
Boosting Data Center Performance
Through Non-Uniform Power Allocation ∗

Mark E. Femal Vincent W. Freeh
Department of Computer Science
North Carolina State University

{mefemal,vwfreeh}@ncsu.edu

Abstract

Data center power management is evolving from ad
hoc methods based on maximum node power usage to
systematic methods that employ power-scalable compo-
nents. In addition, it is possible to exploit the power and
throughput relationship to increase the total work per-
formed and safely overprovision the rack space while
staying below an aggregate power limit. This research
describes a general framework for boosting throughput
at a local level while load-balancing the available ag-
gregate power under a set of operating constraints. Our
solution is useful for those data centers that cannot ex-
pand the number of power circuits or seek effective us-
age of their available power budget due to unplanned
power fluctuations. The framework is particularly well
suited for environments with a heterogeneous workload
and hence, a non-uniform power allocation requirement.
Based on a representative workload for a two minute pe-
riod, this paper shows a non-uniform power allocation
scheme increases throughput by over 16% versus a uni-
form power allocation mechanism.

1. Introduction

The tremendous increase in computer performance
has come with an even greater increase in power us-
age. As a result, power consumption is a primary con-
cern. According to Eric Schmidt, CEO of Google, what
matters most to Google “is not speed but power—low
power, because data centers can consume as much elec-
tricity as a city” [23]. This does not imply speed is not
important for computing centers, but more and more

∗ This research was supported in part by an IBM UPP award.

sites find themselves operating with a power constraint
due to increased performance. Such a limit might ex-
ist due to either a limited power supply or heat dissipa-
tion and removal capacity. In addition, reducing the me-
tered energy or associated power and cooling infrastruc-
ture costs might be a high priority. Regardless of the rea-
son, a power constraint is a performance-limiting factor.

Many data center operators utilize manually intensive
methods that are prone to error to avoid exceeding power
circuit capacity. A conservative power management ap-
proach is to ensure the maximum power consumption of
all nodes never exceeds the power circuit capacity based
on a global limit, G. In such a cluster, this conservative
approach first defines the maximum power a single node
might consume, Lmax. Data center personnel then sub-
sequently deploy as many similarly configured nodes as
possible under the global limit (i.e., n = b G

Lmax
c). In

general, the maximum power consumption of a node is
much more than the average power consumption. There-
fore, the conservative approach under utilizes power and
artificially lowers the limit to n · Lavg < G.

One can overprovision by deploying m > n

nodes; however, unsupervised methods risk exceed-
ing the global limit. Exceeding the limit will likely trig-
ger a reaction that reduces power consumption. This
reaction could be as drastic as a circuit breaker trip-
ping or less severe as to require other manual in-
tervention in the recovery process. Both of these
situations are undesirable, but are typically the nor-
mal plan of action in many environments. Therefore,
we have developed a mechanism to facilitate safe over-
provisioning that automatically controls power usage
while avoiding excessive, long-term power consump-
tion [10].

This paper presents improvements to our prior work,
as well as a novel, dynamic algorithm to manage power
globally in server clusters with non-uniform workloads.

This extension performs power load balancing to effi-
ciently utilize available power given the circuit capacity.
Because power consumption is irregular, as is task de-
mand, one needs a dynamic and adaptive solution.

There are two autonomic managers within our frame-
work. One manages a node’s target power consumption,
beneath a local power limit. The other component as-
signs this local power limit based on aggregate cluster
workload and the global power circuit capacity. For sim-
plicity, we confine the remaining discussion to manag-
ing instantaneous power. Because energy is power inte-
grated over time, managing energy is merely managing
average power. Similarly, heat generation is a function
of energy consumption and can be addressed in a simi-
lar fashion.

This paper makes three contributions. First, it intro-
duces the idea of power load balancing and motivates its
necessity. Second, it establishes the need for and creates
a global power allocation mechanism to assign power
in order to achieve efficient application throughput. Fi-
nally, this paper presents refinements to our local power
controller to ensure a node is assigned a local power
limit indicative of its workload contribution in a clus-
ter.

The remainder of the paper is organized as follows.
The next section presents related work. Section 3 de-
scribes the overall model and Section 4 discusses the im-
plementation. Section 5 presents our results and we con-
clude with a summary and discussion of future work.

2. Related Work

The case for a closer relationship between the op-
erating system and power management is explored in
[32, 8]. Flinn and Satyanarayanan [12, 13] show that co-
ordination with applications can yield significant power
savings. Dynamic voltage scaling (changing both fre-
quency and voltage) to reduce power consumption is ex-
plored in [11, 15, 26, 29, 19]. In [21], forecast meth-
ods are used on a single node to minimize power con-
sumption. Unlike this work, we choose to automatically
change the forecast model based on past prediction ef-
ficiency as well as increase throughput subject to power
limits.

Power management in commercial servers is impor-
tant for web servers [4, 22]. Much of this work relies
on load balancers to distribute work. An investigation
of load balancing was done in [27, 28] to turn cluster
nodes on or off based on load. Additional research has
also been done by Elnozahy et al. [9] for developing
mechanisms for energy-efficient clusters using combi-

nations of IVS, CVS, and VOVO policies. Although the
VOVO policy is not considered in our initial implemen-
tation, its importance is less significant with heteroge-
nous workloads. In [7], an economic approach is chosen
to determine the minimal number of servers required to
handle the load. Unlike [7] we favor a decentralized ap-
proach and seek to increase throughput. In [31], Sharma
et al. applies real-time techniques to web servers in or-
der to conserve energy and maintain QoS. Managing to
service metrics is an instance of a target power alloca-
tion mechanism in our model once a power limit is de-
fined.

