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Abstract— A randomized dining philosophers algorithm is
presented for a realistic semi-synchronous model where message
delays vary within an unknown bound, and clocks may run
at a different speed without any synchronization. In order to
predict the unknown bounds, the algorithm employs a simple
network delay measurement technique. The algorithm has an
expected running time and message complexity of

�������
with

high probability.
�

is the maximum number of contenders for a
process in the system (while

���
	
,
	

being the total number of
processes). A version of the algorithm, called DRAND, is shown to
be used for TDMA scheduling or channel assignment for wireless
networks. This algorithm is the first scalable implementation
of RAND, a commonly used, centralized channel assignment
algorithm. The algorithm can also be used for distributed graph
coloring in a semi-synchronous environment. Given any general
graph, the algorithm produces a chromatic number up to

����

(in this case,

�
is the maximum number of edges). Compared to

existing algorithms on distributed graph coloring in the PRAM
model, the algorithm can generate equal or less number of colors;
often, far less than

����

. DRAND is implemented in TinyOS and

tested in a real wireless sensor network with Mica2 nodes. The
experiment shows that DRAND is scalable and robust in a real
wireless network setting.

I. INTRODUCTION

The Dining Philosophers (DP) problem is a classical re-
source allocation problem that formulates a common syn-
chronization need of multiple processes in accessing a set
of exclusive resources. More precisely, the DP problem can
be defined as follows [19]. There are � philosophers in the
system and a fork set � . Each philosopher rotates its state
from thinking, hungry, eating and releasing. In order to eat,
each philosopher needs a fixed set of forks (a subset of � ),
and it needs to acquire all of them to start eating. We say
that two philosophers are contending if their fork sets contain
a common fork. When finished eating, it releases its forks
for use by its contenders or by itself later when it becomes
hungry again. No two contending philosophers can eat at the
same time. The goal is to minimize the waiting time of hungry
philosophers (or known as response time). The DP problem
captures the type of synchronization and resource allocation
requirements commonly arising in distributed systems such as
database transaction systems and distributed file systems where
multiple processes need to update several data items or files
“consistently” at the same time. It has also been applied to
finding a TDMA schedule in cellular networks [10], and can

be applied to finding unique IDs among neighboring nodes in
ad hoc networks. There are several elegant deterministic DP
solutions (e.g., [19], [27], [3], [6], [9]).

Our work is motivated by two factors. First, recently in-
creased interests in wireless sensor networks have heightened
the need for a good MAC (media access control) protocol. If
any two RF (radio frequency) nodes within a close range hap-
pen to transmit in the same frequency at the same time (which
is called collision), it significantly degrades the signal-to-noise
ratio of the received data. There are two main approaches to
this problem, namely contention-based and scheduling-based
ones. A contention-based approach allows nodes to transmit at
any time. If collision is detected, it makes transmitting nodes
retry after some delays. A scheduling-based approach is to
schedule the transmission of neighboring nodes by assigning
different time slots or frequencies to any two neighboring
nodes whose transmission may interfere. Before having a
schedule in place, nodes may communicate with each other
using a contention-based MAC protocol (e.g., IEEE 802.11, B-
MAC [24]). TDMA follows the latter approach. The problem
of finding a schedule in TDMA (or any scheduling schemes)
can be modeled by the DP problem since any two nodes in
an interference range can be viewed as sharing a fork.

Second, existing DP solutions are still too complex for
an implementation in wireless networks involving nodes with
limited resources (such as sensors). The best known, asyn-
chronous DP algorithm is by Choy and Singh [9] and has
a response time of ��������� where � is the maximum number
of contending philosophers at any time. The response time
of the scheduling algorithm is important because wireless
nodes can move (although not as dynamically as in mobile
ad hoc networks), run out of power or become damaged
and new nodes can be added to an existing deployment.
Thus, the scheduling algorithm needs to rerun periodically
to reflect the changed topology, and an efficient algorithm
saves resources spent in periodic rescheduling. In addition, its
code complexity must be minimal because of small memory
footprint in some wireless nodes (often within a few kilobytes).
From a practical perspective, implementing and debugging a
complex distributed algorithm such as [19], [27], [3], [6], [9]
in a wireless setting (where communication environments are
constantly changing and unreliable) is not trivial.

We apply three approaches to improve the status quo. First,
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we use randomization to simplify the implementation greatly
and also to reduce the response time and message complexity.
Existing solutions, to the best of our knowledge, are deter-
ministic. Second, most of relate randomized algorithms run in
the synchronous system where each process runs in a lock
step with a fixed message delay (e.g., PRAM). We relax
this synchrony by having process speeds and message delays
varied within unknown bounds. We also allow processes to
have unsynchronized clocks whose rates may drift within an
unknown bound. These timing assumptions reflect realistic
system environments since processors do not run infinitely
fast (or slow) and most data transmissions are received within
some number of retransmissions if communicating entities are
“wirelessly” connected. A similar model is also defined as a
semi-synchronous model in earlier studies (e.g., [14], [1], [11],
[2]). Third, we use a measurement-based technique where each
process passively measures and estimates the message delays.
The estimated values are used to improve the performance of
the algorithm.

The resulting DP algorithm has expected response time
and message complexity of ������ with high probability1. The
performance of the algorithm also depends on the accuracy
with which the network delay measurement can predict the
future network delays of the network. As the network timings
become more predictable (or synchronous), the algorithm runs
faster.

