XML document and subscribed XPath queries, the matching process can terminate
once an acceptable state, such as State 3 in Figure 7 (b), is reached. However, for general query applications
whose goal is to find all matches, the matching process has to continue until the end of the XML document
is reached. All elements resulting in accept states, such as elements ¢; and cq in Figure 7 (¢), are output as

query results.
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Figure 7: The Automata approach: processing XPath query ‘//A//B/C’

3.1.2 The PathStack Approach

The automata approach described above is simple and feasible. However, its big weakness is that although
it derives single-node solutions (e.g. a set of C nodes), it is difficult to derive tuple solutions (e.g. a set of (A,
B, C) tuples). The reason is that the run-time stack tracks only states in automata but not data nodes in
data trees. In addition, the run-time stack wastes memory space. Due to the ‘//’ axes, states with outgoing
x-edges, such as State 0 and State 1, have copies in a large number of stack elements repeatedly.

[BKS02] introduced an elegant data structure, PathStack, which can overcome the weaknesses of the
automata approach described above. PathStack was introduced in [BKS02] originally as a native approach
to answering XML twig queries. [BGKS03] extended it to process multi-queries. Here we only introduce its
role in the file approach while leaving the introduction to its role in the native approach to Section 5. Figure
8 illustrates this PathStack approach.
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c, c, b, N b, a b, a, Solutions:
b, . o b, . b, : (a,,b,, c)
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(7) Read </cl> (8) Read [CR N (9) Read </c2> -

(a) Data Tree (b) Path Stacks (Stack C = Stack B = Stack A)

Figure 8: The PathStack approach: processing XPath Query ‘//A//B/C’

The key idea of the PathStack approach is using a series of linked stacks to track scanned data nodes.
Specifically, one stack is created for each query node in a path query. For example, for a path query
‘/J/A//B/C’, there are three stacks, Stack C — Stack B — Stack A. When an opening tag is encountered,
the corresponding XML element is pushed into the stack named by this tag, associated with an a pointer to



the top element in its parent stack (see Steps (2) (5) (6) and (8)). Note that such elements as d; whose tags
do not correspond to any stack (i.e. are irrelevant to the given path query) are simply discarded. Instead,
when a closing tag is encountered, the top element in its corresponding stack is simply popped out (see Steps
(7) and (9)).

The procedure above guarantees that at all times, elements in all stacks are from the same path in the
data tree. Therefore, when an element is pushed into the stack corresponding to the end node of the path
query, such as Stack C, it implies that some matches might have been found. These matches can be output
immediately as solutions through backtracking pointers associated with the elements in stacks (see Steps
(6) and (8)). Note that in order to check the child-parent relationship, each element that is pushed into the
stack also needs to be associated with its depth number in the data tree, which can be easily derived in the

parsing process.

Compared with the automata approach, the PathStack approach has the following advantages. (1) The
PathStack approach saves memory space. The number of stacks in the PathStack approach is the length of
the path query, while the depth of the run-time stack in the automata approach is the depth of the entire
XML data tree. (2) More importantly, the PathStack approach can derive tuple solutions, rather than only
single-node solutions. Tuple solutions are very important. They might be required by XQueries (Section
1.2.3). More importantly, tuple solutions help answer twig queries as well as simple path queries through

using a post-joining procedure as introduced below.

3.1.3 The TwigStack Approach

The TwigStack approach extends the PathStack approach to answer general twig queries [BKS02]. Its key
idea is twig decomposition, i.e. decomposing twig queries into multiple root-to-leaf path queries. Each path
query is still processed as in PathStack, and the query results are finally joined together to get the result
of the original twig query. However, since path queries from the twig decomposition have common prefix
(query) nodes, the stacks corresponding to these common prefix nodes can be shared. Therefore, in contrast
to PathStack, which links stacks in the form of a path, TwigStack links stacks in the form of a twig.

An example of TwigStack is shown in Figure 9. In this example, once a C-tagged node is pushed into
Stack C', the tuple solutions obtained from Stack C — Stack B — Stack A are immediately sent to Table 1.
Similarly, once a E-tagged node is pushed into Stack E, the tuple solutions obtained from Stack E — Stack
D — Stack B — Stack A are immediately sent to Table 2. If a path query is very selective so the size of
Table 1 and Table 2 is small, then these two tables can be temporarily stored in memory. Otherwise, they
have to be sent to disk. Finally, after the entire XML document is scanned, there is a post-joining procedure
which joins Table 1 and Table 2 on their shared attributes, A and B, to get tuple solutions (4, B, C, D, E).

3.2 Multi-Query Processing

The problem of multi-query processing is answering a batch of queries rather than a single query. For example,
the SDI application is essentially an XML multi-query processing problem except that it is only to find one
rather than all matches of a streaming XML document with each of subscribed queries.

The problem of multi-query processing has been widely researched in the context of relational databases
(e.g. in [RSSBO00]). The key idea of improving the performance of multi-query processing is answering
multiple queries simultaneously rather than separately through exploring shared parts of these queries. This

idea is similarly applicable in the context of XML multi-query processing.

10
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Figure 9: The TwigStack approach

It is straightforward to extend three approaches to XML single-query processing (Section 3.1) to XML
multi-query processing. The extension of the automata approach finds common prefixes of the given path
queries and share the states corresponding to these common prefixes in a newly constructed automaton
[DFFT02, DF03, DAFT03], as Figure 10 (a) illustrates. Similarly, the extension of the PathStack approach
finds common prefixes of the given path queries and share the stacks corresponding to these common prefixes
in a newly constructed TwigStack [BGKS03], as Figure 10 (b) illustrates. Note that the extension to the
PathStack approach above is essentially the same as the TwigStack approach.
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Figure 10: XML Multi-Query Processing

Through the extensions above, each XML document needs to be scanned only once to answer multiple

queries simultaneously.