The approach of estimating power consumption us-
ing performance counters is taken in [2, 20, 14] and
is complementary to our notion of target power as-
signment. We are investigating the usage of program
counters as a means of identifying intra-node perfor-
mance bottlenecks. Identifying such occurrences may
provide the opportunity for an additional power reduc-
tion in other power-scalable components with no loss in
throughput.

In server farms, disk energy consumption is also im-
portant. One study of four energy conservation schemes
concludes by stating that reducing spindle speed is the
only option for clusters [6]. DRPM is a scheme to mod-
ulate the speed of the disk dynamically to save energy
[16, 17] rather than stopping disk rotation. We plan to
investigate this approach in future efforts.

While analyzing energy efficiency and operat-
ing points in [25], it is found that the most energy ef-
ficient gear is not always the lower performance point.
All past power research for server clusters (i.e., as in
[5, 7, 9]) has focused on uniform workload distribu-
tion with migratable loads. This work has a contribu-
tion towards policy development in the management
of power limits, but not all environments have the lux-
ury of migrating work due to expense, complexity, or
other factors.

3. Non-Uniform Power Allocation

With more than one node, power can be allocated
to nodes non-uniformly. A uniform allocation is best
only when the workload (and application performance)
is identical on each node. There are four primary goals
in global power allocation. The first goal ensures to-
tal power consumption is below the global limit and
available power is equitably distributed (e.g., no node
starves). The second goal ensures each node receives or
releases power according to expected changes in work-
load. The third goal is to allocate power effectively pro-

2

vided a degredation in the power supply occurs (i.e., de-
creases due to partial power loss). The final power allo-
cation goal ensures the solution is easy to deploy, main-
tain, and operate transparently with minimal tuning. To
this end, a distributed algorithm is used to learn and
react to cluster modifications automatically. No central
point of failure exists and the per-node computational re-
quirement is minimal. In addition, all current power con-
sumption and minimum power requirements are avail-
able to administrators. This information offers a site the
ability to identify power deficiencies and facilitates safe
overprovisioning.

The global power allocation model dynamically and
non-uniformly allocates power among nodes to increase
aggregate performance given irregular workloads. To
make this work in practice, time must be divided into
discrete processing intervals. At time t, the data for past
intervals is evaluated for the next interval. From this in-
formation, a forecast of expected work is calculated on
each node. Given this knowledge, a prediction is made
of expected need for each node and is then used in the
next reallocation. Each node’s expected need is weighed
in conjunction with the expected aggregate workload.
There are two power limits in our framework. The first
exists to limit local node power consumption and is a
calculated quantity based on cluster constraints. The sec-
ond is the global limit and is assigned to a cluster based
on circuit capacity. Each of these limits will now be cov-
ered in greater detail.

3.1. Local Power Limit

The calculated, locally assigned power limit, L, for
each participant in the network is regarded as a mutual
decision based on all node and global constraints (e.g.,
power reserve). Using its assigned local limit, a node
is responsible for suballocation of power at a fine-grain
level. To ensure local minimum service constraints are
met, Lmin represents the power needed to guarantee a
minimum service level. In addition, Lmax is the maxi-
mum quantity of power a node uses due to technical lim-
itations (i.e., maximum consumption possible given con-
nected devices).

At the node architectural level, each device in a node
has an interface to relay or provide information related
to power draw, performance states, as well as minimum
and maximum power required to function. Although el-
ements of this are available in laptop systems using
the ACPI specification [18], future development of con-
sistent interfaces to hardware should promote similar

hardware sensors and functionality for servers using the
same methods.

Each node manages average power consumption ac-
cording to a target, T (a value less than L). Ideally, this
average is close to the assigned local limit, but a burst
term represented by B is used to reflect an additional
quantity above T needed to properly manage average
power consumption (there is a delay in reacting to power
usage). The power consumption target is adjusted lo-
cally as needed and no restrictions are imposed in the
general model (i.e., this concept allows an energy con-
servation or other model to be employed). In general, the
local node power relationship is governed by:

Lmin ≤ T + B ≤ L ≤ Lmax.

Intuitively, based on the magnitude of L − (T + B)
a node signals to other nodes it has either a surplus or
deficit. If this value is zero, a node is using its full al-
location. If less than zero, a node has a power surplus.
However, these conditions are not the sole means of re-
allocation. Additional consideration is needed when de-
mand exceeds supply and this is discussed in the next
section.

3.2. Global Power Limit

The global power limit itself is known and quantifi-
able based on circuit capacity. The allocation problem
is to calculate L for each node i such that

∑n

i=1
Li ≤

G. Furthermore, given knowledge of the workload de-
mand for each node, increase the efficiency in allocat-
ing available power for each node given the contribu-
tion of its work with respect to the aggregate demand,
Wtotal =

∑n

i=1
Wi(Li). This problem is not solvable

because work performed for a given power limit changes
dynamically and is not known a priori. Therefore, we
first allocate as much of the available power as possi-
ble to keep G −

∑n

i=1
Li small. Second, an estimate is

performed for the work contribution of each node in the
next interval. This estimate ensures nodes with greater
need have a higher priority. Finally, a reassignment of
all node local power limits is done for t + 1.

Based on the estimate of aggregate global power de-
mand, if it is less than G the predicted aggregate power
satisfies demand for the next interval. However, if the
global power limit is exceeded a reduction in one or
more node power limits is needed. Selected nodes lose
power based on its expected change in workload and
its associated contribution to aggregate demand in the
next interval. In addition to insufficient allocation, if less

3

power is needed than available, nodes receive an addi-
tional allocation of power.

3.2.1. Preconditions. In order for the global allocation
model to function, the following preconditions must be
satisfied. First, a mechanism is required to manipulate
hardware power consumption. In our current framework,
this is accomplished using DVS. Second, a means of
controlling power locally at each node must exist. This
condition is met using a software component discussed
in Section 4. Third, a system to forecast and track work-
load on all nodes must exist. In addition, an estimation
of the expected change of workload for each node must
be made. Finally, any available power must be allocated
to ensure the global limit is not exceeded, yet nodes re-
ceive an appropriate value of additional power indica-
tive of demand. The next two sections discuss the latter
two requirements in greater detail.