We first present a randomized one-time dining philosophers
(ODP) algorithm wherein each philosopher eats exactly once,
and then extend the algorithm with the doorway algorithm of
Lamport [17] for the full scale DP algorithm. We show that
the ODP algorithm is a scalable, distributed implementation
of RAND [22], a famous centralized TDMA scheduling algo-
rithm. This is the first of such to the best of our knowledge.
RAND models TDMA scheduling as a node coloring problem
in a conflict graph where the contention between any two
nodes in an interference range is represented by an edge
between the two nodes. RAND sorts all the nodes in the graph
in a random total order and assigns to each node, in that order,
the minimum color (or slot number) that has not been taken by
its adjacent, but preceding (by the order) nodes. Since RAND
requires the knowledge of the global network topology to get
the total ordering, it is not scalable for a large scale network.
Yet, RAND is the most commonly used channel assignment
strategy because of its simplicity [22]. It is also frequently used
as a performance benchmark for other distributed heuristic
algorithms (e.g., [29], [5]) whose performance is still inferior
to RAND in terms of maximum slot numbers. The maximum
slot number of a TDMA scheduling algorithm is the maximum
number of slots used by the algorithm for an input graph
(which is highly related to the utilization of wireless channels
because a smaller number means more concurrency among
nodes in sharing the channel). The maximum slot number
of RAND is �"!$# . Note that obtaining the optimal slot
number is NP-hard [22]. Our implementation of RAND is
exact in the sense that for any input conflict graph, our ODP

1Asymptotically, the probability that the algorithm requires more than the
expected running time or messages is less than 1/ %'& for some constant ( .

algorithm can produce any channel assignments producible
by RAND but using only local information within ������ time
and message complexity; thus we call our ODP algorithm
Distributed RAND or DRAND.

DRAND can be applied to distributed graph coloring. Graph
coloring has also been extensively studied in the theoretical
computer science community (perhaps less known in the
networking community, yet has many networking applications
such as ID assignment). The best-known distributed graph col-
oring algorithms are randomized ones developed for PRAM,
a completely synchronous environment (e.g., [18], [16], [15]).
In these algorithms, a node chooses a color randomly from
a palette of �)!*# colors and synchronizes with its neighbors
to compare its color with its neighbors. If they are different,
it gets to keep the chosen color. Otherwise, it has to start
again. The best known chromatic number for any general
graph achieved using this approach is by Luby [18] and is�+!,# and its running time is ���.-0/21435 with high probability.
However, given the same graph, DRAND can generate in a
distributed manner the same or less chromatic number than
the palette-based coloring; in most cases, far less. To see this,
consider a star-shaped graph with �4!6# nodes where � nodes
have only one edge to a node in the middle so that the middle
nodes have � edges while the others have one edge. In this
graph, the palette-based technique requires up to �7!6# colors
while DRAND (and RAND) always requires only two colors.

In this paper, we present our dining philosophers algorithm
and its application to TDMA scheduling. We also implemented
DRAND in TinyOS and tested the protocol in wireless sensor
networks created by Mote2. We report that the performance
of DRAND is suitably scalable and robust to run in a wireless
network setting.

II. PROBLEM AND MODEL DEFINITIONS
A. Dining Philosophers Problem

There is a set 8 of 3 processes (or philosophers) in the
system and a set of distinguishable forks, 9 . Each process
rotates through the following states in the following order:
thinking, trying, eating, and releasing, and initially it is in the
thinking state. A process always remains in the thinking and
eating states for a finite time after which it enters the trying and
releasing states respectively. Each process : specifies a fixed
set of forks ;�< , ;�<�=>9 and we call this set, the fork set of
process : . We say that two processes : and ? are contending if
the intersection of their fork sets is not empty. We assume that
each process has at most � contenders in the system. A process
has a priori knowledge on the IDs of its contenders (through
some form of neighbor discovery protocols). It is the task of a
DP algorithm (by specifying the codes for processes and forks)
to ensure that a process eventually enters the eating state once
it is in the trying state (the liveness condition) and no two
contending processes are in the eating state at the same time
(the safety condition). A fork has knowledge of the processes
that have it in their fork sets. The one-time dining philosophers
(ODP) problem is the dining philosophers problem in which
each process enters the trying state only once.

Processes can communicate with their contenders and forks
only by exchanging messages. A message is identified by a
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source (process or fork) and a destination(s) (process or fork)
and its message content. A process can unicast a message to
one contending process or a fork in its fork set or broadcast a
message to the set of its contending processes or its fork set. A
fork can unicast or broadcast a message only to the processes
who have them in their fork sets. A process cannot send a
message to non-contenders (i.e., in order to communicate with
non-contenders, a message must be “routed” through a series
of unicasts or broadcast involving intermediate processes or
forks). Both unicast and broadcast are counted as one message
and the size of each message is bounded by a fixed number
of bits. This model captures the notion where contending
processes are within a constant number of hops away. Note
that broadcast does not incur any additional overhead over
unicast, in a radio communication.

Now we define the semi-synchronous aspect of the system.
We assume that processes and forks keep (possibly unsyn-
chronized) clocks whose rates may drift at an unknown drift
rate @ . One step of a process or a fork consists of one
message transmission and some finite number of “local steps”
to change its local states (the idea is the local steps take much
less time than data transmission). The time to take a step is
bounded in between two unknown real numbers ACB and AED
( AFBHGIAJD ). Basically, this model captures the notion that some
unknown constant bounds the processing speed ratio of any
two processes (and forks), which is a quite realistic assumption
as no process is infinitely faster than other processes.

Each message is received by its destination(s) within a
bounded time. All messages from one entity to another are
received in the FIFO order by the destination. We assume that
the message delay is always bounded in between unknown
real numbers K B , and K D ( K B GLK D ), the delay of a message
includes the time taken for its destination to receive that
message, and KMD)NOAJD . The assumption about message bounds
might be viewed too strong for wireless networks since radio
transmission is typically unreliable due to signal fading and
mobility. However, in real networks, packet losses are handled
by retransmission, and it is reasonable to assume that any two
connected nodes can have their messages delivered to each
other within a finite number of retransmissions (if packets
cannot be delivered after an infinite number of retransmissions,
the two nodes are simply disconnected). We use bounded
delays only for the analysis of the algorithm because
the performance of any system without real-time bounds
cannot be specified in real-time. Intuitively, any algorithm
that works in the unknown bound model also works
correctly in an asynchronous model where bounds on the
delays do not exist, but are finite. This is because the
algorithm cannot make use of the specific values of the
bounds as they are unknown to the algorithm, and thus,
must work correctly with any finite value of the bounds.