3.3 Summary

The file approach is mainly used for special-purpose applications in which XML data must be stored in
commonly used flat files in the form of just original XML documents. Because no redundant data such as
indexes are available in such applications, entire XML documents have to be scanned sequentially element
by element despite the fact that most elements in documents might be irrelevant to the specified queries,
which usually results in poor query processing performance. In the following two sections, we investigate
the relational approach and the native approach, in which XML data are stored in relational databases and
in inverted lists, respectively. With value indexes and structural indexes available in these two approaches,

XML queries can be answered much more efficiently than in the file approach.
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4 XML Query Processing: the Relational Approach

Relational database systems are today’s mainstream database systems. Today’s well-known commercial
database systems, such as IBM DB2, Microsoft SQL Server, and Oracle, are all relational database man-
agement systems (RDBMS). Due to more than thirty years of academic and industrial efforts, RDBMSs
have acquired strong capabilities in storage management, query processing and optimization, concurrency
control and recovery, etc. Therefore, a lot of research efforts have addressed storing and querying XML data
in RDBMS. In Section 4.1, we review past work on storing and querying XML data with a ‘schema’. In

Sections 4.2 through 4.4, we review past work on storing and querying schemaless XML data.

4.1 The DTD Approach

This approach is developed to store and query XML data with a ‘schema’. As introduced in Section 1, XML
is a flexible data model. However, XML data in many practical applications also conform to a schema to
some extent, since for various inter-operating applications that exchange data with each other, a common
agreement on the schema of exchanged data will facilitate data exchange among them significantly. Such
schemas can be described using standard Document Type Descriptors (DTDs) [Gro04b] or XML Schemas
[Gro04d]. Here we briefly introduce basic issues on DTD only, since XML Schemas are essentially extensions
to DTDs.

DTD is a set of statements where each statement specifies a relationship between an XML element and
its sub-elements/attributes, or the data type of an XML element/attribute. DTD statements are usually
stored in a special document for reference. If an XML document, X, cites a DTD document, D, on its file
head, then the structure of XML data in X must conform to the schema specified by D. We show a simple
DTD example in Figure 11. Figure 11 (a) is a DTD document, whose semantics can also be explained using
a DTD graph in Figure 11 (b). The ‘*’ symbol associated with an element in DTD statements implies that
this element can have multiple copies under its parent element. For example, a Publisher element might

have multiple Book sub-elements.

Publisher (name, address)

<!ELEMENT Publisher (address, Book%)>
<!ATTLIST Publisher name CDATA #REQUIRED>
<!ELEMENT address (#PCDATA) >

Publisher

Book (title, p name)

R

Author (name, b_title, age)

<IELEMENT Book  (title, Authors)> add
<!ELEMENT title (#PCDATA)>

<!ELEMENT Author (name, age)>
<!ELEMENT name (#PCDATA) >
<!ELEMENT age (#PCDATA) >

name age
(a) A DTD document (b) A DTD Graph (c) Resulting Relational schema

Figure 11: An DTD example

DTD schemas can be naturally transformed into relational schemas [STZ199, SSK*01], as Figure 11 (c)
illustrates. In the resulting relational schema, separate relations are created for the root element (Publisher)
and all ‘«+’ sub-elements (Book and Author) in DTD. Each ‘x’-element relation has a foreign-key reference,
e.g. attribute p_name in the Book table and attribute b_title in the Author table, to its parent-element table.
After XML data conforming to a DTD schema have been shredded into relational tables, XML queries over
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XML data can be easily transformed into SQL queries over relational data. For example, a twig query
/Publisher[address = ‘Cambridge’]//Author /name can be transformed into a SQL query that joins three
tables, Publisher, Book, and Author, together, as Figure 12 illustrates.

Select a.name
From Publisher p, Book b, Author a
Where p.address = ‘Cambridge’ and
p.name = b.p name and b.title = a.b_title

Figure 12: The DTD approach: SQL query for ‘/Publisher|address = ‘Cambridge’]/ /Author /name’

4.2 The Edge Approach

e The Basic Edge Approach

[FK99] proposed a simple approach to shredding schemaless XML data into relations. This approach is
based on edge-labeled XML data trees. In this approach, all edges in a data tree are stored in a single
relational table, Edge. The schema of this Edge table is shown in Figure 13. The key idea of this schema
is an attribute pair (Source, Target), which represents end points of edges. Attribute Label represents tags
on edges. Attributes Flag and Value give the type and value of target nodes of edges, respectively. As an
example, Figure 13 populates the Edge table with XML data shown in Figure 2 (b).

[ Label [Source | Target [ Flag | Value |
Publisher 1 2 Element null
name 2 3 Attribute | ‘MIT Press’
address 2 4 Value ‘Cambridge’
Publisher 1 9 Element null

Figure 13: The Edge Table

Two edges A and B can be joined together if and only if A.Target = B.Source. Based on this property,
it is easy to transform XML twig queries without ”//” axes into SQL queries. The transformation method
is illustrated in Figure 14 with a twig query ‘/Publisher|address = ‘Cambridge’]/book/author/name’.
Execution of this SQL query comprises two steps. The first step is a candidate-edge finding step, which
retrieves data edges for each label in the twig query, as Part (1) in Figure 14 shows. We can see that a
clustered index pre-built on theLabel attribute can significantly speed up the processing of this step. The
second step is an edge joining step, which joins adjacent edges as Part (2) in Figure 14 shows. The processing

of this step can be made more efficient by pre-building indexes on attributes (Source, Target).
e The Binary Approach

