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ABSTRACT
Recently, system architects have built low-power, high-performance
clusters, such as Green Destiny. The idea behind these clusters is
to improve the energy efficiency of nodes. However, these clus-
ters save power at the expense of performance. Our approach is
instead to use high-performance cluster nodes that are frequency-
and voltage-scalable; energy can than be saved by scaling down
the CPU. Our prior work has examined the costs and benefits of
executing an entire application at a single reduced frequency.

This paper presents a framework for executing a single applica-
tion in several frequency-voltage settings. The basic idea is to first
divide programs into phases and then execute a series of experi-
ments, with each phase assigned a prescribed frequency. During
each experiment, we measure energy consumption and time and
then use a heuristic to choose the assignment of frequency to phase
for the next experiment.

Our results show that significant energy can be saved without an
undue performance penalty; particularly, our heuristic finds assign-
ments of frequency to phase that is superior to any fixed-frequency
solution. Specifically, this paper shows that more than half of the
NAS benchmarks exhibit a better energy-time tradeoff using mul-
tiple gears than using a single gear. For example, IS using multiple
gears uses 9% less energy and executes in 1% less time than the
closest single-gear solution. Compared to no frequency scaling,
multiple gear IS uses 16% less energy while executing only 1%
longer.
Classification: D Software; D.4 Operating Systems; D.4.8 Perfor-
mance.
General terms: Measurement, Performance.
Keywords: high-performance computing, power-aware computing.
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1. INTRODUCTION
Recently, power-aware computing has gained traction in the high-

performance computing (HPC) community. As a result, low-power,
high-performance clusters, such as Green Destiny [64], have been
developed to stem the ever-increasing demand for energy. Such
systems improve the energy efficiency of nodes. Consider the case
of Green Destiny—a cluster of Transmeta processors—which con-
sumes less energy than a conventional supercomputer. In particular,
Green Destiny consumes about three times less energy per unit per-
formance than the ASCI Q machine. However, because Green Des-
tiny uses a slower (and cooler) microprocessor, ASCI Q is about 15
times faster per node (200 times overall) [64]. A reduction in per-
formance by such a factor surely is unreasonable from the point
of view of many users. If performance is the only goal, then one
should continue on the current “performance-at-all-costs” path of
HPC architectures. On the other hand, if power is paramount, then
one should use a low-performance architecture that executes more
instructions per unit energy.

This paper strikes a path between these two extremes: It uses a
high-performance microprocessor that has frequency- and voltage-
scaling. Each frequency provides an energy-performance point that
we call a gear. It is conceptually possible to save energy without
an increase in time because an increase in CPU frequency generally
results in a smaller increase in application performance. The rea-
son for this is that the CPU is not always the bottleneck resource.
Therefore, increasing frequency also increases CPU stalls—usually
waiting for memory, disk, or communication.

Consequently, there are opportunities where energy can be saved
by reducing CPU frequency, without an undue performance penalty.
On the other hand, during those parts of the program where the
time penalty is large, the processors should be run at the fastest
frequency.

Accordingly, this paper investigates energy savings that can be
achieved, along with the corresponding execution time increase that
results, from changing the microprocessor gear at different points
in the program. As our experimental platform, we use a real power-
scalable cluster, which in our case is a cluster composed of AMD
Athlon-64 processors that are each frequency scalable—so their
clock speed and hence power consumption can be changed dynam-
ically.

We implement our scheme by first manually dividing programs
into phases based on trace data collected during a profile of the
application. If there are n phases in an application and g possible
gears, there are gn unique solutions, where a solution is an assign-
ment of a gear to each phase. We present a novel heuristic that



searches the space of solutions. It executes a solution and evaluates
the energy-time tradeoff based on a user-defined metric. Based on
the evaluation, it selects the next solution to evaluate. The heuristic
terminates when the results are satisfactory (again based on input
from the user or cluster administrator). It completes in a linear
number of steps based on the number of phases.

Performance results on the NAS suite show that our heuristic
finds effective solutions. Specifically, we find several solutions
that use different gears per phase that are superior to any solution
that used a single gear for all phases. For example, for MG, one
multiple-gear solution executes in the same time but consumes 3%
less energy then a single-gear solution. This same multiple-gear
solution executes 8% faster than another single gear while using
the same amount of energy.