We, however, recognize that one may design a more opti-
mized algorithm without use of a reliable underlying network
layer where all messages are acknowledged and retransmitted.
So we also describe how our semi-synchronous algorithm can
be extended to a weaker model where communication can be
unreliable but lost packets can be restored by a finite number
of retransmissions (i.e., no bound). In this model, we can

specify which messages need to be reliable or can be unreliable
without affecting the correctness of the algorithm.

Our model does not capture network disconnection, node
failures and asymmetric links. We use this model to make it
easy to describe our algorithms. Our approaches to handling
these anomalies are discussed in Section VI. More discussion
on these practical issues can also be found in [23].

The performance of an algorithm for the DP problem is
measured by the maximum real time taken (called response
time) and messages sent by a process before entering the eating
state from the trying state.

B. TDMA Scheduling Problem

We now define the TDMA scheduling problem. A network
is represented by a graph PRQ
SUT�V'WYX where T is the set of
nodes, and W is the set of edges. An edge ZHQ[S�\]V_^`X exists if
and only if \ and ^ are in T and \ is in a radio communication
range from ^ and vice versa (i.e., all edges are bidirectional).
In this model, a node can unicast or broadcast a message to its
adjacent nodes. The real time is divided into a non-overlapping
equal time period time frame which is divided into the MaxSlot
number of non-overlapping equal time periods, called time
slots. The slots are numbered from 1 to MaxSlot. We assume
that MaxSlot is sufficiently large to handle all the assignment
strategies for an input graph. Informally, the objective of the
scheduling is that each node picks a time slot during which it
can transmit without “conflict”. We say that two nodes \ and^ are in conflict if and only if \ and ^ are in one or two hops
away from each other. Typically this definition of conflict is
used in a broadcast mode of TDMA scheduling where any two
nodes within a two hop range can have a radio interference
at some node in their transmission ranges due to the hidden
terminal problem [22] and their radio broadcast transmission
causes that node to receive a degraded signal. A list of conflict
relations in wireless networks is discussed in [22]. We discuss
in Section IV how this definition of the scheduling problem
can be mapped to the DP problem defined above.

We define the TDMA scheduling problem to be a problem
of finding a time slot for each node, given an input graphP , such that if any two nodes are in conflict, they do
not have the same time slot. This problem is often known
as the static channel assignment problem or reuse channel
assignment problem. After each node finds its slot, it (re)uses
that slot at each time frame for collision-free data transmission.
Thus, an algorithm that minimizes the number of time slots
being assigned allows the system to minimize the frame size
(originally set to MaxSlot), thus increasing channel utilization.
After the channel assignment, the maximum time slot being
assigned in the network must be broadcasted to the entire
network. Our definition of the TDMA scheduling problem
deals only with channel assignment part. We assume that
synchronizing with all the nodes on the maximum slot number
is not counted for the cost of the scheduling algorithm.

In practice, effective use of a TDMA schedule may re-
quire strict time synchronization. But we do not assume time
synchronization for obtaining the schedule. This may seem
odd because time synchronization is an implicit assumption of
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most TDMA systems so it should come free for the scheduling.
But wireless nodes, especially sensor nodes, often come with
very limited battery and system resources. Frequent time syn-
chronization itself can be of burden to these nodes, especially
in a large-scale deployment. Thus, networking solutions that
do not require time synchronization are more preferred (even
if required, very loosely synchronized so that they don’t have
to run the synchronization algorithm very often). Also TDMA
can still be useful without tight synchronization when using
a large time slot (which can afford enough guard time for
clock drift). These issues are more relevant in practice and we
address them in details in [23].

III. ONE-TIME DINING PHILOSOPHERS

We now present a randomized ODP algorithm. Informally,
the algorithm is very simple and runs as follows. When a
process becomes trying, it tosses a coin whose probability
of getting head or tail is 1/2. If a node gets head, then it
runs a local lottery in which its winning chance is set to the
inverse of the maximum neighborhood size of its contending
processes. If it becomes a winner of the lottery, it sends a
“request” to its fork set. When a fork receives a request, if
it has not granted its fork to another process, then it sends a
“grant” for its fork to the sender of that request; otherwise,
it sends a “reject” message back to that process. If a lottery
winner receives grants from all of its forks, then it starts to
eat, and after finishing eating, send a “release” to all the forks.
When receiving a reject, it also sends a release to any forks
it has received grants from. If a trying process has not won
the lottery, or won it before but lost it because of rejection, it
tries the coin toss again after sometime a where a is some
multiple of estimated message delays. The more predictable
the system timing in an execution is, the more a gets close
to a constant factor to the actual maximum message delays
during the execution. a and the probability of winning the
lottery determine the performance of the algorithm.

For the formal specification of the algorithm, we use Dijk-
stra’s guarded commands ( bdcfehg�c�i_bkjlehg)j2iEmFmEm ) whereb�n is a condition and g+n is the sequence of steps which
will be atomically executed when b)n becomes true. For more
details on guarded commands, please refer to [12]. In the
specification, all the variables are local variables of processo

or fork p . qsrutCruv n is the state of process
o
. We add one more

state to the possible states of the process, called hopeful, to
distinguish a lottery winner that has an outstanding request for
a fork. w�x o`y is the set of

o
’s contenders that have not yet eaten.