A weakness of the above Edge approach is that it involves multiple self-joins of the large Edge table. For
example, five Edge tables are joined in Figure 14, one table for each query node in the query twig. In order
to overcome this weakness, [FK99] also proposed a Binary approach, which is a variant of the basic Edge
approach, to avoid exploring the large Edge table. The key idea of this approach is grouping all edges with
the same label into one table respectively, i.e. creating one table for each distinct label. Each label table has
the schema (Source, Target, Flag, Value), with the Label attribute being dropped from the Edge schema.
An example of a SQL query against this schema is shown in Figure 15. In this example, the candidate-edge

finding operations in Part (1) of Figure 14 are saved. In addition to improving query processing performance,
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Select name. Value
From Edge publisher, Edge address, Edge book, Edge author, Edge name

/ Where publisher.Label = ‘publisher’ and -
address.Label = ‘address’ and
publisher, book. Label = ‘book’ and (6]
author. Label = ‘author’ and
address book _ »
name. Label = ‘name and -
publisher. Source = 1 and —
Canbridge’ author publisher. Target = address. Source  and
publisher. Target = book. Source and @
name book. Target = author. Source and
2 author. Target = name. Source and -

address. Value ‘Cambridge’

Figure 14: The Edge approach: SQL for ‘/Publisher|address = ‘Cambridge’] /book author /[name’

the Binary approach also saves storage space, since it doesn’t store labels of edges. However, for large XML
documents with a lot of distinct labels, the Binary approach will unavoidably result in a large number of
relational tables, which increases the management workload of DBMS. Otherwise, we notice that the basic
idea of this approach that clusters edges by their labels is very similar to the idea of inverted lists that will
be introduced in Section 5.

Select name. Value
From publisher, address, book, author, name
publisher . B
Where publisher. Source = 1 and
address book publisher. Target = address. Source and
publisher. Target = book. Source and 2)
book. Target = author. Source and
author
‘Cambridge’ author. Target = name. Source and
address. Value = ‘Cambridge’

hame

Figure 15: The Binary approach: SQL for ‘/Publisher[address = ‘Cambridge’]/book [author /name’

In a whole, the Edge approach has two weaknesses. (1) It involves many join operations. The number of
joins is just the number of query nodes in a twig query. So it fails to process large twig queries efficiently.
(2) Its biggest weakness is that it does not support twig queries with ”//” axes (e.g. ‘A//B’), since it does
not know how many tags and which tags are involved between tag A and tag B.

4.3 The Node Approach

As we introduced in Section 2, numbering schemes are essentially structural indezes, which help answer //’
axis queries efficiently. [ZND™01] is the first paper that applied PrePost coding developed in [Die82] to XML
research. This paper contributed a Node approach to shredding schemaless XML data into relations. This
approach is based on node-labeled XML data trees. In this approach, all internal nodes (i.e. element nodes
and attribute nodes) in a data tree are stored in a relational table, Node. The schema of this Node table is
shown in Figure 16. The key idea of this schema is an attribute triple (Start, End, Level), which replaces
the attribute pair (Source, Target) in the Edge schema. ‘//’ axis queries can be answered efficiently through
using (start, end) numbers of nodes. Level is used with (start, end) together to answer ‘/’ axis queries. As
an example, Figure 16 populates the Node table with XML data shown in Figure 2 (a).

Based on Property 1 and Property 2 in Section 2, it is easy to transform XML queries with both ‘/’
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[ Label [ Start] End [Level | Flag | Value |

Publisher 2 20 1 Element null
name 3 5 2 Attribute | ‘MIT Press’
address 2 Value ‘Cambridge’

Publisher 21 38 1 Element null

Figure 16: The Node Table

and ‘//’ axes into SQL queries. The transformation method is illustrated in Figure 17 with a twig query
‘/Publisherladdress = ‘Cambridge’]/ /author /name’. Similar to the Edge approach, execution of this SQL
query comprises two steps, candidate-node finding (Part (1)) and node joining (Part (2)). The difference is
that in the second step, the Node approach joins nodes using (Start, End, Level) attributes. Just as in the
Edge approach, Part (1) can be saved in the Node approach if a variant similar to the Binary approach is
used.

Select name. Value
, From Node publisher, Node address, Node author, Node name

/ Where publisher.Label = ‘Publisher’ and
address. Label = ‘address’ and :| =
publisher, author. Label = ‘author’ and
name. Label = ‘name’ and
address author publisher. level = 1 and
e publisher. start < address.start and address.end < publisher. end and
“Canbridge’ publisher. level + 1 = address. Level and @
publisher. start < author. start and author.end < publisher. end and
author. start < name. start and name. end < author. end and
author. level + 1 = name. Level and
address. Value = ‘Cambridge’

Figure 17: The Node approach: SQL query for ‘/Publisher[address = ‘Cambridge’]/ /author /name’

The Node approach overcomes the weakness of the Fdge approach which does not support‘//’ axis
queries. However, similar to the Edge approach, it involves many join operations. Specifically, the number
of joins is just the number of query nodes in a twig query, which results in inefficient query processing of

large twig queries.

4.4 The Path Materialization Approach

e The Basic PM Approach

In order to reduce the number of node joins, [YASUO1] proposed a Path Materialization (PM) approach
to shredding schemaless XML data into a relation table, Path. The schema of this Path table is shown in
Figure 18. It is very similar to the Node table. The difference is that rather than storing the tag of each
node in the Label attribute, the PM approach stores the tag path from the root to each node (called root
path) in a new attribute Path.

Through the Path attribute, the PM approach can answer twig queries efficiently in units of paths rather
than in units of single edges. Specifically, given a twig query, the PM approach first decomposes it into
multiple root-to-leaf path queries as the TwigStack approach in Section 3.1.3 does, and then joins results
of these paths queries together. Figure 19 illustrates how to use a SQL query to answer a twig query
‘/Publisher|address = ‘Cambridge’]/book /author /name’. Part (1) is the twig decomposition step, which
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| Path [ Start [ End | Flag | Value |

/Publisher 2 20 Element null
/Publisher/@name 3 5 Attribute | ‘MIT Press’
/Publisher/address 6 8 Value ‘Cambridge’
/Publisher 21 38 Element null

Figure 18: The Path Table

uses the value of root paths of leaf nodes (address, name) and branching nodes (publisher) in the query twig
to retrieve their corresponding data nodes in data tree. Part (2) is the path joining step, which joins data
nodes retrieved from Part (1) through their (start, end) numbers.

