Requirementsfor a Policy-Enfor ceable Agent
Architecture

Travis D. Breaux and James M. Niehaus

Department of Conputer Science
North Carolina State University
{tdbreaux, jmmiehau}@os. ncsu. edu

Abstract. Emerging legidlation that governs consumer privacy presents a de-
sign challenge to multi-agent systems providing business, health-care and gov-
ernment services. As agents act on behalf of consumers and providers of goods
and services, their compliance with laws governing information sharing and
disclosure practices must be transparent and measurable to avoid prohibitive
sanctions by regulators. Human-readable and machine-enforceable policies that
govern agent behavior offer a promising avenue to safeguard against violations
of law and achieve compliance in dynamic environments. We apply software
engineering practices to this problem and present requirements for designing an
agent-based policy language and agent framework and compare our approach to
current practices. We elaborate our requirements using two scenarios demon-
strating policy authorship and enforcement in a multi-agent environment. Our
proposal is motivated by results from analyzing privacy policies and legislation
related to servicesin e-commerce and health-care.

1 Introduction

Legidation such as the Health Insurance Portability and Accountability Act
(HIPAA) and the Gramm-Leach-Bliley Act (GLBA) govern consumer privacy includ-
ing the sharing of persona information necessary to do business in U.S. hedlth-care
and financial markets. Regulatory agencies such as the U.S. Department of Health and
Human Services, Federal Trade Commission and Securities and Exchange Commis-
sion interpret both HIPAA and the GLBA to establish guidelines or rules with specific
rights and obligations governing the behavior of businesses and consumers. These
rights, obligations and rules have a direct impact on software requirements for systems
operating in regulated markets.

Rights and obligations dictate the allowable and expected behavior of businesses
and customers. Rights, authorizations or permissions all describe what parties may or
may not do while obligations or commitments describe what parties must or must not
do. For example, under the GLBA businesses may share consumer information with
their affiliates. However, these businesses must also restrict sharing such information
with non-affiliates. In addition, customers have the right to opt-out of certain informa-
tion sharing practices. In general, rights and obligations mediate the impact of transac-
tions as either protections or vulnerabilities to consumer’ s personal information.



Guidelines and rules both describe expected behavior for parties of an engagement.
While these terms are often used interchangeably, guidelines are semantically broader
than rules and often lack the details of how to handle specific situations. Rules on the
other hand are generally more specific and therefore easier to understand. Rules clar-
ify the contexts for assigning and invoking rights and enforcing obligations by adding
conditions or restrictions to the circumstances of an engagement. Furthermore, rules
govern a variety of business processes including specific software transactions within
an organization, across organizations, and between an organization and consumers.
Generally, businesses grive to develop policies that govern transactions between their
employees, software systems and customers to assure compliance with both guidelines
and rules established by regulators.

In addition to regulatory compliance, businesses create policies and coordinate
their software systems in ways that maximize severa goals including: efficiency,
safety, reliability, security, internal auditing, traceability and ultimately a return on
investment. The creation and maintenance of business software that follows organiza-
tional goals can be atime and resource intensive activity. Policies and actual software
systems may be out of alignment due to limitations in the ability to configure and
customize software. As a result, a business may have remarkably sound policies with
poor actual business practices. Our goal is to reduce the misalignment between organ-
izational policies and practice by bridging this gap with multi-agent systems.

The impact of hon-compliance with regulations can be severe and largely intracta-
ble. For violations in the case of HIPAA, fines imposed by regulators range up to
250,000 USD and 10 years in prison. The extent of financial and legal liability estab-
lished through lawsuits is simply intractable. However, Walker provides several social
and economic arguments for understanding the costs of privacy [1] and Earp et al.
have studied the meaning of privacy values to consumers [2]. Furthermore, Grzebiela
identifies a relationship between the lack of both available insurance against loss of
confidentiality and available mechanisms for ensuring accountability [3]. In other
words, without available mechanisms to ensure accountability, businesses will not be
able to insure against privacy losses. Understanding the risks and costs associated with
developing non-compliant systems will increase motivation for integrating these
mechanisms to become compliant.

System developers deploying agent-based systems whose transactions are governed
by legislation such as HIPAA and the GLBA must demonstrate to regulators that their
systems can sustain compliance transparency. Compliance transparency may be dem-
onstrated first by system design and second through verifiable audit trails produced
from actual transactions. The design should clearly demonstrate that control mecha-
nisms are in place to guarantee that agents may exert their rights and fulfill their obli-
gations. Alternatively, audit trails should confirm that governed transactions comply
with regulatory rules. Demonstrating compliance will further establish and build trust
between consumers, businesses, and government regulators in multi-agent systems.