The variable granted in a fork p keeps track of the process
that p sent a grant to. Its initial value is z|{ indicating that the
fork is not granted to anyone yet. An additional message called
fail is added to notify to its contenders when a hopeful process
receives a reject. A message finish x.} y is added to notify processo

that process } has eaten so that it can update w�x o`y and
similarly w�x oMy messages to update ~��C�|� w�x�} y � for all } in w�x o`y .
A variable � is the request sequence number (initially zero)
and is being echoed back by a fork for all the messages. a n
is initially set to some constant. Process

o
runs some message

exchanges among forks initially and set a n to the two times

the maximum message round trip time measured. We assume
that this initialization and neighbor discovery (to know the IDs
of its contenders) are performed before the execution of the
following algorithm.

Process
o
’s algorithm:

If ( q�rutCruvJn��
rU���C���M� and (time a�n past since its last coin toss)
or (the first time to become trying)) e

Toss a coin. It gets head or tail with probability 1/2;
If it gets tail, then go to L. Otherwise continue;� x oMy �[{���x.~��C��� w�x.} y ����{ ), ��}��fw�x o`y ;
Run a lottery with probability � x o`y ;
if
o

is a winner of the lottery, then� c � the current time stamp of
o
’s clock;�k�*����{ ;

Broadcast a request xU� y message to its
fork set;q�rutCruv n �����'��v��s��� ;

else
L: set a timer to a�n and go to sleep;

(it wakes up only when it receives
a message or the timer expires).

When (receiving a grant xU��� y and x��k�,��� y ) e
if (( q�r t�r v�n¡�����'��v��s��� y and (grant messages
received from all in its fork set from the last time
it became hopeful))q�rutCruv n �>v't�r����`� ;

EAT;q�rutCruv n �¢�_vJ�0v'tCqEv ;
If ( q�rutCruvJn)�¢�_vJ�0v'tCqEv ) e

Broadcast a release x�� y message to
its fork set;q�r t�r vJnH�¢r.�`����£C���`� ;

When (receiving a reject xU� � y
and xU�H����� y and ( q�r t�r vJnH�����'��v��s��� )) e� j)� the current time stamp of

o
’s clock;

if ( a¥¤�x � j�z � c y ) a,�*¦�x � j�z � c y ;q�r t�r v n �¢rU���C���M� ;
Broadcast a fail x�� y message to its fork set;

When (receiving a finished x.} y message) e
if } is in w�x o`y thenw�x o`y �*w�x oMy z¨§�}'© ;

Broadcast updateNeighbor x o i�� w�x o`y � y too
’s contenders;

When (receiving an updateNeighbor x�}'isp y from } ) e
if pª¤¥� w�x.} y � , then update � w�x�} y �«��p

Fork p ’s algorithm:
When (receiving a request x�� y from a process

o
) e

if ( �2�_tC��r vs¬®­�¢z|{ )
send a reject xU� y message to

o
;

else
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send a grant ¯�°�± message to ² ;³�´'µC¶�·u¸s¹�º ² ;
When ((receiving a fail ¯�°�± message from ² ) and

( ³2´_µ�¶�·u¸'¹�º ² )) »³2´_µC¶�· ¸s¹�º¢¼|½ ;
When (receiving a release ¯U°�± message from ² ) »³2´_µC¶�· ¸s¹�º¢¼|½ ;

Send a finished ¯0²`± to all of the processes
that have fork ¾ in their fork set;

Now we analyze the ODP algorithm.
Theorem 1: (Safety) No two contending processes eat at the

same time.
Proof: A process needs to receive a grant message from

all of its forks. Once a fork sends a grant message to another
process, if it has not received a fail or release message from
that process, it does not send a grant message again. A process
sends a fail or release message only when it is not in the
hopeful or eating state. Therefore, when a process receives a
grant from a fork, no contenders of its own are in the eating
state. Since the fork does not send another grant until the
process that currently received the earlier grant from the fork
is outside of the eating state, no two contenders are in the
eating state.

Below we analyze the running time of the ODP algorithm.
To quantify the running time, we divide an execution of the
algorithm into rounds. We define a round of a process ² to
be the time period between two consecutive coin tosses by ²
(i.e., ¿�À ) or the time period for ² to perform the last coin toss,
finish eating and release its forks.

As indicated in the introduction, the performance of the
algorithm depends on the predictability of the network. More
precisely, it depends on the accuracy of ¿ÁÀ in predicting the
time period from the time that one of ² ’s contenders tries its
last lottery to the time that it releases its forks after eating. If
a process enters the eating state, the maximum time duration
from the last time when it became hopeful until the release
message is sent can be bounded by a constant Â where

Â º,ÃJÄ4Å¨ÆMÄ4ÅÇÃEÄÈÅÇÆMÄ4Å¨ÃJÄ)º,É2Æ«Ä7ÅÇÊ«ÃJÄ (1)

Eq. (1) accounts for the followings: (1) one step to run the
lottery and send a request (first ÃEÄ ), (2) one message delay for
a request to arrive ( Æ`Ä ) and one step to send a grant message
( ÃJÄ ), (3) all grant messages from its contenders to arrive ( Æ�Ä ),
(4) one step to eat and send the release message ( Ã Ä ). Note
that Ã Ä and Æ Ä are (unknown) constants in our model.

The maximum number of times a process can try the lottery
during Â can be bounded by Ë where:

Ë À º Â"Ì�¿ À (2)

¿ À is set to É�ÍÏÎ�Î where RTT is an estimate of the round
trip message delays measured by ² ’s clock. If we assume thatÆ ÄdÐ Ã Ä , although ¿�À is updated during the execution of the
algorithm, ¿�À is always less than or equal to É ¯ Æ Ä ÅÒÑ�Ó�Æ Ä ± , and
bigger than or equal to É ¯ Æ�Ô7¼ÕÑÈÓEÆ`Ô ± by the definition of the

model. So since Æ�Ô , Æ Ä , and Ñ are (unknown) constants, Ë�À is
bounded by a constant. If the message delays are predictable,
then ËdÀ will be a small constant. Let Ë be the constant upper
bound on Ë¡Ö for all contenders × of ² .