/
Select name. Value
publisher From Path publisher, Path address, Path name
Where publisher.Path = ¢/Publisher’ and
address book address.Path = ‘/Publisher/address’ and :| 6))
name. Path = ‘/Publisher/book/author/name’  and
_ author publisher. start < address.start and address.end < publisher. end and :I @
‘Cambridge’ publisher. start < name. start and name. end < publisher. end and
address. Value = ‘Cambridge’

name

Figure 19: The Basic PM approach: SQL for ‘/Publisher[address = ‘Cambridge’] /book /Author [name’

The PM approach has two advantages. (1) It involves fewer join operations in Part (2) than the Node
approach, since it answers twig queries in units of paths rather than in units of single edges. For example,
for the twig query in Figure 19, the Node approach needs to join five Node tables but the PM approach
needs to join only three Path tables. Therefore, the PM approach generally has higher query process-
ing performance. (2) The PM approach can also support ‘//’ axis queries as the Node approach does,
by using the Optional String Pattern Matching (OSPM) function ("LIKE”) provided by SQL. For exam-
ple, in order to answer a query ”/Publisher[address = ‘Cambridge’]//name”, we only need to replace
"name.Path="‘/Publisher /book/author/name’™ in the where clause in Figure 19 with ”"name.Path LIKE
¢/ Publisher /% /name’ .

However, we can also observe that although the number of join operations in Part (2) is reduced, it is at
the expense of increasing the complexity of selection operations in Part (1). As we know, SQL supports Exact
String Matching (”=") efficiently through pre-building a B+-index on string attributes, but B+-indexes do
not support optional string pattern matching ("LIKE”) efficiently due to the inherent structure of B+-trees.
In order to find patterns with multiple ‘%’ symbols, a large number of irrelevant strings in tables might have
to be checked exhaustively. Therefore, the PM approach does not support ‘//’ axis queries efficiently when
there are multiple ‘//” axes in queries (e.g. //A//B/C//D).

e The RP Approach

[PCST04] proposed a Reversed Path (RP) approach to overcome the weakness of the PM approach discussed
above. This approach uses a schema shown in Figure 20. Its key idea is storing reversed root paths of data
nodes in a new attribute ReversedPath. Otherwise, the RP approach uses an ORDPATH attribute to
replace the (start, end) attribute pair in the PM approach. ORDPATH coding is a variant of Dewey coding
we mentioned in Section 2. It can be used to determine ancestor-descendant/parent-child relationships
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between nodes as PrePost coding does [OOPT04]. Here we simply ignore the difference between ORDPATH

numbers and (Start, End) numbers, and concentrate our discussion on the ReversedPath attribute.

[ ReversedPath [ ORDPATH | Flag | Value |
/Publisher 1.1 Element null
/@name/Publisher 1.1.1 Attribute | ‘MIT Press’
/address/Publisher 1.1.3 Value ‘Cambridge’
/Publisher 1.3 Element null

Figure 20: The ReversedPath Table

Figure 21 shows an example of how the RP approach answers twig queries with multiple ‘//’ axes. The
first step is still twig decomposition, which decomposes the query twig into three paths. However, Path (3)
involves three ‘//’ axes. In the PM approach, we have to use ‘% A/B/C%E/F%G’ as a search pattern on the
Path attribute to retrieve corresponding data nodes. As we analyzed earlier, this is not efficient. Therefore,
the RP approach continues to decompose Path (3) into Path (4) and Path (5), both of which include only one
‘//’ axis just in the beginning. So we can use ‘/F/E%’ and ‘/G%’ as search patterns on the ReversedPath
attribute to retrieve data nodes of Path (4) and Path (5), respectively. So the task here is just finding a
string with a specified prefiz, which can be implemented more efficiently than the general Optional String
Pattern Matching task with multiple ‘%’ symbols. Finally, similar to the PM approach, the RP approach
has a path joining step, which joins results of path queries together through the ORDPATH attribute.

/ /
1
/ A A w
(1) Prefix: /C/B/A
A
decompose c decompose (3)
_ / / _— /
C (4)
A A A E
D E Prefix: /F/E
refix:
F B B B F
C C C
D E D TG
@) F Prefix: /D/C/B/A Prefix: /G
(2) (5)
(3)
(a) Query (b) PM approach (¢) RP approach

Figure 21: The RP approach

e The BLAS Approach

As we saw above, the RP approach in [PCS*04] has simplified the task of general Optional String Pattern
Matching to an easier task of String Prefix Matching (SPM). However, [PCS04] did not provide any details
on how to efficiently implement SPM. It seems that they just simply push the SPM task down to the
SQL engine. In contrast, another work [CDZ04] not only introduced the RP approach independently from
[PCS104] but also developed a very intelligent method named BLAS (Bi-LAbeling System) to implement
SPM efficiently. The key idea of BLAS is encoding each ReversedPath string into a number, PLabel. This
encoding method is illustrated in Figure 22.