3.2.2. Forecasting Workload. Given the unique char-
acteristics of power and throughput that exist in a clus-
ter environment, the general trend of work completed,
Waverage, is determined based on short-term historical
demand. Using this same information, a predicted value
of demand, Wpredicted, is calculated and utilized to fore-
cast demand for the next interval. Given current node
power need, an approximation is now possible for the
next interval using:

A = (T + B) ·
Wpredicted

Waverage

The value A is bounded by several technical con-
straints. First, node power consumption cannot exceed
Lmax. In addition, a fundamental (if a node is to make
any progress) or explicit service constraint establishes a
power limit lower boundary, Lmin. In instances where
G ≥

∑n

i=1
Ai, all node limits can be assigned success-

fully with no node receiving less than its desired power
limit. However, if this condition does not hold, some
nodes lose desired power as a result of successive itera-
tions of the algorithm. This node power loss depends on
its power need with respect to all nodes. Any node re-
ceiving less power experiences increased local demand
if its need increases faster with respect to other nodes in
future intervals. This, in turn, subsequently causes addi-
tional local limit increases as the global power alloca-
tion method balances aggregate power based on demand
throughout the whole cluster.

3.2.3. Additional Node Power. If available power is
denoted as p, then

p = G −

n∑

i=1

Ai.

With p known, a node specific additional power al-
location, S, is found based on work contribution, c =
Wpredicted

Wtotal
. Thus, S = p · c and this value is added to

the initial approximation A. In addition, S is bounded by
an administrative limit to prevent excessive allocation.
Intuitively, S is determined from the fractional amount
of total available power after meeting all power need
(i.e.,

∑n

i=1
ci = 1). To further illustrate the determi-

nation of per node S values, consider an environment
with two cluster nodes, an available power quantity of
20 watts, and an administrative threshold of 15 watts. If
each were equally contributing to aggregate workload,
the resultant per node S values are 10. However, if one
node is idle and its contribution is zero while the other
node remains busy, the busy node receives 15 watts and
the other receives none. This example is simplistic be-
cause from an implementation standpoint, Wpredicted is
restricted to nonzero values. This is to avoid dividing by
zero in a completely idle environment as well as ensur-
ing a minimum additional allocation is given to ensure
short-term, upward mobility for T in the next interval.

3.3. Global Allocation Solution

The need to maximize the total power used in the
cluster given the current and forecasted workload under
a set of constraints is actualized as a Linear Program-
ming (LP) solution. This is a multi-step process and is
informally defined as follows:

1. Based on the broadcast data of all nodes, calcu-
late the aggregate workload for the entire cluster,
Wtotal.

2. For each node, determine its contribution, c, to ag-
gregate workload. Changes in c will reflect a gain
or loss of power from the prior interval.

3. Next, calculate the local power limit subject to all
node Lmin, Lmax, B and T values.

4. For each local power limit, bound it according to
its unique A value. This value accounts for all clus-
ter demand and provides additional power to a node
if needed.

5. Finally, ensure a sufficient reserve, R, is kept and
the global limit, G, is not exceeded.

4

maximize:
∑n

i=1
Li

subject to:

Li ≥ Lmini

Li ≤ Lmaxi

Li ≤ Ai + Si∑n

i=1
Li ≤ G − R

Figure 1. LP model to assign Li ∀i ∈ [1, n].

The informal steps outlined above are translated into
the LP model shown in Figure 1. It is important to rec-
ognize this model is infeasible if

∑n

i=1
Lmini

> G. One
policy to handle this occurrence is to perform a con-
trolled shutdown of all or some nodes based on quality
of service constraints, minimizing lost revenue, or some
other measure. The current implementation does not ad-
dress such an instance.

The LP objective function solution is the current total
power allocation. In addition, the amount of power after
allocations are made and the minimum power needed to
meet all node constraints is determined,

∑n

i=1
Lmini

.
However, the critical outputs are all node local power
limits for the next time interval. Each node determines
its local limit by saving its offset within the objective
function as the model is built at runtime. It is important
to notice that A accounts for the relative power need for
each node (either surplus or deficit). Thus, each node in-
directly decreases or increases L by adjusting T or B. In
addition, the upwards pressure of both Wpredicted and
the administratively assigned upper threshold set for S

provide additional power to nodes.

Given the model in Figure 1, a linear program-
ming solver [3] calculates the outputs using the simplex
method. All values are considered to be real, con-
tinuous values within their respective bounds. The
complete model is built dynamically using current clus-
ter data. Rather than add additional constraints for Lmin

and Lmax, lower and upper variable bounds on L are
used to limit the number of true constraints. This re-
duces the internal model size and solves the problem
more efficiently. There is no technical limit to the num-
ber of constraints (i.e., only one additional solver con-
straint is needed for each node) and a timeout is used to
generate suboptimal solutions.

4. Implementation

Two per-node autonomic managers comprise the core
framework. Starting at the lowest level, device interface
drivers provide the intelligence to determine and ma-
nipulate the state of a device in a cluster node. Each
node aggregates multiple drivers into a cohesive entity
referred to as the Local Power Agent (LPA). It is re-
sponsible for determining the power consumption tar-
get, given the local power limit. The LPA selects device
gears to meet the power consumption target. A message
queue is used by the LPA as the bridge to device drivers
as well as for other external requestors, such as the next
major component.