We believe a multi-agent system design is well suited for policy enforcement and
compliance transparency. In order to move this position forward, we are proposing
severa key challenges and introducing a set of requirements for a policy language and
agent framework. We believe many organizations are facing these key challenges and
that a policy-enforceable agent architecture will help address these challenges. In



section 2, we examine related work in software agents, policy-based systems and web
services. In section 3, we present four key organizational challenges. In section 4 we
discuss two scenarios for policy authorship and enforcement followed by section 5,
where we present system requirements for a policy language and agent framework. In
section 6, we discuss the benefits of this proposal with our conclusion in section 7 and
references in section 8.

2 Background

Our approach to a policy-enforceable agent architecture relates to work distributed
throughout severa different domains including multi-agent systems (MAS), distrib-
uted systems management, and web services. Each of these areas contributes unique
strengths to the literature and we highlight only contributions that demonstrate breadth
and maturity. In each case, we identify strengths and briefly note shortcomings.

2.1 Multi-agent Systems

Multi-agent systems have made significant contributions in the theory of agency in
software systems; specifically the theory regarding agent autonomy, collaboration and
commitments. The popular Belief-Desire-Intention (BDI) model describes agent
autonomy through notions of desire and open behavior. Policy-governed systems
emphasize what agents may do (rights) and what agents must do (obligations). In con-
trast, the characterization of what agents want to do is always subject to rights and
obligations. Furthermore, agent autonomy is increased through the assignment of
rights and decreased through the assignment of obligations. In multi-agent systems,
the O-Autonomy classification described by Carabelea et al. in which agent autonomy
is restricted to norms including social laws and organizational structure [4] is similar
to the type of autonomy expected in a policy-compliance framework.

Collaboration, an established agent systems goal, is more general than the notion of
compliance, an established policy systems goal. Compliance restricts the freedom of
activities shared by agents making collaboration more deterministic. In addition, de-
sire and intentionality are irrelevant up to the moment of non-compliance; after which
sanctions are imposed that include new obligations and/or the loss of rights. Ulti-
mately, agents that do not comply are unable to participate in the system since they
lack sufficient rights.

Commitments or obligations have been a critical issue in collaborative multi-agent
systems. Castelfranchi examined their role in organizational structure and distin-
guished between social commitments that are shared between two agents and organ-
izational commitments that are shared by agentsin an organization [5]. Jain et a. take
a different approach by introducing the sphere of commitment [6]. The sphere of
commitment describes the scope of commitments for any one agent and provides for
flexible integrity and data flow, autonomy for both providers and consumers, and
flexible organizational structures. The approach by Jain et al. is insightful in the con-
text of policy-governed transactions where commitments may simultaneously span
several agents and organizations.

Rights and obligations have been formally defined in multi-agent systems. Fadli
formalizes agent interactions including rights, obligations and sanctions [7]. While



Fadli’s approach is based on the BDI model, the interactions between rights and obli-
gations are relevant to policy governance. Fornara et al. propose semantics for an
agent communication language to represent authorizations (rights) and commitments
(obligations) inspired by speech acts [8]. Their proposal integrates communicative
acts such as propose, reguest, inform, promise, accept, and reject with a definition of
commitments to develop protocols for agent communication. However, thereis also a
need to represent temporality to relate events to each other; a capability that is missing
from the proposed semantics. Dignum et al. provide aformal semantics for describing
obligations and deadlines using temporal logic [9]. The FIPA Policies and Domains
Abstract Architecture specification proposes scenarios and terms for an agent architec-
ture [10]. Among these scenarios, the relationship between fulfilling obligations and
reputation or accountability is presented; however, the lack of requirements and detail
in the scenarios lessens this architecture’ s contribution to multi-agent systems, in gen-
eral.

Agent negotiation is made possible through agent autonomy, so it is worth mention-
ing, here. Negotiation is a process of discovery to optimize benefits under accepted
terms of authority. At a minimum, policies must be negotiated to remove conflicts;
however, these types of negotiations may be performed by human users. In our ap-
proach, we demonstrate how conflicts can and should be resolved by human agents
thus removing the complexity of this issue from the software agent paradigm in pol-
icy-governed transactions. In unregulated transactions not covered by our approach,
negotiation may play a more important role if the parties to the transaction announce
an interest in negotiating existing policies.