In this example, we assume that there is a total of four distinct tag names in some XML document, pl
through p4. At the first level, these four tags divide reserved number space [0, 1024) into four equal-length
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Levell | pl | p2 / p3 | p4 |
(256) O - 256 512 768 1024
0 S >
Level2 | pl | p2 L p3 | p4 -
6D 95g 320 - 387 448 512
Level3 | pl — p2 l p3 | p4 |
(16) 384 200 116 132 148
N T e
Leveld | pl | p2 | p3 | p4 >
(4) 384 388 392 396 400

Figure 22: How to compute PLabel(‘/p2/p3/pl/p4’)

segments, each with length 1024/4 = 256. In the same way, at the second level, four tags divide each segment
at the first level into four equal-length segments, each with length 256/4 = 64, and so on so forth. So we
have

Plabel(*/p2/p3/p1/pd’) =256 % (2—1)4+64% (3—1)+16% (1 —1)+4*(4—1) =396

In the same way, we can also get

PLabel(*/p4/p2/p3') = 256 % (4 — 1) + 64 (2 — 1) + 16 % (3 — 1) = 864

A very nice property of Plabel is that all strings with common prefixes cluster in adjacent digital areas.
For example, all ReservedPath strings with prefix ‘/p2/p3’ cluster together. So if we pre-build a clustered
B+-tree index on the Plabel attribute of the ReversedPath table, then all reversed paths with the specified
prefix can be retrieved very efficiently using a SQL range query. For example, in order to retrieve all
reversed paths with prefix ‘/p2/p3/’, BLAS first computes lower_bound = PLabel(‘/p2/p3/') = 384 and
higher_bound = PLabel(‘/p2/p4/’) = 448. Then a SQL range query is issued to retrieve all reversed paths
with PLabel within [384,448).

4.5 Summary

In this section, we saw that XML data can be simply loaded into relational databases and XML twig queries
over XML data can also be easily transformed into SQL queries over relational data. In the relational
approach, all query processing work is pushed into relational query optimizer and no extra processing work

is needed.

When XML data conform to a schema such as DTD, the DTD approach introduced in Section 4.1
provides better query processing performance than other approaches introduced in Sections 4.2 through
4.4. The reason is that the DTD approach generates different relational schemas for different DTDs. Each
generated relational schema is tailored for a specific DTD and so precisely captures the structure of XML
data conforming to that DTD schema. In contrast, approaches in Sections 4.2 through 4.4 generate the same
relational schema (tables Edge, Node, Path, etc) for various XML data despite their different structures,
and so fail to efficiently process a specific goal data set. The experimental work in [TDCZ02] also verifies

this point.
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When XML data is schemaless (i.e. a DTD for it is not available), the PM approach is the best compared
with the Edge approach and the Node approach, since (1) it supports ’//’ axis queries and (2) it needs fewer
join operations. Further, among the three variations of the PM approach (Basic PM, RP, BLAS), the RP
approach with the BLAS extension is the best. In fact, the basic RP approach has been integrated into
Microsoft SQL Server 2005 [OOP 104, PCST04]. Interestingly, [OOP*04, PCS*04] do not mention the work
of BLAS [CDZ04]. We propose to extend the basic RP approach in [OOP*04, PCS*04] with the PLabelling
method in BLAS to gain the best query processing performance.

5 XML Query Processing: the Native Approach

Although the relational approach is simple and feasible, it could have inferior query performance. In order
to answer ‘// axis queries, the Node approach and the PM approach use #-joins 2 to implement node/path-
joining step (see Part (2) in Figures 17 and 19), discarding equi-joins used in the Edge approach (see Part
(2) in Figure 14). 6-joins are more complex and costly than equi-joins. Although current DBMSs have been
coupled with efficient techniques to optimize and process equi-joins, they do not support 6-joins efficiently,
particularly when multiple comparison predicates are involved in queries. Some experimental work has
verified this point [ZND*01].

Much research has been done on developing native algorithms to efficiently process #-joins involved
in XML twig queries. We say these techniques are in the native approach since their storage and query
mechanisms are developed from scratch, without involving relational databases. The authors of these native
techniques believe that a special storage and query system tailored for XML data will improve XML query

processing performance significantly. In the native approach, 6-joins are also called structural join.

Specifically, in the native approach, XML data are stored in inverted lists. Inverted indexes have been
widely used in Information Retrieval to implement efficient text search [SM83]. Inverted index creates one
list for each distinct word in text documents; the list gives positions of all occurences of this word. These
lists are called inverted lists. Borrowing this idea, the native approach creates one inverted list for each
distinct tag in XML documents; the list gives positions of all elements with that tag name. Location of an
element is expressed using its (start, end, level) numbers. Locations in a list are sorted in the increasing

order of their start numbers. Figure 23 shows inverted lists of the XML document in Figure 2 (a).

{publisher> ——> (2, 20, 1), (21, 38, 1)
<hook> — (9, 19, 2), (22, 34, 2)

Cauthor> —— (13, 15, 3), (16, 18, 3), (26, 33, 3)

o —_—

Figure 23: Inverted lists

5.1 The MPMGJN Approach

[ZND*01] proposed an MPMGJN (Multi-Predicate MerGe JoiN) algorithm, which is the first native approach
to implementing structural joins. Its implementation is somewhat similar to that of the standard Merge Join

[

2¢-joins are joins involving >’ and ‘<’ comparisons, while equi-joins involve only ‘=" comparison.
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algorithm developed in relational query optimizers for equi-joins. In order to answer a query ‘A//B’ or
‘A/B’, two cursors are created on AList and BList that have been sorted in the increasing order of start
numbers. Initially, these two cursors are pointing to the heads of AList and BList, respectively. Then, they

are compared with each other and advanced in line to implement merge join.

In contrast to the standard merge-join implementation for equi-joins, MPMGJN has its own cursor-
advancing mechanism, which is specially tailored to efficiently support structural joins. Specifically, at each
step, it compares and advances two cursors as Figure 24 describes. The working process of MPMGJN is
also illustrated in Figure 25. Note that dotted edges in Figure 25 (a) mean there might be other data nodes
than A-tagged or B-tagged nodes on those edges although we show only A-tagged and B-tagged nodes in
this data tree. Experimental work in [ZND'01] found that MPMGJN algorithm is more than an order of

magnitude faster than RDBMS join implementation in most query cases.