The key contribution of this paper is that it demonstrates that
significant potential exists for energy savings in HPC applications
without an undue increase in execution time. Therefore, it shows
that changing gears during program execution is feasible and ad-
vantageous.

The rest of this paper is organized as follows. Section 2 describes
related work. Next, Section 3 discusses our profile-directed tech-
nique, followed by the presentation of our measured results on our
power-scalable cluster in Section 4. Finally, Section 5 summarizes
and describes future work.

2. RELATED WORK
There has been a voluminous amount of research performed in

the general area of energy management. In this section we describe
some of the closely related research. We divide the related work
into two categories: server/desktop systems and mobile systems.

2.1 Server/Desktop Systems
Several researchers have investigated saving energy in server-

class systems. The basic idea is that if there is a large enough clus-
ter of such machines, such as in hosting centers, energy manage-
ment can become an issue. In [9], Chase et al. illustrate a method
to determine the aggregate system load and then determine the min-
imal set of servers that can handle that load. All other servers are
transitioned to a low-energy state. A similar idea leverages work
in cluster load balancing to determine when to turn machines on or
off to handle a given load [54, 55]. Elnozahy et al. [18] investi-
gated the policy in [54] as well as several others in a server farm.
They found that when each node independently sets its voltage, the
performance was almost as good as more complicated schemes that
required coordination between server nodes. Such work shows that
power and energy management are critical for commercial work-
loads, especially web servers [4, 41]. Additional approaches have
been taken to include DVS [17, 61] and request batching [17]. The
work in [61] applies real-time techniques to web servers in order to
conserve energy while maintaining quality of service.

Our work differs from most prior research because it focuses on
HPC applications and installations, rather than commercial ones. A
commercial installation tries to reduce cost while servicing client
requests. On the other hand, an HPC installation exists to speedup
an application, which is often highly regular and predictable. One
HPC effort that addresses the memory bottleneck is given in [32];
however, this is a purely static approach.

In server farms, disk energy consumption is also significant. One
study of four energy conservation schemes concludes that reduc-
ing the spindle speed of disks is the only viable option for server
farms [6]. DRPM is a scheme that dynamically modulates the
speed of the disk to save energy [28, 29]. Another approach is
to improve cache performance—if many consecutive disk accesses
are cache hits, the disk can be profitably powered down until there

is a miss; this is the approach taken by [73]. An alternative is to use
an approach based on inspection of the program counter [23]; the
basic idea is to infer the access pattern based on inspection of the
program counter and shut down the disk accordingly. A final ap-
proach is to try to aggregate disk accesses in time; i.e., if there are
a total of N disk accesses separated by an average of T time units,
the idea is to transform the program to have M < N accesses sep-
arated by a time T ′ > T . This way the disk can be transitioned to
a lower energy state for a longer period of time. A compiler/run-
time approach using this was designed and implemented in [30],
and a prefetching approach in [50]. Both were designed for mobile
systems but can be directly applied to server/desktop systems.

The above transformations/optimizations are aimed at server farms.
However, decreasing disk speed will decrease performance, so it
cannot be applied arbitrarily. In addition, improved caching poli-
cies are unlikely to improve out-of-core HPC applications, because
they tend to stream through the disk cache. Finally, increasing
burstiness by aggregating disk requests in out-of-core applications
is difficult due to limited memory.

There are also a few high-performance computing clusters de-
signed with energy in mind. One is BlueGene/L [1], which uses
a “system on a chip” to reduce energy. Another is Green Destiny
[64], which uses low-power Transmeta nodes. A related approach
is the Orion Multisystem machines [48], though these are targeted
at desktop users. The latter two approaches sacrifice performance
in order to save energy by using less powerful machines.

Finally, our prior work was an evaluation-based study that fo-
cused on exploring the energy/time tradeoff in the NAS suite [22].
Specifically, we found that using a single slower gear was in some
cases able to save energy with little time delay. This work extends
this idea by investigating the usefulness of varying the gear per
phase, and it also adds an algorithm for choosing the assignment of
gear to phase.

2.2 Mobile Systems
There is also a large body of work in saving energy in mobile

systems; most of the early research in energy-aware computing was
on these systems. Here we detail some of these projects.

At the system level, there is work in trying to make the OS
energy-aware through making energy a first class resource [63, 16,
11]. Our approach differs in that we are concerned with saving
energy in a single program, not a set of processes. One impor-
tant avenue of application-level research on mobile devices focuses
on collaboration with the OS [46, 65, 70, 71, 72, 21, 20, 2]. Such
application-related approaches are complementary to our approach.