The second major software component of the frame-
work is the Global Power Agent (GPA). The GPA is
responsible for the coordination and interchange of re-
lated messages between nodes. It analyzes messages
from the network and makes the appropriate requests to
the LPA using the message queue. Communication be-
tween multiple GPAs is done based on a group identi-
fier, subsequently referred to as a Power Management
Group (PMG). The GPA learns the state of all other
nodes by broadcasting to and receiving relevant infor-
mation from all nodes in its PMG. There is not a one-to-
one correspondence between a PMG and subnet; how-
ever, the current implementation limits PMG nodes to
the same broadcast network. In addition to receiving
state information from all other nodes, the GPA responds
to other administrative control requests (i.e., global limit
changes).

The interaction of both the LPA and GPA is depicted
in Figure 2. The GPA calculates and assigns the local
power limit based on external information provided by
all nodes in the PMG in addition to the knowledge of
the global power limit. The LPA is responsible for en-
suring the target power goal of an individual node is met
as well as managing the target itself, subject to its lo-
cal limit. Each of these entities is a separate daemon
process and both are implemented as non-priviledged
processes. Each of these components is now covered in
greater depth.

4.1. Local Power Agent

The LPA is the mediator of all power-managed de-
vices in a cluster node. It is responsible for maintain-
ing a power target and listens for inbound messages des-
tined for devices using the message queue. Each device
has its inherent power characteristics coordinated with
other devices by the LPA, to include changing device

5

LPA GPA

NIC

DISK

CPU

Cluster Node local limit

target

global
limit

Figure 2. Relationship of the GPA, LPA,
and power-scalable devices.

performance states to meet the target. The CPU is the
major power consumer and is the initial focus in the
LPA. Other devices, such as disks and network cards,
might offer the ability to reduce power consumption, but
the CPU is the only component that offers gears. Transi-
tioning other devices (i.e., disks) to an off state must be
carefully weighed against idle time mispredictions and
break-even points. This is not yet considered in our cur-
rent implementation.

The default gear for the CPU is fastest and has the
highest frequency and voltage setting. Because it is the
default gear and all processors have a top gear, we de-
note this performance state as Gear 0. All other gears
have less performance with lower frequency and volt-
age settings. Thus, the gear number increases as the fre-
quency and voltage decrease.

The LPA determines the target power based on the
assigned local limit. This derivation remains flexible to
have different policies implemented depending on de-
sired behavior. Two such sample policies include one
based on load and another to optimize for a performance
delay characteristic. This policy is not restricted to a
single rule; a combination of rules could certainly be
employed. In addition, as device-specific performance
bounds are reached the LPA could reduce target con-
sumption with no loss in overall performance (i.e., if
tasks are memory bound, a reduction in the CPU per-
formance may be possible). The implementation of this
effort is currently a work in progress.

The LPA manipulates device gears to meet the tar-
get system power set by its policy. To maintain the local
power limit, the controller employs a predictor to deter-
mine the expected usage in the next epoch. We currently
regard the local power limit as a soft upper bound on in-
stantaneous power usage. A sampling window facilitates
keeping system power consumption close to the target.
To prevent excessive gear switching and allow stabiliza-
tion, a minimum time between changes is enforced. This

delay also helps manage the differing capabilities of de-
vices and their subsequent ability to transition to differ-
ent performance settings in a specified time interval. The
core LPA controller uses a PID algorithm [24] to meet
the power target and is discussed in [10].

4.2. Global Power Agent

Each node’s GPA assigns the local power limit, L,
based on information received from all nodes (includ-
ing itself). This limit is calculated using knowledge of
the administratively defined global limit, G. This global
limit is assigned to all PMG nodes with a support tool.
For reliability and scalability, each node’s GPA is re-
sponsible for determining its respective L. Although ex-
plicit trust exists for well-behaved nodes, this precon-
dition should be acceptable in most managed environ-
ments. All nodes in the PMG are synchronized by pe-
riodic UDP broadcasts. Nodes are added or removed
from the subnet with corresponding changes done au-
tomatically to local power limits in the next time inter-
val. Because the algorithm is shared on all nodes, each
must have a notion of the current state of all other nodes.
However, the only relevant output of the global alloca-
tion algorithm for the LPA is L.

All relevant LPA-GPA shared data structures are con-
tained in memory managed by the LPA. Thus, the GPA
is restartable with no immediate adverse impact; how-
ever, the state of the cluster still depends on the data
sent and received by the GPA. A GPA that restarts does
not make any local power limit changes while it relearns
cluster state. The global allocation mechanism considers
its restart as either a new cluster addition or an update to
the last state of the node based on an administratively
defined retention time. Network disruptions can hinder
the algorithm from proper operation. In such instances,
there are likely other prerequisite recovery steps and no-
tification systems in place. Given a catastrophic network
disruption, the last known state of all cluster nodes is
used during the retention period. So in this case, real-
location of power is unlikely to significantly differ as
the state of all nodes only changes when new informa-
tion is available. A more conservative policy is to tran-
sition nodes to their lowest power consumption state. To
account for several short-term failures, the value for the
power reserve, R, in global allocation can be increased.

4.2.1. Power Management Group. To allow for mul-
tiple logical assignments and allocations on the same
broadcast subnet, a cluster identifier is configured for
each GPA on daemon startup and is referred to as the

6

PMG. In normal operation, there is a one-to-one corre-
spondence between the physical power circuit and the
PMG.

The cluster data structure to manage the PMG is an
AVL tree, so tree operations are bounded by O(lg n)
where n is the number of PMG nodes (non-member
broadcasts are simply ignored). Another important facet
of this structure is a consistent (i.e., sorted) handling of
processing in the allocation. A dedicated thread is re-
sponsible for receiving UDP packets describing the state
of other nodes in the PMG as well as reacting to admin-
istrative requests (further explained below). This thread
uses select() with a timeout to prune the tree based on
the time stamp of the last broadcast received for a clus-
ter node and a predetermined maximum broadcast reten-
tion value.