If BList[cursorB].start < AList[cursorA].start Then
// advance the cursor of BList
cursorB ++;
Else
// begin the inner-loop join, then advance the cursor of Alist
temp cursorB = cursorB;
while ( BList[temp cursorB].start < AList[cursorA].end )

{
Output a tuple solution into the join result. Specifically,
Case 1 (For the "A/B’ query):
Output tuple (AList[cursorA], BList[temp cursorB]) if
AList[cursorA].Level + 1 = BList[temp cursorB].Level.
Case 2 (For the "A//B’ query):
Directly output tuple (AList[cursorAl, BList[temp cursorB]).
temp cursorB ++;

}

cursorA ++;
Endif

Figure 24: The core of the MPMGJN algorithm

5.2 The StackTree Approach

[AKJK02] observed that although the MPMGJN approach is efficient for *//” axis queries, it fails to process
¢/ axis queries efficiently in some cases. A motivating example is shown in Figure 26 (a). In this example,
ay has only two B children, b; and bg. However, we can see from Figure 26 (b) that MPMGJN finds the
child dg only after it has scanned b; through b5, where by through b5, which are indirect descendants but
not children of a1, have to be visited unnecessarily.

In order to avoid such unnecessary node scanning, [AKJK*02] proposed a new approach, StackTree.
StackTree uses a nice stack structure to cache A nodes nested on the same path in data trees. Figure 27
shows the core of the StackTree algorithm. At each step, the data node with the smallest start number is
taken out of its list. If it is an A-tagged node, it is pushed into the stack. If it is a B-tagged node, StackTree
tries to use it to form tuple solutions with existing A-tagged nodes in the stack. Figure 26 (c) illustrates its
working process. From this example, we can see that there are no redundant comparisons of by through b5
with a;. Therefore, StackTree has better query processing performance than MPMGJN.

Both StackTree and MPMGJN are binary join algorithms, i.e. they join only a pair of inverted lists (or
only one edge in the query twig). Since a complete twig query consists of a series of binary joins, the problem
of join order selection has to be considered seriously. Just as in the context of relational databases, join order
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significantly affects XML query processing performance. As we know, most relational query optimizers use
a classical dynamic programming method to select an optimal join order. [WPJ03] also proposed similar
dynamic programming methods to select an optimal or sub-optimal order of binary structural joins for XML
twig queries. The StackTree binary join algorithm and the corresponding dynamic-programming-based join
order selection algorithm have been integrated into Timber [JAKCT02], a famous native XML database
prototype from the University of Michigan.

min_start = Min(AList[cursorA]. start, BList[cursorB]. start)

Clear stack using min start, i.e. all A nodes in stack with end number smaller
than min start are popped out of stack

If min start = AList[cursorA].start Then
Push node AList[cursorA] into stack;
cursorA ++;
Else
Qutput tuple solutions into the join result. Specifically
Case 1 (For the "A/B’ query):
Output tuple (top, BList[cursorB]), where top is the node on the
top of the current stack and top.Level + 1 = BList[cursorB].Level.
Case 2 (For the A//B’ query):
Output all (a BList[cursorB]|) tuples, where a is any A node in the
current stack;
cursorB ++;
Endif

Figure 27: The core of the StackTree algorithm

min start = Min{ List [cursor,]. start }
i

Clear all stacks using min start, i.e. all nodes in current stacks with end
number smaller than min start are popped out of stacks.

Let min be id of the list such that List  [cursor  l.start = min start

If min is not the id of leaf node of the path query Then
Push node List . [cursor,, 1 into Stack , with an associated pointer
to the node on the top of its parent stack;

Else
Output all tuple solutions implied by current stacks into the join
result.

Endif

cursor . ++;
min

Figure 28: The core of the PathStack algorithm

Another important thing is that the StackTree algorithm in Figure 27 outputs all tuple solutions in the
increasing order of start numbers of descendant nodes (i.e. B-tagged nodes). For example, six tuple solutions
in Figure 26 (c) are output in the order of b; through bg. Complementarily, [AKJK*02] also proposed a
variant of the StackTree algorithm to output tuple solutions in the increasing order of start numbers of
ancestor nodes (i.e. A-tagged nodes). This is very important for twig queries. Consider a twig query
'C//A//B’. If we select a query plan C 1 (A <1 B), then query results of A b B have to be sorted by A
nodes, since the next binary join will occur between C and A.
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Otherwise, [CVZT02] extends the StackTree algorithm with a skip technique so that some nodes in
inverted lists do not need to be visited during the join process if these nodes are predicted not to form any
tuple solutions with other nodes.

5.3 The Holistic Approach

A weakness of decomposing twig queries into multiple binary joins is that this method generates a large
amount of intermediate query results. For example, for a query plan (A < B) <1 C, the query result of the
first join A 1 B has to be written to disk first if its size is too large to be contained in memory, and then be
read back to memory to join with C after A > B has been completed. This will result in high disk I/O cost.
In order to overcome this weakness, [BKS02] proposed a Holistic approach, which is essentially a pipelining
join, i.e. joining multiple inverted lists at one time so that no intermediate query results are generated.

Figure 28 shows the core of the PathStack algorithm which uses the Holistic approach to answer simple
path queries. It is easy to see that this algorithm is structurally very similar to the StackTree algorithm
in Figure 27. The difference is that StackTree uses only one stack to cache nested A nodes. In contrast,
PathStack has multiple stacks, one for each non-leaf node in a path query, since inverted lists of all nodes
in a path query are involved in pipelining joins. Also, each node cached in a path stack has an associated
pointer to a corresponding node in its parent stack, in order to track tuple solutions.