In terms of research on device-specific energy savings, there is
work in the CPU via dynamic voltage scaling [19, 26, 52, 57, 25,
27, 34, 39, 44, 51, 53, 56, 58, 43, 49], the disk via spindown (e.g.,
[31, 15, 66, 3, 42]), and on the memory or network [13, 40, 10,
36, 69, 68, 7, 8, 12, 37, 62, 38]. The primary distinction between
these projects and ours is that energy saving is typically the primary
concern in mobile devices. In HPC applications, performance is
still the primary concern.

3. PROFILE-DIRECTED TECHNIQUE
This section describes our profiling technique for determining

an effective gear for each phase. First, it describes detecting and
prioritizing phases. Next, it discusses the mechanism that collects
performance data and the energy-time tradeoff. Finally, it discusses
our method for choosing an assignment of gear to each phase.

Phase Detection. This paper, uses a straightforward program-
ming model, which primarily applies to iterative and predictable
HPC applications. Specifically, it starts by obtaining a trace of the
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Figure 1: Trace of operations per miss for LU C.
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Figure 2: Energy consumption vs. execution time for three NAS benchmarks on a single AMD machine.

application in question (run at the fastest gear—highest frequency-
voltage setting). From there, it divides a program into blocks. The
term block is motivated by the common compiler term basic block.
In a basic block, all statements must be executed. In a similar way,
in a block, all statements execute at the same gear. (Beyond that,
no similarity between these terms is implied.)

The actual division into blocks is done by examining the trace
and using an ad hoc approach that conforms to the following prin-
ciples. First, any MPI operation demarcates a block boundary. Sec-
ond, if the memory pressure changes abruptly, a block boundary
occurs at this change. (This is explained further below.) For the
latter rule, the actual boundary is inserted at the end of the previous
loop nest, following the notion that ends of loop nests are where
program characteristics generally change [35]. We describe our ap-
proach assuming that there is an outermost loop that consists of a
linear list of blocks (i.e., no control flow). While either restriction
can be relaxed, doing so unnecessarily complicates this discussion.
Moreover, HPC codes often have one outermost (”timestep”) loop,
and MPI calls are generally unconditionally invoked.

From there, we merge blocks into phases. Two adjacent blocks
are merged into a phase if their corresponding memory pressure is
within the same threshold used in rule two above. We note that this
is a simple algorithm and may not find all possible phases; our fo-
cus is not on developing new phase detection techniques. Our plan
in the future is to use the significant work on phase detection that

has previously been done—both statically [35, 60, 47] and dynam-
ically [33, 14].

We introduce the metric operations per miss (OPM) as a mea-
sure of the memory pressure of an application or phase. We have
found OPM to be effective in determining phase boundaries. For
example, Figure 1 gives an example of how OPM varies in the LU
C benchmark on one of 8 nodes. The right-hand figure shows a
window of 6 seconds. Here, OPM clearly partitions the code into
three distinct phases. These phases were determined by hand, but
it could be automated.

Phase Prioritization. Our method for assigning gears to phases
requires ordering the phases such that the most likely phases to
benefit from running at a lower gear are identified. This allows our
algorithm to run in linear time, yet still find a desirable solution.
Thus, our approach requires distinguishing a phase that has a good
energy-time tradeoff from one that does not. That is, we must esti-
mate the effect executing a phase in a slower gear will have on the
energy consumption and execution time of the block. The key here
again is OPM (introduced above), which estimates the phases that
have a good energy-time tradeoff.

Figure 2 (previous page) shows the results of executing 3 NAS
programs on a single Athlon-64 processor, and Table 1 shows the
OPM for each of the programs. See [22] for a complete discus-



EP BT LU MG SP CG
OPM 844 79.6 73.5 70.6 49.5 8.60

Slope 0→ 1 -0.189 -0.811 -1.78 -1.11 -5.49 -11.7
Slope 1→ 2 0.288 0.0510 -0.355 -0.161 -1.52 -1.69

Table 1: Relating OPM to energy-time tradeoff.

sion. For each graph, the total system energy consumed at each
gear (gear 0 is fastest, gear 5 is slowest) is plotted on the y-axis
and the total execution time is plotted on the x-axis. The higher
of two points uses more energy, and the further right of two points
takes more time. Therefore, a near-vertical slope indicates an en-
ergy savings with little time delay between adjacent gears, whereas
a horizontal slope indicates a time penalty and no energy savings.
For readability, the origin of the graphs is not (0, 0). Therefore,
the alternate axes show the time and energy relative to the top gear
(leftmost point).