Theorem 2: (Liveness) The expected number of rounds
during which a process remains in the trying and hopeful states
is less than É ¯�Ø ÅÙ½ ± ÓuÚ�ÛFÜ Ý'Þ , and the probability that it remains
in those states longer than some constant factor Ã times the
expected, is less than or equal to ½ Ì Ú�ß .

Proof: Consider the first round of process ² . During the
round, a contender × may try the coin toss and lottery for at
most Ë times. Let ÃEà ×Uá�¯�×sâ'¾�± º$ã�Ú�ä`Æ denote the event that
contending process × gets a head, when it flips a coin for
the ¾`å�æ time in that round. Let ç)¯�×sâ'¾�± denote the event that
process × wins the lottery for the ¾�å�æ try. Note that if the eventç)¯�×sâ'¾�± is true, then èséCê ¶ ¯.×sâ'¾�± º¥ë�¸sµ«¹ is also true.

Process ² eats in its first round if it wins the lottery at the
first try and finishes eating while no other contenders win the
lottery during that round. Since contenders × can have at mostË lottery tries during the period that ² has that round, the
probability ì�í�¯î²®ï Ú�ä«ð`Ú ± that process ² finishes eating in the
current round is bounded as follow.

ì�í�¯0²Òï Ú�äMð`Ú ±7ñòì�í�¯�çH¯î²«â ½ ±ó±
ôÖ�õ2öø÷ùÀ_ú
Þ
ôû�ü Ô ¯ ½+¼ ì�í�¯�çH¯.×sâ'¾�±_±ó± (3)

ñ ì�í�¯�çH¯î²«â ½ ±ó±
ôÖ�õ2öø÷ýÀ_ú ¯
½)¼ ì�í�¯�çH¯.×sâ'Ë�±_±ó± Þ (4)

ñ ½
É ¯�Ø Å�½ ± ôÖ.õ2ö�÷ùÀ_ú ¯

½+¼ ½
É ¯_þ ÿ�¯î²`±Eþ Å�½ ± ± Þ (5)

º ½
É ¯�Ø Å�½ ± ¯ ½�¼

½
É ¯'þ ÿ�¯0²`±Eþ Å*½ ± ±�� ö�÷ùÀ_ú � Þ (6)

� ½
É ¯�Ø Å�½ ± ¯

½� Ú ± Þ (7)

Eq. 4 is because ì�í`¯�ç)¯�×'âsË�±ó± ñ$ì�í�¯�ç)¯�×sâ'¾�±_± for ½�� ¾ �
Ë . Eq. 5 is because of the followings: (1) ì�í�¯�çH¯.×sâ'Ë�±_± �½ Ì�¯ É ¯_þ ÿ�¯î²`±Eþ Å6½ ±ó± because contender × uses, in setting � Ö , the
inverse of the maximum of the neighbor sizes of its contender
set which includes ² (so at the minimum, þ ÿ�¯î²`±Fþ Å>½ ), andÿ�¯î²`± does not change while ² wins the lottery to finish eating,
and (2) ì�í�¯�ç)¯0²«â ½ ±_±�ñ ½ Ì�¯ É ¯�Ø Å"½ ±_± because Ø is the maximum
contender set size of any node in the network. Eq. 7 is because¯ ½�¼ ÔÄ ÷ � öø÷ùÀ_ú � � Ô ú ± � öø÷ýÀ_ú �

� ½ Ì � Ú .
The above analysis gives the lower bound of the probability

that process ² eats in any round because there is no special
treatment because of the first round, and the bound conve-
niently depends only on constants Ø and Ë , i.e., the lower
bound is fixed for every round.

Let � be the random number representing the number of
rounds before a process eats with the lower bound probability.
� clearly has a geometric distribution.

ì�í�¯	� º ¾�± º ì�

���7¯ ½�¼ ì�

����± û�� Ô (8)

where ì 

��� º ÔÄ ÷
� � Ô ú�� ����� ��� .
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From the above, we can obtain the upper bound on the
expected number of rounds that a process remains in the trying
and hopeful states as follows.

���  "!$# %&('
)�* #"+-,	.0/ %�13254�657 8:9 (9)

Finally, we calculate the probability that a process in the
trying and hopeful states longer than the upper bound on the
expected.

&<;=,	 ?>A@ 2 ���  "! 1 # BC
DFE(G�H I3J KMLON�P

&�'
)�*0, %RQ &('S)�* 1 DUTVP(10)

# , %WQ & '
)�* 1 G�H IXJ KYL (11)
# , %WQ %���  "! 1 G�H IXJ KYL�Z %

4 G (12)

Theorem 3: The expected message complexity of the ODP
algorithm is [ ,	. 1 .

Proof: In one round, a contender can try the lottery for\
times. In each try, it can be a winner and gets rejected, thus

sending [ , %U1 messages. Therefore, in one round, it can send
[ , \ 1 messages. Since there are [ ,]. 1 rounds on average, each
process can send [ , \ 2 . 1 messages on average.

IV. TDMA SCHEDULING AND RAND

The TDMA scheduling problem can be mapped to the ODP
problem as follows. Each node ^ becomes a fork and also a
process (so there are _ `a_ number of forks and processes). Any
two nodes that are in the one-hop distance share their forks,
and any two nodes that have a common neighbor will share
the fork of that neighbor. Each node needs to receive the forks
of its one-hop neighbors and also its own, in order to eat.
This mapping allows a node to contend with all the nodes in
a two-hop neighborhood (thus matching the definition of the
scheduling problem) because any nodes within two hops will
be contending for at least one common fork. For a practical
implementation, we can make a process and a fork run in
the same (wireless) node as threads (or tasks in TinyOS)
or combining the codes of the two into one task does not
invalidate the correctness.