Recall that PathStack was also used as a file approach to answering path queries over XML documents
(Section 3.1.2). Here, Figure 29 illustrates how to use PathStack as a native approach to answering path
queries over inverted lists. This figure is very similar to Figure 8. The differences are: (1) only A-tagged and
B-tagged nodes are read in the native approach. Therefore, no other irrelevant nodes in XML documents,
such as node d; in Figure 8, are read. (2) In the native approach, the event of nodes being popped out of
stacks is triggered by the arrival of other nodes with higher start numbers than their end numbers, rather

a,

a b, ay by a;

a, ¢
L5 by,
b (4) Read b, (5) Read c S
X —— L
c, o, - b, a, Solutions:
e by

than being triggered by the arrival of their own closing tags as in the file approach.
(1) Read a (2) Read b, (3) Read a,
& (al ) bz ’ CZ) U U H
(a,, by, cp) -

K‘ a; bya, byc cyay
ay &
b Solutions:
& b, a, Ab, a,
K b, 2 ©f - by 2 @18y, o)
(ay by, c))
(6) Read cy o

(7) Read a,

(a) Data Tree (b) Path Stacks (Stack C = Stack B = Stack A)

Figure 29: The Holistic approach (For the query ‘A//B/C”)

Similarly, the Holistic approach also provides a TwigStack algorithm to answer general twig queries. The
main idea of TwigStack has been illustrated in Figure 9.
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[BKS02] also experimentally compared the Holistic approach with the StackTree approach. Their ex-
perimental results show that generally the Holistic approach has more than six-fold faster query processing
performance than the StackTree approach coupled with the optimal join order. Due to its high query pro-
cessing performance and algorithmic simplicity, the Holistic approach has been used extensively in some
recent research work. For example, [JWLY03] extended it with a skip technique to avoid visiting some nodes
in inverted lists that do not form any tuple solutions with other nodes. [JLW04] extended Holistic to process

twig queries with OR predicates. [BGKS03] applied Holistic for multi-query processing.

6 Conclusions

In this survey we reviewed major techniques for processing XML twig queries. These techniques are catego-
rized into three classes based on the storage format of XML data.

The file approach is mainly used for special-purpose applications in which XML data must be stored
in commonly used flat files in the form of just original XML documents. Since no indexes are available in
such applications, the entire XML document, including a large volume of elements irrelevant to the specified

query, has to be visited, which usually results in poor query processing performance.

In the relational approach, XML data can be simply loaded into relational databases and XML twig
queries over XML data can be easily transformed into SQL queries over relational data. In this approach, all
specific query processing work is pushed into relational query optimizers and no extra processing is needed.
However, current RDBMSs do not support -joins efficiently, despite the fact that 6-joins is a necessary
component for answering ‘//” axis XML queries efficiently. Among relational approaches, the RP approach
with the BLAS extension has the best performance for querying schemaless XML data.

The native approach develops native algorithms to efficiently process 6-joins involved in XML twig queries
that are essentially structural joins of inverted lists. In this approach, many existing important components
in RDBMS, such as storage management, access methods, query processing and optimization, concurrency
control and recovery, have to be rebuilt from scratch. Among native approaches, the Holistic approach shows
the best query processing performance in experiments.

Just as [ZND101] implies, a good approach should be integrating native #-join algorithms for XML twig
queries into existing relational query optimizers so that extended relational query optimizers will be able to
process XML twig queries more efficiently. Meanwhile, in this integration approach, other existing important
components in RDBMS than query optimizers, such as concurrency control and recovery, can also be fully
reused so that development efforts will be significantly saved. Therefore, this integration approach will gain
the best trade-off between XML query processing performance and development efforts.

References

[ABJ89] Rakesh Agrawal, Alexander Borgida, and H. V. Jagadish. Management of transitive relation-
ships in large data and knowledge bases. SIGMOD Conference, 1989.

[AFO00] Mehmet Altinel and Michael J. Franklin. Efficient filtering of XML documents for selective
dissemination of information. VLDB Conference, 2000.

24



[AKJKT02] Shurug Al-Khalifa, H. V. Jagadish, Nick Koudas, Jifnesh M. Patel, Divesh Srivastava, and

[BGKS03]

[BKS02]

[CDZ04]

[Cha02]

[CHKZ03]

[CVZ+02]

[DAF+03]

[DF03]

[DFFT02]

[Dic82]

[FK99)

[Gro04a]

[Gro04b)]

[Gro04c]
[Gro04d]
[Gro04e]
[Gru02]

[GVKTO04]

Yuqging Wu. Structural joins: a primitive for efficient XML query pattern matching. ICDE
Conference, 2002.

Nicolas Bruno, Luis Gravano, Nick Koudas, and Divesh Srivastava. Navigation- vs. index-based
XML multi-query processing. ICDE Conference, 2003.

N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal XML pattern matching.
SIGMOD Conference, 2002.

Yi Chen, Susan B. Davidson, and Yifeng Zheng. BLAS: An efficient XPath processing system.
SIGMOD Conference, 2004.

D. Chamberlin. XQuery: an XML query language. 41 (4), 2002.

Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and distance queries
via 2-Hop labels. SIAM Journal on Computing, 32:1338-1355, 2003.

Shu-Yao Chien, Zografoula Vagena, Donghui Zhang, Vassilis J. Tsotras, and Carlo Zaniolo.
Efficient structural joins on indexed XML documents. VLDB Conference, 2002.

Yanlei Diao, Mehmet Altinel, Michael J. Franklin, Hao Zhang, and Peter M. Fischer. Path
sharing and predicate evaluation for high-performance XML filtering. ACM Transactions on
Database Systems (TODS), 28:467-516, 2003.

Yanlei Diao and Michael J. Franklin. High-performance XML filtering: an overview of YFilter.
IEEE Data Engineering Bulletin, 26:41-48, 2003.

Yanlei Diao, Peter M. Fischer, Michael J. Franklin, and Raymond To. YFilter: Efficient and
scalable filtering of XML documents. ICDE Conference, 2002.

Paul F. Dietz. Maintaining order in a linked list. ACM Symposium on Theory of Computing,
1982.

Daniela Florescu and Donald Kossmann. Storing and querying XML data using an RDMBS.
IEEE Data Engineering Bulletin, 22:27-34, 1999.