EP is CPU bound and therefore has a large time penalty and little
or no energy savings at reduced gears. On the other hand, CG is
memory bound, so the time penalty is almost nothing. BT is a
more typical application that sits between the extremes of EP and
CG.

In Table 1, the benchmarks are sorted from highest to lowest
OPM, ranging from a high of 844 for EP to a low of 8.60 for CG.
The middle row shows the slope of the energy-time curve from top
gear to gear 1, computed as E0−E1

T0−T1
. A large (greater in magnitude)

negative number indicates a near vertical slope and a significant
energy savings relative to the time delay. On the other hand, a small
number (positive or negative) indicates a near horizontal slope and
little energy savings. Except for MG, the slopes in the table are
sorted, in this case from greatest to least. Because a more negative
slope indicates a better energy-time tradeoff, this table shows that
memory pressure tends to predict the energy-time tradeoff.

Data Collection. The first step gathers profile data during an
execution of the program. This implementation uses our MPI-jack
tool, which is an interface that exploits PMPI [59], the profiling
layer of MPI. MPI-jack enables a user transparently to intercept (hi-
jack) any MPI call. A user can execute arbitrary code before and/or
after an intercepted call. These are called pre and post hooks. In
this work, we use MPI-jack to shift gears in post hooks.

The first step involves sampling an application, producing profile
or trace data. An application is sampled at every phase boundary.
This is done entirely through MPI-jack; in the case of MPI calls, it
is trivial to add the sampling code. When it is necessary to insert a
phase boundary at the end of a loop nest (i.e., not at the end of an
MPI call), we simply insert a pseudo MPI call; this way, we handle
all phases in a uniform way.

The information we collect includes the type of call and location
(program counter). It shows status (gear, time, etc.) and metrics
(µops and L2 cache misses, so OPM can be computed). Note that
our inclusion of the program counter bears some resemblance to
existing program counter based techniques [23], though that work
is aimed solely at saving energy in the disk.

Energy-Time Tradeoff. Our analysis (see below) requires en-
ergy consumption data; however, we have found that energy can-
not be measured accurately if the period of measurement is too fine
grain.1 For this paper, as the benchmark programs complete rela-

1This is in part a function of our measuring equipment. However,
fine-grain measurement of system power is problematic because
unpredictable high-power events, such as disk spin-up, skew such
results. Larger time intervals tend to mask the effect of such events.

tively quickly, we measure energy at the coarsest grain possible—
the complete run of a program. (For longer running programs we
can terminate a test run after a fixed number of iterations or phases.)

Determining which of two solutions is “better” depends on how
a user wants to trade off energy savings and time delay. This work
does not impose an evaluation. Rather, it leaves it to the user or
cluster administrator to select the metric. It could be energy-delay
or energy-delay squared, the latter proposed in [45, 24], which has
been adopted by Cameron et al. [5] for use in power-aware, high-
performance computing.

Methodology. Given a program partitioned into phases, we pro-
ceed to our method for determining an effective assignment of gears
to phases. If there are n phases and g gears, than the number of pos-
sible solutions (phase-gear assignments) for the program is gn. In
general, this is too large to explore by brute force. Therefore, the
second part of our method is a heuristic (described in Figure 3) that
we use to find the “best” solution. The heuristic finds the “best”
gear in a phase, then moves on to the next phase. Once it moves on
to another phase, the gear for the preceding phase has been deter-
mined. Therefore, it is important that phases are sorted.

Initially, the solution G (a vector of gears) is set to the baseline
value—all zeroes. The recursive function is invoked on the 0th

phase. It executes the program using the next slower gear in this
phase (all other phases are as before). If the energy-time tradeoff
(defined by a user relation, see below) of this new solution is better
than the current solution, it is accepted. The algorithm recursively
tries the next lower gear on this phase. The gear is determined
when the new tradeoff is worse than the current or when there are
no slower gears. After fixing the gear, it moves on to the next phase.
This heuristic has running time at most n × g.