2.2 Distributed Systems M anagement

Distributed systems management includes policy languages to describe rights and
obligations in network and security policies. Rights and obligations in this domain
often associate users and systems with access control policies. In cases where the
policy language is generalizable, the language includes the abstract notions of agency
similar to multi-agent systems. In some approaches, policies are centralized in a re-
pository as in Beigi et al. [11] while others use roles inspired by role-based access
control or domains inspired by network management. Finally the Semantic Web has
influenced policy languages with the Web Ontology Language (OWL) that combines
theory from description logic with the Resource Description Framework (RDF) devel-
oped by the World-Wide Web Consortium (W3C) [12].

Damianou et al. introduce the Ponder language developed for network and security
policy management [13]. Rights and obligations in Ponder were developed from an
access control perspective; describing the subjects of rights and obligations using roles
and domains. Montanari et al. build their Poema agent framework around the Ponder
language [14]. Poema allows applications to be dynamically reconfigured using obli-
gations specified in Ponder. Our approach advocates a more generalizable concept of
agents than Poema or Ponder support. We believe roles and domains are helpful in
classifying agents, however, they should not replace richer semantics for describing
individual agents. The benefit of these semantics is evident when policies include
references to business processes; a requirement in our approach. For areview of roles
from the agent-perspective, see Odell et al. [15].



Tonti et a. advocate an ontological approach to policy languages in an OWL-based
implementation called KAoS [16]. KA0S includes an ontology for representing agents
in a policy-context including rights and obligations. Limitations recognized in KAoS
include the difficulty for users to directly interface with OWL-encoded policies and
the gap between expressions in OWL and application-level code. The general benefit
is provided by OWL in terms of richer semantics for describing agents and their abili-
ties beyond the expressivity of roles and domains in Ponder.

Kaga et a. introduce the policy ontology REI implemented in OWL for describing
policies in pervasive systems [17]. Statements in REI are in part motivated by speech-
acts making REI amenable to agent-based systems. REI provides delegation and con-
flict resolution using priorities, however, REI only allows delegating rights whereas
obligations also require a form of delegation to third-parties. In addition, like KAOS,
REI is description logic-based which is not accessible to non-technical stakeholders.
Responding to this limitation will require the research and development of user inter-
faces that abstract away the language details of OWL.

2.3 Web Services

Web Services seek to promote the deployment of re-usable online services. The vi-
sion includes the ability to dynamically compose complex services from simple, dis-
tributed services. The challenge faced by service policies that describe and control
dynamic service composition is shared by at least two different industry initiatives: the
Web Services Policy Framework (WS-Policy) [18] and the Web Services Policy Lan-
guage (WSPL) [19]. WS-Palicy is extremely abstract with support for declaring gen-
eral assertions and aternatives but no explicit semantics to describe agency or fine-
grained rules. WSPL, on the other hand, is based on the eXtensible Access Control
Markup Language (XACML) which provides a rich rule writing environment [20]. In
XACML rules are built from targets, pre-conditions, and effects. The targets identify
the elements governed by the rule and the pre-conditions specify constraints on those
elements before the rule is activated. The effect is a Boolean value, either permit or
deny. While XACML has the richest semantics for expressing rules, it lacks the notion
of agency that coincides with rights, obligations and responsibilities. Furthermore, the
effects are extremely limited whereas our policy analysis to-date shows that rule ef-
fects are as complex as the pre-conditions.

The Business Process Execution Language for Web Services (BPEL4AWS) provides
semantics for representing business processes and binding them to web service de-
scriptions [21]. BPEL4WS can express simple activities and structured activities
using constructs for sequences, switches and loops. BPEL4WS also interfaces directly
to web service descriptions causing the high-level process descriptions to bind directly
to application-level function descriptions. For multi-agent systemsin general, Vidal et
al. evauate the effectiveness of BPELAWS [22]. In our approach, the ability to bind
business and application processes is necessary to demonstrate compliance.

3 Key Challenges

Organizations seeking transparent and verifiable compliance with policies face sev-
eral challenges that must be addressed at the system requirements level. We propose



four challenges that are driven by the role of organizations, their analysts, other stake-
holders, and emerging situations in policy-compliant systems.