W3C Group. Extensible Markup Language (XML). http://www.w3.org/XML/, 2004.

W3C Group. Guide to the W3C XML specification (XMLspec) DTD, version 2.1.
http: //www.w8.org/XML/1998/06 /xmlspec-report.htm, 2004.

W3C Group. XML path language (XPath) 2.0. http://www.w3.org/ TR /zpath20/, 2004.
W3C Group. XML Schema. http://www.w3.org/XML/Schema, 2004.

W3C Group. XQuery 1.0: an XML query language. http://www.wS.org/ TR /xquery/, 2004.
Torsten Grust. Accelerating XPath location steps. SIGMOD Conference, 2002.

Torsten Grust, Maurice van Keulen, and Jens Teubner. Accelerating XPath evaluation in any
RDBMS. ACM Transactions on Database Systems (TODS), 29:91-131, 2004.

25



[HBG+03]

[JAKC+02]

[JLWO04]

[JWLY03]

[MW99]
[0CL04]

[OOP*04]

[Org04]

[PAKJ*+02]

[PCS*04]

[PWLJ04]

[RSSBOO]

[SM83]

[SSKT01]

[STW04]

[STWO5]

[STZ*99]

[TDCZ02]

Alan Halverson, Josef Burger, Leonidas Galanis, Ameet Kini, Rajasekar Krishnamurthy,
Ajith Nagaraja Rao, Feng Tian, Stratis Viglas, Yuan Wang, Jeffrey F. Naughton, and David J.
DeWitt. Mixed mode XML query processing. VLDB Conference, 2003.

H. V. Jagadish, Shurug Al-Khalifa, Adriane Chapman, Laks V. S. Lakshmanan, Andrew Nier-
man, Stelios Paparizos, Jignesh M. Patel, Divesh Srivastava, Nuwee Wiwatwattana, Yuqing Wu,
and Cong Yu. TIMBER: A native XML database. VLDB Journal, 11:274-291, 2002.

Haifeng Jiang, Hongjun Lu, and Wei Wang. Efficient processing of twig queries with OR-
predicates. SIGMOD Conference, 2004.

Haifeng Jiang, Wei Wang, Hongjun Lu, and Jeffrey Xu Yu. Holistic twig joins on indexed XML
documents. VLDB Conference, 2003.

Jason McHugh and Jennifer Widom. Query optimization for XML. VLDB Conference, 1999.
OCLC. Dewey decimal classification. http://www.oclc.org/dewey/, 2004.

Patrick E. O’Neil, Elizabeth J. O’Neil, Shankar Pal, Istvan Cseri, Gideon Schaller, and Nigel
Westbury. ORDPATHSs: Insert-friendly XML node labels. SIGMOD Conference, 2004.

SAX Project Organizatiion. SAX: Simple API for XML. hitp://www.sazproject.org/, 2004.

Stelios Paparizos, Shurug Al-Khalifa, H. V. Jagadish, Laks V. S. Lakshmanan, Andrew Nierman,
Divesh Srivastava, and Yuqing Wu. Grouping in XML. EDBT Workshops, 2002.

Shankar Pal, Istvan Cseri, Gideon Schaller, Oliver Seeliger, Leo Giakoumakis, and Vasili Vasili
Zolotov. Indexing XML data stored in a relational database. VLDB Conference, 2004.

Stelios Paparizos, Yuqing Wu, Laks V. S. Lakshmanan, and H. V. Jagadish. Tree logical classes
for efficient evaluation of XQuery. SIGMOD Conference, 2004.

Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and extensible algorithms
for multi query optimization. SIGMOD Conference, 2000.

G. Salton and M. J. McGill. Introduction to modern information retrieval. McGraw-Hill, 1983.

Jayavel Shanmugasundaram, Eugene J. Shekita, Jerry Kiernan, Rajasekar Krishnamurthy,
Stratis Viglas, Jeffrey F. Naughton, and Igor Tatarinov. A general techniques for querying
XML documents using a relational database system. SIGMOD Record, 30:20-26, 2001.

Ralf Schenkel, Anja Theobald, and Gerhard Weikum. HOPI: An efficient connection index for
complex XML document collections. EDBT Conference, 2004.

Ralf Schenkel, Anja Theobald, and Gerhard Weikum. Efficient creation and incremental main-
tenance of the HOPI index for complex XML document collections. ICDE Conference, 2005.

Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, David J. DeWitt, and Jef-
frey F. Naughton. Relational databases for querying XML documents: Limitations and oppor-
tunities. VLDB Conference, 1999.

Feng Tian, David J. DeWitt, Jianjun Chen, and Chun Zhang. The design and performance
evaluation of alternative XML storage strategies. SIGMOD Record, 31 (1):5-10, 2002.

26



[TRP*04]

[TVB*02]

[WPJ03]

[YASUO1]

[ZND*01]

Feng Tian, Berthold Reinwald, Hamid Pirahesh, Tobias Mayr, and Jussi Myllymaki. Imple-
menting a scalable XML publish /subscribe system using a relational database system. SIGMOD
Conference, 2004.

Tgor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel Shanmugasundaram, Eugene J. Shekita,
and Chun Zhang. Storing and querying ordered XML using a relational database system.
SIGMOD Conference, 2002.

Yuqing Wu, Jignesh M. Patel, and H. V. Jagadish. Structural join order selection for XML
query optimization. ICDE Conference, 2003.

Masatoshi Yoshikawa, Toshiyuki Amagasa, Takeyuki Shimura, and Shunsuke Uemura. XRel:
a path-based approach to storage and retrieval of XML documents using relational databases.
ACM Transactions on Internet Technology (TOIT), 1:110-141, 2001.

Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong Luo, and Guy M. Lohman. On sup-
porting containment queries in relational database management systems. SIGMOD Conference,
2001.

27