After each program execution, the energy and time are measured
and compared via the user-defined relationship. For our tests, we
use a simple and intuitive evaluation of the tradeoff based on the
slope of the line between two solutions. The slope is defined as
the ratio of energy savings to time delay:

Ei−Ej

Ti−Tj
, for two solutions

i and j. Thus a slope of -1 (i.e., 45◦ below the horizon) means
savings and delay are equally weighted. A user-defined limit of 0
means minimize energy, and −∞ means minimize time. We con-
sider a new solution with a larger slope (in magnitude) than the
user-defined limit to be better. We do not advocate this metric in-
stead of the others. We use it because it is reasonable and it is easy
to visualize.

4. MEASURED RESULTS
This section describes the results of our experiments using our

power-aware cluster. First, we give our experimental methodol-
ogy. Second, using BT, we present an example of our methodology
along with results. Third, we present overall results from all the
NAS applications. Finally, we analyze the results.

4.1 Experimental Methodology
We studied the programs in the NAS parallel benchmark suite

using either 8 or 9 nodes, depending on the benchmark. Presum-
ably, such mature benchmarks have been thoroughly analyzed and



/* G is an n-dimensional vector of gear selections, one for each phase. */
set Gk = 0, ∀k|0 ≤ k < n /* The top gear is 0; slowest gear is n− 1 */
given T /* Tuple (energy,time) for current G (initially the baseline) */
given ≺ /* A user-defined relationship that defines total order of T */
/* Invoke the function to start method that produces final solution, Gf */

Gf ← evaluate(program, G, 0, n, T )

define evaluate(program, G, i, n, T )
if i ≥ n or Gi ≥ gslowest then return G fi
Gi ← Gi + 1
execute program using solution G
measure energy and time for G, store tuple in T ′

if T ′ ≺ T then /* T ′ is not better than T */
Gi ← Gi − 1
G = evaluate(program, G, i + 1, n, T )

else /* T ′ is better than T */
G = evaluate(program, G, i, n, T ′)

fi
return G

end

Figure 3: Heuristic for searching solution space.

are well-written (e.g., see [67])—so that they are not unrealisti-
cally communication bound. Our approach capitalizes partly on
blocking receive time waiting for data. Therefore, well-tuned pro-
grams like the NAS programs should result in an approximate lower
bound in terms of saving energy during idle time resulting from
communication.

Our experimental platform is a cluster of ten frequency- and
voltage-scalable AMD Athlon-64s. Its available operating points
are in the range of 800–2000MHz and 0.9–1.5V. Each node has
1GB main memory, a 128KB L1 cache (split), and a 512KB L2
cache, and the nodes are connected by 100Mb/s network. In this
paper, we vary the CPU power and measure overall system energy.
Although there are other components, throttling the CPU is effec-
tive in saving energy because the CPU is a major power consumer.
In particular, the Athlon-64 CPU used in this study consumes ap-
proximately 45–55% of overall system energy.2

For each program we measure execution time and energy con-
sumed. Execution time is elapsed wall clock time. The voltage
and current consumed by the entire system is measured by preci-
sion multimeters at the wall outlet to determine the instantaneous
power (in Watts). This value is integrated over time to determine
the energy used. Integration is performed by a separate computer
that samples the multimeters hundreds of times a second.

4.2 In-Depth Example of Methodology

This section gives an example of how our methodology works,
along with results. For this purpose, we study BT class C in depth.
In the graph shown in Figure 4, the baseline is the leftmost (fastest)
point, where the top gear, 2000MHz, is used for the entire program.
(As before, the higher of two points uses more energy, and the fur-
ther right of two points takes more time.) For all other points, at
least one phase is executed in a lower gear. Each point is labeled
as a tuple, where the ith entry represents the gear used during the
ith phase. (In general, applications may have different size tuples,

2CPU power is not measured directly. However, the system power
at the fastest energy gear is 145–160 W. The AMD datasheet states
that the absolute maximum CPU power dissipation is 89 W. We
estimate the peak power of the CPU for our application is in the
range of 70–80 W, which is roughly 45–55% of system power.

because they have a different number of phases.) For convenience,
we refer to a tuple of phase-gear assignments as a solution.

Our analysis of the operations per miss (OPM) identified two
phases in BT. The baseline solution is labeled “00”, meaning both
phases are run in gear 0. In the figure we have drawn a line con-
necting 5 points that are “good” choices under a simple slope-based
energy-time metric. The line forms a convex hull that is left of and
below all other solutions. Any solution “inside” the hull is not a
“good” choice according to this metric, although there may exist
solutions inside the hull that are good under a different metric.