Challenge 1. Maturing organizations must transfer their informal, rote human deci-
sions into formal, repeatable software decisions. Efficiency and predictability are two
desirable goals in policy-compliant systems. In an organization, these goals are ac-
complished through automation. In software engineering, automating business proc-
esses reguires identifying human-driven tasks that are predictable and well-understood
and formalizing these tasks into repeatable software processes. Furthermore, software-
driven processes are easier to instrument than human-driven tasks for compliance
auditing and testing.

Challenge 2. In order to formalize and audit organizational behavior, tacit knowledge
must be made explicit. Tacit knowledge refers to the unwritten experience people
acquire from new and recurring encounters. In an organization, analysts employ tacit
knowledge when interpreting and applying policies to emerging situations. These
interpretations may challenge or extend existing policies without ever being formal-
ized or providing feedback to such policies. In order to effectively audit an organiza-
tion, tacit knowledge must be captured and coordinated with policy at the moment
peopl e are encountering these new situations.

Challenge 3. Many situations are either too complex or unpredictable for automated
reasoning; requiring the integration of human-in-the-loop style decision making proc-
esses. Effective policies must be predictive of future events. As organizations expand
operations or shift focus, policies may be challenged by unforeseen encounters. For
this reason, compliance is an evolutionary process that requires continual intervention
by analysts to assure that policies are consistent across new and emerging situations.

Challenge 4. Provide minimal policy specification required to deploy software sys-
tems. An extreme aternative to minimally specified policies is a complete specifica-
tion that attempts to characterize all possible encounters. While it is desirable to have
the most robust policies possible, this extreme is idealistic and in general holds poli-
cies to a higher standard than the criteria for testing and developing software. Fur-
thermore, policy elaboration and evolution is an online process affected by real en-
counters. Complete policy specification is overly cumbersome and often impossible
given this situation. With humans-in-the-loop, minimal specification to deploy en-
courages compliance with critical policies while providing sufficient flexibility for
organizations to adapt and grow their policy infrastructure with emerging conditions.

4 Policy Use Scenarios

Two scenarios demonstrating policy authorship and enforcement are presented that
elaborate interactions between human and software agents in a policy-enforceable
agent architecture while avoiding specific implementation details. Each scenario pro-
vides insight into the requirements for a policy language and agent framework later
specified in section 5. In the following two scenarios, policies are collections of rules
and each policy contains at least one rule. Therefore, the term policy may be used
interchangeably with rule.



4.1 Policy Authorship

In the policy authorship scenario illustrated in Figure 1, policies are authored and
introduced into the policy-base. In order to ensure consistency and accountability,
each new policy must be investigated to associate source rules with derived rules and
identify and resolve conflicting policies before the policy can be distributed to agents.

Rules in a new policy may be derived from high-level rules (guidelines) or mid-
level rules in existing policies. In this case, the existing or source rule partialy justi-
fies the new rule and we must explicitly account for this association. Challenges to
rules that occur during policy enforcement may rely on these associations in order to
justify whether or not to grant exceptions. For example, chalenging a source rule
indirectly challenges all of the rules that were derived from the source rule. In addi-
tion, challenging a derived rule indirectly challenges the source rule.

Associale Source
ES —
! e

Igientity Contlict
Pricrity

'

Aequest Policy
Exceplion

yes

A

Allpw Exceplion

Distribute Pallcy

no yes /
Heject Naw Policy Sractne oy

Change

Figure 1: Policy Authorship Scenario

After associating a rule with any source rules, conflicts within a policy or between
policies must be identified. Conflicts occur when the pre-conditions in two policy
rules intersect yet their effects conflict. When no conflicts are detected, a policy is
ready for distribution. Otherwise, a conflict resolution mechanism must be applied.

Resolving a conflict between a new policy rule and an existing ruleis easily done if
one of the two rules has priority over the other. In this case, an exception is made to
the lower-priority policy. The intersection of the pre-conditions (e.g., the conflict) will
be removed from the pre-condition of the lower-priority rule. For example, consider
two rules R; and R, and their associated pre-conditions p;, p, and effects e;, e. In
addition, let R; have a higher priority that R,. If p; C p,* Aand e conflicts with e,,
then the lower priority rule R, will have new pre-conditions (p, — po). If thep; C p, =
p, then we say rule R; completely overrides rule R, in which case R, will be ineffec-



tive and should be removed from the system. In this way, the higher-priority rule is
unaffected and the source of the conflict is removed. If priorities are not maintained
between policies themselves, they must be established through online mediation be-
tween the human agents who are responsible for maintaining each conflicting policy.