An ODP algorithm can solve the TDMA scheduling prob-
lem by making each process choose, during eating, the mini-
mum time slot that is not assigned to its contenders and notify
its contenders about its choice after eating. A process can find
the minimum slot because it eats only when no contenders are
eating (so mutual exclusion is given). By this mapping, when
a process chooses a time slot, its contenders do not select that
slot. The resulting time slot schedule is a TDMA schedule. In
this algorithm, the order in which processes eat determines the
schedule. If any random order is permissible by the execution
of the ODP algorithm, then it essentially implements RAND.
This is trivially true from the definition of RAND where each
unassigned node is chosen in a random order and picks the
minimum color not assigned to by its contending nodes.

Our ODP algorithm does allow any random order in eating
since the entrance of a process to the eating state is randomly
decided by its winning chance of the lottery and odds that all

other contenders lose the lottery. We omit the formal proof
to save the space. We call the resulting TDMA scheduling
algorithm as Distributed RAND (DRAND).

V. DINING PHILOSOPHERS

To solve the DP problem using an ODP algorithm, we
need to provide a mechanism to handle starvation because
a process may repeatedly enter the trying state after eating,
possibly preempting the forks of its contenders. We use the
doorway concept [17], [9], [27]. The doorway concept allows
contending processes to set priority based on the arrival to the
“doorway”. Any contenders who cross the doorway will have a
higher priority (multiple processes may do so at the same time)
over the processes outside the doorway, and processes outside
the doorway need to wait for those contending processes
inside the doorway to finish eating. The main idea behind the
doorway concept is that once any two contenders find each
other outside the doorway, they do not need to check with each
other again; thus only when the contenders currently inside
the doorway finish, they can enter the doorway to contend for
forks. The processes leaving the doorway need to check with
all of its contenders before trying for the forks again. This
guarantees starvation freedom.

Below we present the doorway algorithm for process b . A
set c , b 1 keeps track of contenders that are inside the doorway,
and a set [ , b 1 keeps track of those outside the doorway. The
algorithm is merged with the ODP algorithm of process b in
Section III to obtain the full scale DP algorithm. To facilitate
the merge, we add an additional state, called pending, to the
process states. After the thinking state and before moving to
the trying state, a process enters the pending state in which
it executes the doorway algorithm. If a process passes the
pending state, it is inside the doorway and changes to the
trying state. We omit the formal proof of correctness to save
the space.

The doorway algorithm for process b :
When ( dfe�ghe�i�j #lk i5monhpqmsr ) t

c , b 1 # the contender set of b ;
Broadcast a pending message to
its contenders;

When (receiving pending from u ) t
If ( dFe�gve�i j # e�wFxhpqmyr )
[ , b 1 # [ , b 1�z u ;

else
Send an outside message to u ;

When ((receiving outside from u ) and ( dfe�ghe�i{j #|k i5monvpqmyr ) t
c , b 1 # c , b 1}Q�~ uo� ;
If
, c , b 1�1 is empty
dFe�ghe�iFj # e	wFxhpqmsr ;

If (( dFe�gve�iFj # w�i5�
ifgUd5i ) and ( [ , b 1 is not empty)) t
Broadcast an outside message
to processes in [ , b 1 ;
[ , b 1 #��

;
Broadcast a release

,�� 1 message
to its fork set;
dFe�ghe�i j # eq�=pqms�vpqmyr ;
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VI. NODE AND COMMUNICATION FAILURES

The practical implementation of DRAND in a real wire-
less network must deal with several practical, yet important
technical issues. These issues arise mainly from packet losses,
communication asymmetry, and node and communication fail-
ures that our system model does not capture. These anomalies
can severely hamper the progress of DRAND possibly causing
deadlocks if they are not handled properly. This section
discusses our approaches to these issues. In Section VII, we
also demonstrate their efficacy by a real implementation and
deployment of DRAND in a wireless sensor network.

Our model assumes that all messages are delivered in a
bounded time. As indicated earlier, we claim that the cor-
rectness of the algorithm is still ensured even under weaker
timing models where messages are delivered within a finite
time (instead of a bounded time). Note that if a message cannot
be delivered between two nodes even after an infinite number
of retransmissions, then the two nodes are not connected
(i.e., they are not in a one hop distance). (We handle later
in this section the case where two previously connected
nodes become disconnected during the operation of DRAND.)
However, in these weaker models, the running time of the
algorithm cannot be bounded in real-time.

DRAND can be further optimized for implementation in an
unreliable network by selectively retransmitting only request
and grant when their responses are not received. After sending
a request message, if a node does not receive grant or reject
from any of its one-hop neighbors, then it retransmits the
request. Likewise, after senidng a grant message, if a node
does not receive a release or fail message, then it retransmits
the grant. All the other messages can be (re)transmitted in
response to these retransmitted request or grant messages if
loss occurs. For instance, if a node receives a retransmitted
request message, then it reacts the same way as it did when
receiving the original request. The sequence number � is
used to discern whether the request message is a new or
retransmitted one. In order to reduce duplications of grant
messages, the retransimitted request message may contain the
list of those nodes that have responded to its earlier requests.