In the current implementation, the retention time is
30 seconds and the broadcast rate is once per second. It
is important to note the trade-off in retention time. Re-
moving data too soon might adversely impact the state of
power allocation. For instance, a server may temporar-
ily lose network connectivity yet still remains powered
and connected to the circuit. In addition, having a re-
tention time too large might impact efficient allocation.
In normal maintenance or to complement other policies
(i.e., controlled shutdown if work is migrated to another
node),servers are intentionally removed from the power
circuit and should therefore increase the available power
for other PMG participants. As a result, retention time
should reflect an appropriate site policy.

4.2.2. Broadcast Messages. There are two types of
broadcast messages sent to participants in a PMG. First,
broadcast utilization data packets are sent containing a
node’s power and current workload information. The
power data consists of Lmin, Lmax, B, and T . The
workload information consists of the number of tasks
running or runnable since the last broadcast. As the
server workload increases, this number subsequently in-
creases. The preceding data metrics can be easily modi-
fied or extended should the need arise.

In addition to broadcast data packets, administrative
messages can be broadcast to all PMG nodes. Such no-
tifications consist of modifications to the overall power
limit as well as provisions for setting an immediate ad-
ministrative limit for all nodes used by a support tool.
Membership in a PMG is further refined to be either
active or passive. In passive mode, broadcasts are sent
and received as normal, but inbound administrative mes-
sages are ignored. In active mode, the node responds to
administrative messages. This capability is exploited by

a monitoring tool discussed in Section 4.3.
Workload data is fed into a dynamic programming

solution that updates the most recent forecast for the next
interval as new node data is received. The number of
data points kept for statistical significance is configured
at compile-time. Empirically, ten data points provide a
reasonable short-term approximation and this is the min-
imum needed for the GPA to begin local power limit
management. The current implementation is focused on
short-term prediction, but a more comprehensive solu-
tion should account for hourly, daily, or longer trends.
Multiple estimation models are used by the forecast al-
gorithm simultaneously. At the point the node forecast
is needed for the next time interval, a quick sort is done
based on mean square error (MSE). The lowest MSE
represents the best forecast.

4.3. Support Tools

The current implementation utilizes two support tools
to send some messages and monitor cluster activity. The
Agent Controller Tool (agentctl) provides a command-
line interface to send messages to the Local and Global
Power Agents. The Cluster Monitor Tool (dashboard)
receives broadcast data and monitors the state of the
entire cluster. Each of these tools is now discussed in
greater detail.

4.3.1. Agent Controller. For administrative control of
a given node, a tool exists to interface directly with
the LPA (as does the GPA) through shared memory or
by using the message queue. For remote requests, the
tool communicates indirectly through the remote node’s
GPA using Remote Procedure Call (RPC). This tool fa-
ciliates setting an immediate and administrative local
power limit for all nodes. In addition, it is the only tool
available for broadcasting the global power limit to the
Power Management Group (PMG).

4.3.2. Cluster Monitor. Similar to the handling of
messages by the GPA, the distributed allocation algo-
rithm is also utlized in a console, monitoring tool (dash-
board). This tool utilizes the broadcast data to monitor
the state of either a specific PMG or all nodes on a sub-
net. Per the cluster participation modes previously dis-
cussed, dashboard listens in passive mode. This tool
displays the current state of the cluster and can en-
sure nodes properly adhere to the power allocation
strategy.

7

Gear Frequency (Mhz) Voltage CPU (watts)
0 2000 1.5 89
1 1800 1.4 66
2 1600 1.35 added
3 1400 1.3 added
4 1200 1.2 added
5 1000 1.1 22
6 800 1.0 added

Table 1. AMD64 3000+ CPU gears and
power consumption.

5. Results

To evalute the implementation a cluster of ten servers
was built using frequency scaling processors. Each node
consists of the following hardware: 40 GB Maxtor EIDE
7200 RPM disk drives, ASUS K8V motherboards (on-
board 1Gb NIC), 1 GB of PC3200 DDR SDRAM, and
an AMD64 3000+ CPU. All nodes were interconnected
on a dedicated 100 Mb switch. The entire cluster used
the Linux 2.6 kernel. For frequency and voltage scaling,
the AMD PowerNow cpufreq module was used. Modifi-
cations were done to this module to augment the ACPI
device tables from the BIOS. These modifications to add
performance states, along with the original settings, are
shown in Table 1. The CPU power usage in this table is
from [1].

For system power measurements, two digital multi-
meters (DMMs) were connected to serial ports on a non-
cluster server. Custom software was created to commu-
nicate with these DMMs located on this host across the
network. Each meter was inserted serially in the main
power line of a node to measure amperes. Thus, a max-
imum of two nodes could be measured concurrently. To
calculate power, a fixed supply voltage was used after
first measuring voltage with one meter and obtaining
little deviation (3% maximum). A TCP-based request
server was created to allow the measured node to query
power usage as needed. The overhead of network ac-
cess is relatively small and a mechanism such as this
was needed due to a lack of on-board hardware sensors
on each node. Isolating the measurement activity from
the measured node helps reduce the inaccuracy associ-
ated with evaluating the efficiency of developed software
components.