It is important to clarify that policy authorities are the people responsible for main-
taining a policy during its lifetime. Policy authorities and policy authors may be dif-
ferent people and policy authorities may not have equal rights to change policies,
either. For example, an authority may be allowed to make temporary exceptions to a
specific policy on a case-by-case basis but they may not be permitted to change the
policy permanently.

4.2 Palicy Enforcement

In the policy enforcement scenario illustrated in Figure 2, everyday events occur
that must be handled by a software agent using available policy rules. In a relatively
stable environment, most events will be predictable and policies will exist to handle
them. These policies are called hard policies, since they are consistently applied and
are not susceptible to new exceptions. However, if an event does not match the pre-
condition of a policy rule it must be escalated to a human agent for evaluation. There
are other reasons an event may be escalated for evaluation by a human agent including
the need for remediation that is preferably handled by human agents.

Software Agent
N Sl
Il o[+
yes ;‘;} Authar Policy
no _|
yes Y Allow
| Exception?
|
* na
- yes
Enforce Hard ‘-/—‘J
Policy

Enforce Soit
Policy

Figure 2: Policy Enforcement Scenario

Thus the human agent may receive an escalated event for two reasons: 1) if no pol-
icy rules apply to the specific event or 2) the event was escalated in spite of an exist-



ing policy. In the first case, the human agent should author a policy to handle the event
or refer the event to an authority capable of authoring such a policy. The newly au-
thored policy will enter the system and the event will be re-evaluated in the context of
the new policy. In the second case where a policy exists, the human agent must evalu-
ate the context of the event and determine if an exception is warranted. If an exception
is undesirable, then the existing policy will be applied to the event. Otherwise, the
human agent must author an exception to the existing policy to handle the event.

Exceptions to an existing policy may be temporary such as short-duration or one-
time exceptions. For example, a policy may limit resource usage between certain busi-
ness hours to a specific purpose while an employee may need to break this policy to
complete a high priority report for another purpose. Such exceptions are instantiated
by developing a policy rule with pre-condition that identifies a subset of events match-
ing the existing rule and limited to only the events for which the exception is relevant.
The exception is handled in the same manner for resolving conflicts described in sec-
tion 4.1. The event subset includes the new event that triggered the exception but may
generalize to other events as well if the event is related to a class of exceptions. The
new rule, however, will have different effects than the existing rule and hence the
cause for requiring the exception. The rules that are more susceptible to temporary
exceptions are called soft policies.

5 Requirements

We propose requirements for a policy-enforceable agent architecture that are de-
rived from scenarios in section 4 and the analysis of privacy policies [23]. In our pro-
posed requirements, we distinguish human and software agents. Human agents are
decision makers from across an organizational hierarchy: from lower-tier business
analysts to upper-tier chief privacy and information officers. In terms of policies,
software developers are stakeholders in the development and maintenance of the sys-
tems but are not referenced by the policy per se. Software agents include application-
level software processes with abilities (functions) that send and receive specific data
objects. Human and software agents both have ahilities called actions. Tasks and ac-
tivities are descriptions of agents performing actions. Events are tasks or activities
performed in a time-relevant manner. Tasks and activities alone are considered time-
less, however. The requirements are separated into two sections: the policy language
in section 5.1 and the agent framework in section 5.2. Throughout the following re-
quirements, we provide relevant examples from legislation such as HIPAA and the
GLBA regarding information practices.

5.1 Policy Language

In a policy-enforceable agent architecture, the policy language provides the neces-
sary abstractions to coordinate policies with system functionality. The policy language
serves as an interface between various stakeholders and the runtime software compo-
nents in multi-agent systems. As an interface, the policy language is a true agent com-
munication language used by both human and software agents. The requirements
numbered PR1 through PR8 are functional requirements while the requirement PN1 is
a non-functional requirement. PR1 through PR5 are requirements for expressing



agent, object, and event-level abstractions. PR6 through PR8 are requirements that
address policy-level abstractions.

PR1: The policy language shall express activities using agents and their abilities to
affect objects and other agents through actions.

Policies govern the behavior of agents and include references to both agent capa-
bilities and the states of objects and agents. However, agents are distinguished from
objects at least by their capability to perform actions. For example, the GLBA requires
financial ingtitutions to protect information collected from individuals. In this exam-
ple, the agent collectives “financial institutions” must have the capabilities “to pro-
tect” and “to collect” the object “information.” In order to enforce specific protec-
tions, the policy language must explicitly define what information objects are col-
lected and protected and which agents are providing and collecting this information.