As communication and node failures are common in wire-
less networks, it is possible that even these retransmitted
grant and grant messages do not get any response even after
many retransmissions. Some links are very unstable and their
conditions are highly time-varying. In these cases, although the
initial neighbor discovery found them to be within a one-hop
distance, their communication quality can get worse during the
execution of DRAND. This can cause deadlock or livelock.
To handle these situations, we allow nodes to “give up” after
some number of retransmissions. Since only requests and
grants are messages that require any response, when a node
does not receive any response from a one-hop neighbor for a
fixed number of retries, then it removes the neighbor from its
neighbor list. This allows the node to make progress with a
response from the removed neighbor. This strategy can also
be applied to asymmetric links. Consider a situation where
a node � considers another node � as a one-hop neighbor,
but � does not. While � keeps retransmitting requests to � ,

� cannot respond to � . In this case, � will eventually make
progress by dropping � from its neighbor list.

One may argue that although two nodes may not commu-
nicate in a stable manner, they might still in an interference
range so that TDMA must take care of the interference. Our
definition of conflict is limited in capturing this situtation.
This interference irregularity can occur even among nodes that
cannot communicate with each others at all [28]. These issues
reveal the fundamental limitations of TDMA (in a distribtued
manner) as it is very difficult, or even impractical, to obtain
TDMA scheduling in this network that can completely elim-
inate any network inteference. To deal with these situations,
we claim that TDMA must be combined with other contention
resolution schemes such as CSMA. We explore this research
direction further in [23].

VII. EXPERIMENTAL RESULTS

Setup. In this section we present the performance of
DRAND on simulated and real-life wireless environments.
For simulated performance results, we use the Network
Simulator [4] while the real-life experiments are conducted
on TinyOS running on Mica2 [20] motes. In our TinyOS
implementation, we use the default setting of B-MAC (CCA
is on, LPL is off, and acknowledgment is disabled) and no
clock synchronization. We measure the maximum running
time and message counts for each run taken by all nodes
in a network to decide on their slots. According to the
analysis in Section III, they are linearly proportional to
the number of neighbors. In this section, we verify this
claim on both single-hop and multi-hop wirless topologies.
The source code for NS and TinyOS can be found from
http://www.csc.ncsu.edu/faculty/rhee/export/zmac.

Single-Hop Experiments. Our test environment consists of
a varying number of Mica2 wireless sensors placed within a
one-hop neighborhood. We vary the number of nodes in the
network from one node to twenty nodes. Figure 1 shows a
snapshot of one test run where 20 motes are located around
one mote in the middle. Before the run, we ensure that all

Fig. 1. The one-hop testbed in a conference room with dimension 8 meters
by 10 meters. The ethenet cables are used to download programs (but not for
the execution of DRAND).

nodes are within a one-hop transmission range and they are
also placed at least 2 feet above the ground in our laboratory.
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For each setup, we repeat the test ten times and report the
average and its standard deviation errors.
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Fig. 2. The running time of DRAND and the number of rounds as the
neighborhood size increases in the one-hop topology.

 1

 2

 3

 4

 5

 6

 7

 8

 2  4  6  8  10  12  14  16  18  20

A
ve

ra
ge

 R
ou

nd
/G

ra
nt

 M
es

sa
ge

 T
im

e 
(s

ec
on

ds
)

Number of Nodes in One Hop

Message Statistics

Average Round Time
Average Grant Message Delay

Fig. 3. The average round time duration and grant message delay in the
one-hop topology.

18

12

16

29

5
19

4
6

26

15

17

11

13

21

22

2

9

10
24

1
20

8

14

30

3

300 ft.

24
0 

ft
.

Fig. 4. Real-life wireless sensor network testbed topology. 25 Mica2 motes
are placed over two buildings.

Figure 2 shows the average of the maximum running
time that a node has taken to decide on its slot and the
average of the maximum number of rounds taken by a
node in each setup. The error bars denote 95% confidence
intervals. Our measurements show that the running time is
approximately quadratic with the number of nodes. However,
the number of rounds required for each run grows linearly
with the number of neighbors following the analysis. Figure 3
shows the average per-round time which, indeed, grows
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linearly as the number of neighbors increases. This increase
is almost entirely attributable to that in grant message
delays, shown in a dotted line. This confirms that the
discrepancy between the asymptotic analysis in Section III
and our measured data comes from the different ways in
accounting for a message delay. The asymptotic analysis
does not account for any message delay increase due to
the increased number of senders. But in practice, wireless
communication delays increase proportionally as the number
of transmitting neighbors increase because all share the
same channel. If the additional message delays incurred by
contention is negligible, our result follows the analysis. We
don’t show any message counts, but report that they are
linearly growing as the number of neighbors increaes. In
this experiment, no nodes are dropped from the neighbor lists.

Multi-Hop Testbed Results. In this section we look at
the performance of DRAND on a 25-node sensor network
topology shown in Figure 4. The radio connectivity between
two nodes (shown by lines connecting them) varies in quality,
with some links having loss rates as high as 30-40%. The
DRAND algorithm recovers gracefully from deadlocks caused
by such lossy links, as explained earlier in Section VI. In
the current implementation, a node drops a neighbor from its
neighbor list if it has not responded to �{� consecutive request
or grant messages. The experiment is repeated ��� times, and
we report the average and standard deviation errors, with 80%
confidence intervals.

On this topology, each node first runs a neighbor discovery
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Fig. 8. The maximum number of message transmissions per node during
the execution of DRAND.

protocol to get its neigborhood information. We report the
DRAND algorithm completion time, and the DRAND round
time for each node, excluding the neighbor discovery phase
in Figure 5 and Figure 6 respectively. All nodes finish the
slot assignments in 20 seconds on average. Nodes with
sparse neighborhood (29, 30, 17, 19) have shorter running
times in contrast to those with dense neighborhood (1,
21). Some nodes have longer running times despite having
sparse neigborhoods (15) and also have larger variances in
their running time and round time duration. This is because
such nodes have lossy links to their neighbors, requiring
retransmissions of request and grant messages. Node 15 for
example, discovers node 18 during the neighbor discovery
phase, but subsequently dropped it during the DRAND phase
when it did not respond to repeated request messages. We
found about 4 neighbor list drops in the experiments.