To quantify the efficiency and performance of our so-
lution, a series of low-level benchmarks was performed.
The first reflects the end to end cost of switching to dif-

Execution Interval (t)
5 10 15 20 30

Minimum 0.3 0.3 0.4 0.4 1.1
Average 1.9 3.5 4.8 6.5 9.2
Maximum 12.7 17.3 16.1 17.9 18.1

Table 2. Minimum, average and maximum
time (milliseconds) to determine the LP
solution on one node with different execu-
tion intervals (seconds).

ferent gears. This cost was measured by first construct-
ing a kernel module that utilized the cpufreq notifica-
tion mechanism to measure the internal kernel cost for
state changes. Our implementation cost was measured
using agentctl to control gear changes. The measured
values from the LPA ranged from 23-363 microseconds.
A gear change to either one immediately above or one
below from the current was typically the most efficient
change when considering the end-to-end cost. This con-
firms the incremental model used to maintain the target
power in the LPA. Even so, the maximum overhead im-
posed by the LPA is negligible and in the worst case,
represents only 6.5% of the total time cost to switch
gears using cpufreq. This module handles the low-level
architectural details to control the frequency and volt-
age changes in the processor. Note that there is addi-
tional overhead to connect and disconnect from shared
memory by agentctl that added between 164-242 mi-
croseconds. The GPA only incurs this cost once when
first started.

Broadcast UDP packets sent by each node are 152
bytes. This includes a fixed size 20 byte area for the
PMG identifer, adjustable at compile time if needed. In
addition, packets contain extra argument type and size
information so that low-level packet details can be ver-
ified for integrity and unpacked from the payload area.
These packets incorporate all the current power usage
and limit, minimum and maximum power requirements,
target power consumption, and the latest workload data.

There is a corresonding cost, in time and increased
node workload, to running the global allocation policy
outlined. Measurements were taken on a single node to
determine the minimum, maximum, and average time to
solve the allocation problem during a two minute pe-
riod (runtime interval divides 120). The single node re-
sults are shown in Table 2. Note that column headings
reflect the time, in seconds, between processing runs of
the algorithm. The more often the algorithm executes,
the busier a node may become, but the execution run-

8

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35

E
xe

cu
tio

n
Ti

m
e

(m
ill

is
ec

on
ds

)

Runtime Interval (seconds)

Measured LP Solution Performance

1 node
2 nodes
4 nodes
6 nodes
8 nodes

10 nodes

Figure 3. Execution run times to solve the
allocation problem with increasing n.

time decreases due to cache behavior. Running the algo-
rithm more often allows adjustments to node power lim-
its to meet demand more quickly. This, in turn, balances
the power more efficiently and is the reason the five sec-
ond interval is the default.

Intuitively, the general problem size grows as the
number of nodes increases due to the additional con-
straints. In Figure 3, the same measurement method as
the prior result was used but in addition, multiple clus-
ter nodes were each configured with a GPA to broadcast
data. There is a slight variation that grows as the run-
time interval increases, but times are typically clustered
near the same execution time. There is no reason to as-
sume a cluster of 64 nodes is solvable in the 2 millisec-
ond range, but the data does support lowering the inter-
val to make the allocation mechanism as responsive as
possible.

To consider the precision of the short-term forecast
method, a series of ten models was constructed and
workload data was fed into each of these models simul-
taneously. There were two model variants, one relied on
a weighted average and the other used a moving average
based on a last specified number of values. The differ-
ent models were generated with either different weights
or moving average window sizes. These models were
then utilized for each inbound update from all nodes and
a quick sort performed to find the model with the least
mean square error when determining the new node local
power limit. Figure 4 shows Model 5, a weighted aver-
age with α = 0.9, was the most effective to both classify

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

D
em

an
d

(r
un

ni
ng

 o
r r

un
na

bl
e

ta
sk

s)

M
od

el
 N

um
be

r

Time (seconds)

Forecast Model Utilization and Performance

Model Used
Forecasted Demand

Actual Demand

Figure 4. Forecast model utilization.

prior workload and make a prediction for the next inter-
val. Notice that three other models were selected dur-
ing this benchmark, although the total time they were
used was small relative to Model 5. The global power
limit was changed during this, and all other results, us-
ing the agentctl tool. In addition, the standard workload
applied in this and remaining results was a gcc compiler
run of the linux kernel. It is expected that changing the
global allocation interval would likely impact the esti-
mation model; however, the same model selection pro-
cess would still choose the most applicable model dy-
namically.

Utilizing this same data, the effectiveness of the LPA
in maintaining the limit on a single node is shown in
Figure 5. For this and all other results, Lmin = 90 and
Lmax = 190. These values were approximated using
cpuburn [30]. Notice as G decreases and node work-
load exists, L subsequently decreases between 220 and
360 seconds into the run. The measured power usage ex-
ceeded L within three intervals due to a high power tar-
get and accumulated feedback error in the LPA. This is
not a deficiency of the global allocation mechanism or
policy, but does represent the most severe conditions that
could occur when considering an LPA policy. It is also
important to consider that L represents the next inter-
val limit while usage is a measure of the last interval. To
maintain the indicated power usage, the CPU gear uti-
lization is shown in Table 3. The full spectrum was uti-
lized with lower gears used when idle. There was a min-
imum of 5 seconds imposed between gear changes ex-
cept when the current node usage temporarily exceeded
L. The LPA reads current power usage several times per

9

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960

P
ow

er
 (w

at
ts

)

Time (seconds)

Single Node Power Allocation

LPA Target
Actual Usage

Local Power Limit
Global Power Limit

Figure 5. Single node effectiveness adher-
ring to the local power limit.

Gear Count Time (msec) %
0 29 578,863 58.88
1 42 92,344 9.39
2 19 51,213 5.21
3 11 70,152 7.14
4 9 19,046 1.94
5 8 39,152 3.99
6 4 132,275 13.46

Table 3. LPA state utilization performance.

second.
In Figure 5, notice that as recovery in G occurred

near t = 430, the node power limit subsequently in-
creased for the next interval. Near t = 500 and t = 600,
the global power supply again forced node power reduc-
tions for both T and L. Because demand was high, we
still try to boost throughput even with little difference
between the global and local power limits. In this and
all other results, global power reserve is R = 5. A site
with a more conservative requirement could make this
higher.