Recall that the goal of our profiling algorithm is to do “better”
than the baseline. As our chosen metric is the slope between two
solutions, L, our algorithm will select a unique point on the hull.
This is illustrated in Table 2, which shows five different cases re-
garding BT.
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Figure 4: Energy-time plot of several BT runs.

In the first case (Table 2(a)), L is steep (large negative number).
Such a value favors time delay over energy savings. In this case
and all others, the algorithm adjusts gears from right to left across
solutions or tuples. Thus, the first test is solution 01. The steps of
the algorithm are shown in the table. The second column shows the



Solutions Slope < L?
1 00→ 01 -11.7 false
2 00→ 10 -1.39 false

00 is best

(a) Case 1: −12 > L.

Solutions Slope < L?
1 00→ 01 -11.7 true
2 01→ 02 -1.78 false
3 01→ 11 -1.01 false

01 is best

(b) Case 2: −1.78 > L >
−12.

Solutions Slope < L?
1 00→ 01 -11.7 true
2 01→ 02 -1.78 true
3 02→ 03 -1.19 false
4 02→ 12 -1.44 false

02 is best

(c) Case 3:
−1.44>L>−1.78.

Solutions Slope < L?
1 00→ 01 -11.7 true
2 01→ 02 -1.78 true
3 02→ 03 -1.19 false
4 02→ 12 -1.44 true
5 12→ 22 -0.25 false

12 is best

(d) Case 4: 0 > L > −1.44.

Solutions Slope < L?
1 00→ 01 -11.7 true
2 01→ 02 -1.78 true
3 02→ 03 -1.19 true
4 03→ 04 0.17 false
5 03→ 13 -1.20 true
6 13→ 23 0.97 false

13 is best

(e) Case 5: L = 0.

Table 2: Five cases for BT.

two solutions being compared, and the arrow indicates the direc-
tion of the slope. Of these two solutions, the energy and time of the
one on the left is known, so only one run of the program is neces-
sary to complete this step. The third column shows the slope, and
the fourth column indicates whether is it less than the user-defined
limit. In the first step, the slope from 00 to 01 is greater than L
(not as steep); therefore, it is rejected. We back up to the previous
solution (00) and try the next phase to the left (which in this case
happens to be the leftmost phase). In step 2, solution 10 is rejected.
Thus, the algorithm selects 00, the baseline, when L is sufficiently
steep.

Table 2(b) shows the steps in the second case. In this case, 01 is
accepted but 02 is rejected. The algorithm fixes the second phase
at gear 1 and then determines the gear for the first phase, ultimately
selecting 01. The next case (Table 2(c)) is similar; the slope limit
is slightly larger (less steep), which results in acceptance of 02,
followed by the rejection of 03 and 12.

Table 2(d) shows the steps in case 4. In this case, the second
phase is fixed at gear 2. The solution for 12 is considered better
than 02, so the algorithm accepts it and tries 22, which is rejected.

The last case is shown in Table 2(e). This case temporarily se-
lects solution 03, which is not on the convex hull, before eventually
selecting 13. The solution 03 is interesting, because the algorithm
and evaluation metric we describe here will never select it. This is
because our slope metric only picks solutions that are on the con-
vex hull. However, 03 is a reasonable solution in that there does
not exist a solution that is better than it in both time and energy (i.e.,
“dominates” it). So, it easily can be argued that 03 is better than
02. For BT, solutions 03 and 11 fall into this category and there-
fore may be selected by a different evaluation metric. However, the
other solutions (04, 10, 14, 22, and 23) will never be selected by
any metric, because each is dominated in both energy and time by
at least one other solution.

4.3 Analysis of Results
Figure 5 shows results from the other six NAS programs that we

executed. Because each graph has different x and y ranges, we plot

a normalizing line that shows a 5% decrease in energy and a 5%
increase in time. It is important to consider both the direction and
magnitude of this line. Overall, the behavior of the applications
varies widely. Each program falls into one three groups based on
its benefit from using a reduced gear. In each figure, we show the
convex hull along with several points that were tested while exe-
cuting the algorithm.