Multi-Hop NS Simulation Results. We now look at how
DRAND scales up to large scale wireless networks using
the Network Simulator (ns). The network topology consists
of nodes placed randomly on a 300mx300m surface. Nodes
have a radio range of 40m and a link capacity of 2Mbps.
The density of the network is changed by varying the number
of nodes from 50 to 250. We use IEEE 802.11 as the base
MAC protocol. The experiment is repeated 15 times and the
maximum of the values for all nodes are reported. As before,
nodes run a neighbor discovery protocol on startup to get their
neighborhood information. The maximum DRAND running

time and number of rounds for a node with varying network
density are shown in Figure 7. The performance closely fits
a quadratic curve as in the one-hop test while the number
of rounds still grows linearly. As explained earlier, this is
because of the linear increase in the message delays as the
neighborhood size increases as is seen in the Figure 3. Figure 8
shows the maximum messages sent by a node in each run. It
also linearly grows with the number of neighbors following
the analysis.
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input graphs with various densities.

In DRAND, the number of time slots being assigned is
bounded by �-�a� . But in practice, the number of time slots that
DRAND assigns can be far less than that. Figure 9 shows the
number of slots used for input graphs with various densities.
The dotted line indicates � . Each data point represents the
maximum number of time slots being assigned by DRAND
for a different network. In all runs, the maximum slot number
used by DRAND is far less than �W��� . This is in contrast to
the performance of other algorithms such as [5], [29], [25],
[8] and [18] that require �0��� or more.

VIII. RELATED WORK

Dijkstra [13] first modeled the resource allocation problem
as a ring of 5 processes, called the dining philosophers, where
each process shares a resource with each neighbor. Later,
Lynch [19] generalized the problem to an arbitrary conflict
graph where a node represents a process and an edge repre-
sents a sharing of resources between two processes. Lynch’s
solution uses an edge coloring algorithm to set a partial
ordering on the shared resources, so that each process requests
its needed resources in that order. The response time is ���	�{��� .
The message complexity is ���]�v� . Styer and Peterson [27]
extended Lynch’s algorithm to develop a dining philoso-
phers algorithm with response time ���]�v� �:��������� and message
complexity ���]�h� ����������� . Choy and Singh [9] developed a
dining philosophers algorithm with response time ���	�¡ U� and
message complexity ���]�v� . They also include some discussion
of fault-tolerance. Awerbuch and Saks [3] provides a dining
philosophers algorithm with response time is ���]�¡ y�£¢S¤¡¥=¦X§ ¨©§ ��� ,
where ¨ is the universal set from which process IDs are
drawn 2, and the message complexity is ���]�¡ ª¢S¤¡¥-¦X§ ¨©§ � . Bar-
Ilan and Peleg [6] developed a synchronous algorithm that

2 «­¬F®�¯-°<±³²W´­µv¶�·o¸f«­¬F®{¹5°Mº¼»:½5¾
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improves on Awerbuch and Saks’ algorithm to have response
time ¿�À]Á=À]Â
Ã�Ä=ÅÇÆ È©Æ É�É in a synchronous network.

Ramanathan [22] defines a unified framework, called
UxDMA, where any channel assignment strategy can be
applied to all the possible combinations of different conflict
relations. Given a set of constraints among nodes defined by
a conflict relation, obtaining the optimal channel scheduling
that minimizes the number of channels is known NP-hard
[22]. By representing the conflict relation among nodes into
a conflict graph, UxDMA employs graph coloring, which is
also NP-hard, as the core of the channel assignment strategy,
and proposes several heuristic schemes based on greedy graph
coloring. Among them, RAND is the most commonly used
channel assignment strategy because of its simplicity [22].
However, as RAND requires the global knowledge of the input
graph, it is not practical for large-scale sensor networks.

The theoretical computer science community has also in-
dependently worked on graph coloring extensively. The best
distributed algorithms for graph coloring are randomized ones
(e.g., [18], [15], [16]) developed for a completely synchronous
environment. Á�ÊÌË coloring algorithms by Luby [18] color any
general graph with Á=ÊaË colors. Their running time is ¿�À£ÂSÃ¡ÄÇÍ(É
with high probability. Another distributed algorithm by Grable
and Panconesi [15] solves Brooks-Vizing coloring which uses
fewer than Á0Ê�Ë colors for some special types of graphs.

TDMA scheduling is an extensively studied subject (see
[26]). Most of early work is centralized and has performance
dependency to ¿�À£Í(É where Í is the total size of the network.
Recent distributed solutions [5], [29], [25], [8] improve the
performance by removing global topology dependency. These
algorithms are developed for mobile environments where
nodes can frequently move and typically uses many more time
slots than Á�ÊÎË (for some protocols, e.g., [8], [29], these bounds
are not given). NAMA [5] uses a hash function to determine
priority among contending neighbors. One main drawback of
this hashing based technique is priority chaining; even though
a node gets a higher priority in one neighborhood, it may still
have a lower priority in other neighborhood. This chaining can
build up to ¿�À£Í(É , yielding a very inefficient schedule. Thus the
maximum slot number of NAMA is ¿�À£Í(É . FPRP [29] allows
nodes to select slots randomly using a five-phase algorithm.
But it is possible that a node may not be assigned to a slot
and requires many runs to increase the chance that a node gets
assigned to a slot. SEEDEX[25] uses a similar hashing scheme
as NAMA based on a random seed exchanged in a two-hop
neighborhood. Its maximum slot number is ÁªÊÏË as each node
can pick randomly (instead of the minimum) a channel among
those not taken by the others.
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