To quantify the results with multiple servers, two
cluster nodes were used with G = 400 watts. The re-
sults, shown in Figure 6, reflect that even under high
load the resultant aggregate local power limits of both
nodes follows any degredation in the global power limit.
When Node 1 first enters the cluster, at t = 20, it re-

 0

 100

 200

 300

 400

 500

 0 60 120 180 240 300 360 420 480 540 600 660
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

P
ow

er
 (w

at
ts

)

D
em

an
d

(r
un

ni
ng

 o
r r

un
na

bl
e

ta
sk

s)

Time (seconds)

Multiple Node Power Allocation

Global Power Limit
Local Power Limit 1
Local Power Limit 2

Node Demand 1
Node Demand 2

Total Power Allocated

Figure 6. Multiple node power allocation
with varying workloads and global power
fluctuations.

ceives nearly the maximum allocation. Its limit subse-
quently decreases given its workload and no aggregate
work to be performed. Notice that from nearly t = 100
to t = 180, the power limit for Node 2 is at Lmax while
Node 1 is idle with a limit of Lmin. As demand on both
nodes rises to approximately the same level, the node lo-
cal power limits are balanced appropriately. This situa-
tion is later reversed when the demand on Node 2 falls
while Node 1 continues processing. Later, as both nodes
become idle and the global power supply increases, L

on both nodes subsequently increases to slightly below
Lmax, with the aggregate limit well below G. This al-
lows either node to quickly make use of available power
as needed and rapidly react to additional processing re-
quirements.

With non-uniform power allocation, it is possible to
leverage the available power to increase throughput. To
illustrate this benefit, two cluster nodes were configured
with L = 120 watts each. The value for G was fixed
at 245 watts (includes a 5 watt global reserve) so each
node had an equal power allocation. Next, the standard
load was applied to one of the nodes and the LPA was
used to manage to the assigned local power limit. On
both nodes, the GPA was configured to not change L and
the results are shown in Figure 7. In addition, this same
graph shows the result of running the GPA to manipulate
the local node power limit according to our model. No-
tice the total power allocated, when the load is applied to
one node, never exceeds G. In addition, the non-uniform

10

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 30 60 90 120 150 180
 0

 500

 1000

 1500

 2000

 2500

P
ow

er
 (w

at
ts

)

Th
ro

ug
hp

ut
 (c

om
pl

et
ed

 p
ro

ce
ss

es
)

Time (seconds)

Throughput for Uniform and Non-Uniform Power Allocation

Global Power Limit
Uniform Throughput

Uniform Total Power Usage
Non-Uniform Total Power Usage

Non-Uniform Throughput
Non-Uniform Total Limit

Figure 7. Throughput benefit using non-
uniform power allocation.

power allocation scheme uses more than or equal to the
power of the uniform method. However, from the start of
the run, the node with load can easily transition to higher
gears and increase throughput due to the higher local
limit. The local power limit for the other idle node was
forced to Lmin. After just 200 seconds, the workload
was terminated and the resultant throughput, in number
of completed processes, shows a 16% gain using the dy-
namic, non-uniform power allocation method.

The throughput gain in the previous result is depen-
dent on the particular application and the length of time
needed to service normal demand. Long running pro-
cesses, such as web or database servers, would experi-
ence a boost in throughput based on the relative work-
loads on each server (or multiple servers in the whole
cluster). A data center with a hetereogenuos mix of ap-
plications, with non-migratable workloads, would ex-
perience gains if one server is busier than others dur-
ing different time periods. This is the typical configura-
tion at many hosting centers that provide managed, ded-
icated services for customers. Such configurations are
typically used to address security, performance, reliabil-
ity, or other customer requirements.

6. Summary

This paper investigates a non-uniform, automatic dis-
tribution of power for server clusters based on forecasted
workload. Because the speed and performance of servers
continues to increase, the additional power such servers

consume must be accounted for in both the provisioning
and financial planning processes. Power can be an auto-
matically controlled resource within defined limits. Ef-
fective control yields greater utilization within the global
limit as well as boosts application throughput. It is not
always necessary to run a server at maximum perfor-
mance. As a result, safe overprovisioning can occur by
managing a cluster of servers to meet power limits.

A number of improvements are planned for the cur-
rent implementation. First, a more robust local power
mechanism based on multiple power scalable compo-
nents is being developed. This controller will account for
the power usage and performance of multiple devices.
The second enhancement is to ensure a tight bound on
the local limit. This is possible by forcing CPU idle
time at a per-task level with the objective to increase lo-
cal throughput. These throughput gains are possible by
slowing down higher power consuming tasks. The final
planned improvements are to synchronize simultaneous
local limit changes and supplement the short-term fore-
cast model with additional medium or long-term mod-
els.

We have presented a global power allocation mecha-
nism based on both local and global power limits. The
additional throughput gains possible from a strategy to
manage power limits can increase the computational
effectiveness of data centers that have non-migratable
workloads, suffer from the inability to expand their
power infrastructure, or seek an effective solution to
transition from ad-hoc management methods. Our dis-
tributed and autonomic power control policy not only
yields gains in throughput but also handles balancing the
load across a heterogeneous mix of applications and ar-
chitectures.

References

[1] AMD Athlon 64 processor data sheet. http://www.
amd.com/us-en/assets/content_type/
white_papers_and_tech_docs%/24659.PDF,
February 2004.

[2] F. Bellosa. The benefits of event-driven energy account-
ing in power-sensitive systems. In Proceedings of the 9th
ACM SIGOPS European Workshop, September 2000.

[3] M. Berkelaar. Mixed integer programming solver.
http://groups.yahoo.com/lp_solve/, Jan-
uary 2005.

[4] P. Bohrer, E. Elnozahy, T. Keller, M. Kistler, C. Lefurgy,
C. McDowell, and R. Rajamony. The case of power man-
agement in web servers. In R. Graybill and R. Melham,
editors, Power Aware Computing. Kluwer/Plenum, 2002.