Multiple Gear Benefit. Applications in this group show signif-
icant benefit from a multiple-gear solution. This is the case when-
ever several ij solutions, where i 6= j, fall on the convex hull.
Four of the seven NAS programs have this characteristic: MG, BT,
LU, and IS. For example, in multiple-gear solution 32, MG saves
11% energy with a 4% time penalty over the baseline. On the other
hand, the single-gear solution 33 saves 10% energy with a 7% time
delay. BT using solution 12 saves 10% energy with a 5% time
penalty over the baseline. This compares favorably to single gear
solutions 11 and 22, which yield energy-time tradeoffs of -6%/4%
and -8%/17%, respectively.

In the case of LU, there are three phases, as shown above in
Figure 1. This program is the only one for which we identified
more than two phases. This plot has more points than any other
plot, yet 70 more points are needed to exhaustively search just the
top three gears (0 thru 2).

IS is an extreme case, where the first phase is CPU bound and the
second phase is both memory and disk bound. Therefore, a single-
gear solution is bound to be poor, as it is necessarily a compromise
solution. Regardless of the desire of the user, single-gear solutions
(other than the baseline) are dominated by points on the hull. The
05 solution in IS saves 16% energy over the baseline (00) at a cost
of a 1% time increase. Compared instead to 22, this solution saves
9% energy and executes 1% faster.

Single Gear Benefit. Applications in this group show signifi-
cant benefit from using a single lower gear, but no significant bene-
fit from multiple-gear solutions. CG and SP fall into this category;
however, for different reasons. In CG, only one phase was detected.
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Figure 5: Energy consumption vs. execution time for NAS class C benchmarks 8 or 9 nodes.

The application is highly memory bound: its is OPM an order of
magnitude smaller than any other. Moreover, all blocks in the loop
have comparable OPM.

In SP, we while we found two phases, there is almost no benefit
to running phases in different gear. Although 23 is on the convex
hull, it barely makes it. SP illustrates that it is important to sort the
phases. Searching from the first phase, our method tries 10 which
is rejected, fixing the first phase in gear 0. Thus, the method would
select one of 00, 01, 02, or 03. All but the baseline are not on the
convex hull. In particular, suppose the user set L to -3. Searching
in the wrong order yields solution 01. However, searching from the
second phase, this method tries 01, which passes, then 02, which
fails. Then it moves on to the first, tries 11 then 21, which it rejects.
Thus it selects 11.

Besides the two general reasons given above, there is a third rea-
son that a single gear benefit is all that can be achieved. Concep-
tually, an application can fall into the single gear category because
the phases are too fine-grain (possibly because there are too many)
and the cost of switching gears outweighs the benefit. However,
this was not the case in any of the NAS programs.

No Benefit. Only EP falls into this category. Simply put, EP has
only one phase, no communication (except once at the end of the
program), and is CPU bound. Therefore, a reduction in the gear
results in the program taking longer to complete and has little or no
energy savings.

5. CONCLUSIONS AND FUTURE WORK
This paper investigates energy savings in HPC applications, along

with the corresponding time delay, that results from varying the

processor gear per program phase. Given an application, a pro-
gram is divided into blocks which are merged into phases using
program traces. A novel heuristic successively evaluates solutions
(phase-gear assignments). The program is executed, and energy
and time are measured. Then, the heuristic evaluates the solution
based on a user-defined metric and selects the subsequent solution
to evaluate. Performance results were obtained on the NAS suite
on a real power-scalable cluster composed of AMD Athlon-64 fre-
quency and voltage scalable processors. We found that in most
NAS benchmarks, using multiple gears in a single application can
provide a better energy-time tradeoff over any single-gear solution.

Future Work. There are many avenues we are investigating that
relate to this work. First, we will enhance our profile-directed tech-
nique. With a small number of phases, our current method suf-
fices; however, for programs with large numbers of phases, even
the linear-time algorithm discussed in this paper may be too costly.
Second, we will consider inter-node bottlenecks, where a subset of
the nodes reach a synchronization point later than the rest of the
nodes. A node bottleneck can occur for a variety of reasons, but
the end result is that early-arriving nodes can be scaled down with
little or no performance degradation. This necessarily means that
we will have to allow different gears on different nodes, in the same
phase. Third, we intend to automate our entire method, including
phase detection, as much as possible. Fourth, we will incorporate
I/O into our intra-node bottleneck evaluation. Finally, we are start-
ing to experiment with large-scale programs; while we believe the
NAS programs are representative, they are not industrial-strength
codes and hence have only a few phases.
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