PR2: The policy language shall express activities for both human and software
agents including business processes.

The capability of software to implement business processes will change with
emerging technology and evolving business practices. Therefore, equally supporting
the expression of both human and software agent activities allows system designers
the flexibility to decide which business processes should be implemented by humans
versus software. Furthermore, should new technological capabilities come into exis-
tence, designers may develop a migration plan to transfer business processes from
human agents to software agents. These extensions must require only subtle changes
to policies encoded in the policy language.

PR3: The policy language shall express deontic relationships identifying agent
abilities asrights or obligations.

Effective policies attribute activities to agents as rights or obligations. Breaux and
Anton have shown that rights and obligations can be expressed in terms of actions
performed by agents [23]. Rights or permissions allow agents to perform actions while
obligations require agents to perform actions. In GLBA for example, customers have
the right to opt-out of certain information sharing practices. In addition, financial
ingtitutions are obligated not to share their customer’s financial information with non-
affiliates. Rights and obligations may be conditionally or unconditionally asserted
depending on contextual information. For example, financial institutions may not be
required to protect information collected from voluntary surveys if the survey is not
part of a business transaction.

PR4: The policy language shall express both guidelines and rules that govern
business processes.

It is important that the policy language describe guidelines and rules with a pre-
condition and desired effect. If the effect is unconditional, then the pre-condition may
be omitted. Pre-conditions and effects both include references to events and the states
of agents and objects. In HIPAA for example, the health-care provider must provide
privacy notices to patients upon request. Health-care providers include clinics as well
as emerging e-services such as online pharmacies and health insurance portals. In rule
parlance, the pre-condition would include the agent “patient” performing the action



“reguests the privacy notice.” The effect is the agent “health-care provider” perform-
ing the action “provide the privacy notice to the patient.”

PR5: The policy language shall express temporal and periodic relationships between
activities and object states.

Events describe activities and states of agents and objects with respect to absolute
and relative time. Absolute time is a fully-qualified calendar time, such as “Today at
9:00 am” or “July 25", 2005.” Relative time refers to the time between events, such as
“sometime before” — or “10 hours after” — an event. Time relative to an absolute time
is absolute such as “10 minutes before 5:00 pm” is smply to “4:50 pm.” Event de-
scriptions using tempora relations often occur in rules. In HIPAA for example, re-
quests for access to personal health information by patients must be honored within 30
days of the request. In the GLBA, new customers are permitted to opt-out of informa-
tion sharing practices within 30 days of their first transaction.

PR6: The policy language shall express application-level functions as either events
or objects.

Application-level functions are used to affect change within the system and receive
feedback on the current system state. Affecting change through rule effects requires
functions to initiate change within the system. Aligning rule pre-conditions with sys-
tem states and events requires functions to acquire these states and events before or
during the evaluation of pre-conditions. In both cases, functions must be bound to
language-level expressions. For example, if the policy dictates the agent “health-care
provider” will perform the action “communicate with the patient using SSL” then the
system must respond by encrypting the communication using the Secure-Socket Layer.
Furthermore, an object representing the current time should be bound to the system
clock or avalid time service.

PR7: The policy language shall express agent responsibilities for policy evaluation
and enforcement.

Policy evaluation includes the human abilities to author, maintain and update poli-
cies. Palicy enforcement includes both human and software agent abilities to enforce
the effects of a policy rule given a satisfied pre-condition. The language should allow
authors to clearly identify which agents are responsible for enforcement and evalua-
tion. Section 4.2 describes a scenario where both of these responsibilities are em-
ployed to complete a transaction.

PR8: The policy language shall maintain traceability between high-level policies
that justify low-level policies.

For example, there is a need to express traceability from the high-level policy “all
systems must be secure” to the mid-level policy “all systems must encrypt communi-
cation” to the low-level policy “all systems must use SSL for socket connections.” The
higher-level policies serve as the justification for deriving lower-level policies. The
justification or purpose of a policy isimportant when human agents must make policy
evaluation decisions such as whether or not to allow exceptions to existing policies or
whether to ignore new policies that conflict with existing policies.



PN1: The policy language must be human-readable and machine-enforceable.

The policy language will be used by a variety of stakeholders (technical and non-
technical) to author and evaluate policies; therefore the policy language semantics
must be accessible to both human and software agents. The language should consider
conventional means by which human agents communicate policy rules (e.g., natural
language, speech acts) in addition to standards for developing software such as Appli-
cation Programmer Interfaces (APIs) or remote-procedure calls (RPCs).