11

[5] D. Bradley, R. Harper, and S. Hunter. Workload-based
power management for parallel computer systems. IBM
Journal of Research and Development, 47(5):703–718,
September 2003.

[6] E. V. Carrera, E. Pinheiro, and R. Bianchini. Conserving
disk energy in network servers. In Proceedings of Inter-
national Conference on Supercomputing, pages 86–97,
San Fransisco, CA, 2003.

[7] J. S. Chase, D. C. Anderson, P. N. Thakar, A. Vahdat,
and R. P. Doyle. Managing energy and server resources
in hosting centers. In Symposium on Operating Systems
Principles, pages 103–116, 2001.

[8] C. Ellis. The case for higher-level power management.
Proceedings of the 7th Workshop on Hot Topics in Oper-
ating Systems, March 1999.

[9] E. M. Elnozahy, M. Kistler, and R. Rajamony. Energy-
efficient server clusters. In Workshop on Mobile Com-
puting Systems and Applications, February 2002.

[10] M. E. Femal and V. W. Freeh. Safe overprovisioning:
Using power limits to increase aggregate throughput.
In Workshop on Power-Aware Computer Systems, Dec.
2004.

[11] K. Flautner, S. Reinhardt, and T. Mudge. Automatic
performance-setting for dynamic voltage scaling. In Pro-
ceedings of the 7th Conference on Mobile Computing
and Networking MOBICOM ’01, July 2001.

[12] J. Flinn and M. Satyanarayanan. Energy-aware adapta-
tion for mobile applications. In Symposium on Operating
Systems Principles, pages 48–63, 1999.

[13] J. Flinn and M. Satyanarayanan. Powerscope: A tool for
profiling the energy usage of mobile applications. In Pro-
ceedings of the Second IEEE Workshop on Mobile Com-
puting Systems and Applications, February 1999.

[14] C. Gniady, Y. C. Hu, and Y.-H. Lu. Program counter
based techniques for dynamic power management. In
Proceedings of the 10th International Symposium on
High-Performance Computer Architecture, Feb. 2004.

[15] F. Gruian. Hard real-time scheduling for low-energy us-
ing stochastic data and DVS processors. In Proceedings
of the International Symposium on Low-Power Electron-
ics and Design ISPLED ’01, August 2001.

[16] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and
H. Franke. Dynamic speed control for power manage-
ment in server class disks. In Proceedings of Interna-
tional Symposium on Computer Architecture, pages 169–
179, June 2003.

[17] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and
H. Franke. Reducing disk power consumption in servers
with DRPM. IEEE Computer, pages 41–48, Dec. 2003.

[18] http://www.acpi.info. Advanced Configuration and
Power Interface Specification, Revision 3.0. Hewlett-
Packard Corporation, Intel Corporation, Microsoft Cor-
poration, Phoenix Technologies Ltd., and Toshiba Cor-
poration, September 2004.

[19] C. Im, H. Kim, and S. Ha. Dynamic voltage schedul-
ing technique for low-power multimedia applications us-
ing buffers. In Proceedings of the International Sympo-
sium on Low-Power Electronics and Design ISPLED ’01,
August 2001.

[20] R. Joseph and M. Martonosi. Run-time power estimation
in high performance microprocessors. In Proceedings of
the International Symposium on Low-Power Electronics
and Design ISPLED ’01, August 2001.

[21] N. Kandasamy, S. Abdelwahed, and J. P. Hayes. Self-
optimization in computer systems via on-line control:
Application to power management. In Proceedings of the
1st IEEE International Conference on Autonomic Com-
puting (ICAC ’04), pages 54–61, May 2004.

[22] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter,
M. Kistler, and T. W. Keller. Energy management for
commerical servers. IEEE Computer, pages 39–48, Dec.
2003.

[23] J. Markoff and S. Lohr. Intel’s huge bet turns iffy. New
York Times Technology Section, September 29, 2002.
Section 3, Page 1, Coumn 2.

[24] R. J. Minerick, V. W. Freeh, and P. M. Kogge. Dynamic
power management using feedback. In Workshop on
Compilers and Operating Systems for Low Power, pages
6–1–6–10, Charlottesville, Va, September 2002.

[25] A. Miyoshi, C. Lefurgy, E. V. Hensbergen, R. Rajamony,
and R. Rajkumar. Critical power slope: Understanding
the runtime effects of frequency scaling. In Proceedings
of the 16th International Conference on Supercomputing,
pages 35–44, 2002.

[26] T. Pering, T. Burd, and R. Brodersen. The simulation
and evaluation of dynamic voltage scaling algorithms. In
ISLPED 1998, Aug. 1998.

[27] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath. Load
balancing and unbalancing for power and performance in
cluster-based systems. In Proceedings of the Workshop
on Compilers and Operating Systems, September 2001.

[28] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath.
Dynamic cluster reconfiguration for power and perfor-
mance. In Compilers and Operating Systems for Low
Power, September 2001.

[29] J. Pouwelse, K. LangenDoen, and H. Sips. Energy pri-
ority scheduling for variable voltage processors. In Pro-
ceedings of the International Symposium on Low-Power
Electronics and Design ISPLED ’01, August 2001.

[30] R. Redelmeier. cpuburn.
http://pages.sbcglobal.net/redelm/, June 2001.

[31] V. Sharma, A. Thomas, T. Abdelzaher, and K. Skadron.
Power-aware QoS management in web servers. In 24th
Annual IEEE Real-Time Systems Symposium, Cancun,
Mexico, Dec. 2003.

[32] A. Vahdat, A. Lebeck, and C. Ellis. Every joule is pre-
cious: The case for revisiting operating system design for
energy efficiency. In Proceedings of the 9th workshop on
ACM SIGOPS European workshop, pages 31–36, 2000.

12