5.2 Agent Framework

The agent framework is responsible for coordinating interactions between agents,
events, and policies. The framework is intended to be light-weight by providing only
minimal support for a policy-enforceable agent architecture, while not restricting the
agents reasoning style or ahilities. In particular, these functiona requirements refer to
mechanisms that handle policy delegation, exceptions, conflicts, subscriptions, and
general accountability.

AR1: The agent framework shall support conditional delegation of rights and
obligations.

Agents may be permitted to delegate rights and/or obligations to other agents con-
ditionally due to certain events or system states. These delegations may persist indefi-
nitely or only for the duration of the event or system state. In GLBA for example,
financial services may extend access rights to their affiliates baring any opt-out re-
quests by customers. In the event of an opt-out request, the delegation of these rights
must be revoked on a per-request basis. In HIPAA on the other hand, heath-care
providers are obligated to limit access and disclosure of protected information. These
providers must also ensure that their affiliates with whom they share protected infor-
mation accept these same obligations. In this case, providers must have the ability to
delegate obligations to affiliates.

AR2: The agent framework shall support temporary policies such as short-term and
one-time exception policies.

In general, a policy agent framework must be sufficiently robust to handle a variety
of events but flexible enough to support unpredictable situations. Therefore, policies
may be adopted temporarily based on the duration of specific events, system states, or
time periods. Furthermore, exceptions to policies may be granted on a case-by-case
basis. The framework must support enforcement of temporary policies and the re-
moval of these policies upon expiration. Section 4.2 illustrates a scenario where a
temporary exception may be required to complete a transaction.

AR3: The agent framework shall support policy conflict identification and
resolution.

Conflicts occur when the pre-conditions for two policy rules match but have in-
compatible effects. Resolving such conflicts may require ignoring one of the two con-
flicting rules, re-conditioning the rules, etc. The resolution mechanism may be auto-
matic if rules have established priorities or may involve decisions from human agents



responsible for the conflicting rules. Section 4.1 illustrates a scenario when a conflict
arises and a priority-based mechanism is applied to achieve an acceptable resolution.

AR4: The agent framework shall support policy subscription for restricting the
distribution of policies and policy change notifications to authorized parties,
only.

It is a security requirement to limit the distribution of policies only to concerned
parties. For example, agents that enforce or evaluate policies are always policy sub-
scribers. Agents whose rights or obligations interact with policy rules are subscribers
to those policies as well. Agents that generate legitimate events will indirectly interact
with policies affected by these events, however, they may not be subscribers to those
policies.

AR5: The agent framework shall support traceability across policy authorship,
enforcement and evaluation.

The agent framework must record enforcement decisions by software agents and
authorship events and evaluation decisions by human agents. Policy evaluation in-
cludes both the decisions to enforce hard policies and soft policies; the latter by creat-
ing policy exceptions. Included in the traceability for each of the decisions is the abil-
ity to exercise rights and fulfill obligations. Accounting for these decisions is neces-
sary to ensure the agent architecture maintains compliance transparency for an organi-
zation.

6 Discussion and Benefits

Policy-enforceable agent systems that satisfy our requirements offer unique views
in multi-agent systems and several benefits to the sustainability of organizations. In
multi-agent systems, we highlight the benefits to understanding autonomy and trust.
For organizations, policy-enforceable systems provide stability, accountability, pre-
dictability, security and improved human-computer interactivity.

6.1 Benefitsto Multi-agent Systems

Policy-enforceable agent systems include a unique view on agent autonomy. Pol-
icy-enforceable agent systems do not remove agent autonomy nor do they reduce the
agentsto a collection of objects. Alternatively, autonomy exists within the confines of
rights, obligations, and responsibilities imposed by participating in the system. While
rights and obligations limit an agent’s abilities, an agent still may consider exercising
different rights to solve a problem in different ways — optimizing individual benefits
under the constraints of rights and obligations.

Trust in policy-enforceable agent systems concerns the trust people place in these
systems. If people can access and understand the policies that govern agent systems,
they can begin to build expectations for transactions and evaluate system performance
based on their individual expectations. Accounting for an agent system’s ability to
transparently comply with policies will further ingtill a sense of reputability among
agents with users and multi-agent systems.



6.2 Benefitsto Organizations

As the size of the policy-base increases, the interactive requirement for human
agents decreases. For each new encounter, a human agent will contribute a new deci-
sion to the policy-base. Each decision will represent a class of encounters and both
formally identify a situation (via rule pre-conditions) and determine the desirable
outcomes (via rule effects). For subsegquent encounters, the decision will face chal-
lenges that will harden it against — or soften it to support — exceptional circumstances.
As the number of encounters increases, the policy-base will grow and better character-
ize the most common transactions. As a result, human agents will be reserved for
handling only new and exceptional circumstances that occur less frequently over time.

Policy-decisions are traceable and accountable. For each encounter, a set of formal
rules are invoked based on specific details relevant to the situation. The human and
software agents responding to the encounter, the sequence of invocations, and the
details relevant to each invocation may persist for the purpose of auditing transactions.
Furthermore, the responsible agents for authoring and maintaining each rule are
quickly and easily identifiable. This level or traceability is important to understand
both why and how decisions are made in complex, dynamic multi-agent environments.

Policy structure is hardened for predictable, stable contexts while softened (made
flexible) for unpredictable, dynamic contexts. As decisions are exercised in formal
rules, challenges will be presented by other policy authors or by new and unforeseen
encounters. Decisions that are initially too broad will accept chalenges and make
exceptions to unforeseen situations. The process of introducing exceptions will soften
the origina decision, making it more robust and therefore survivable. On the other
hand, decisions that withstand challenges with few exceptions will harden. Different
stakeholders have different priorities in terms of hard versus soft policies. Regulators
will be reassured if the legislated agenda is implemented by hard policies. Businesses
and consumers will benefit from exceptions that enable the completion of more trans-
actions. Our approach allows both sets of stakeholders to understand and analyze the
trade-offs between hardening and softening the decision space through policies.

Access to policiesis restricted to relevant parties, only. Policies encode both public
knowledge, such as governmenta regulations, and private knowledge, such as tacit
knowledge and internal business practices. Since each rule includes the detailed cir-
cumstances under which it isinvoked, it is easy to associate only contextually relevant
rules with users. Furthermore, agents will only have access to palicies that they are
responsible for enforcing and maintaining. Restricting access to policies will limit the
scope of visible policies to only those required for effective decision making and fur-
ther secure organizational knowledge against unauthorized access.

The agent framework supports multi-tier organizational structure and human-in-the-
loop decision making. The framework assigns responsibility for enforcing policies to
software agents while keeping responsibility for authoring and maintaining policies
with human agents. Furthermore, the framework and policy language both maintain
relationships of authority between policies, authors, and authorities (maintainers).
These hierarchical relationships support and are motivated by the organizational struc-
ture, better aligning software processes with business processes.



7 Conclusion

Multi-agent systems that operate in regulated environments face important compli-
ance challenges. An approach to addressing these challenges involves developing a
policy-enforceable agent architecture. We propose two scenarios to elaborate issues in
policy authorship and enforcement from which we derive severa system requirements
for a policy-enforceable agent architecture. The proposal uses a unified model of
business and software processes in which human and software agents collaborate to
address key challenges and provide much-needed benefits to an organization. The
proposal is motivated by analysis of privacy policies and law that govern attractive
application areas for multi-agent systemsincluding e-commerce and health care.

8 References

1. Walker, K. “The Costs of Privacy” Harvard Journal of Law and Public Policy, v.
25, no. 1, 2001, pp. 87 — 129.

2. Earp, J. B., Poindexter, J. C., Baumer, D. L. “Modeling Privacy Values with
Experimental Economics’ In Proc. of the ACM Workshop on Privacy in Electronic
Society (WPES), Washington, D.C., USA, Oct. 2004, pp. 25 — 27.

3. Grzebiela, T. “Insurability of Electronic Commerce Risks’ In Proc. of the 35"
Hawaii Int'l Conf. on Sys. Sci. (HICSS-35), Waikoloa, Hawaii, USA, Jan. 2003,
pp. 185

4. Carabelea, C., Boissier, O., Florea, A. “Autonomy in Multi-agent Systems. A
Classification Attempt” In Proc. 1% Int’'| Workshop on Computational Autonomy,
Melbourne, Australia, Jul. 2003. LNCS, v. 2969, pp. 103 — 113.

5. Castelfranchi, C. “Commitments. From Individual Intentions to Groups and
Organizations’ In Proc. 1% Int’| Conf. on Multi-Agent Systems, San Francisco, CA,
USA, Jun. 1995, pp. 44 — 48.

6. Jain, A. K., Aparico IV, M., Singh, M. P. “Agents for Process Coherence in
Virtual Organizations’ In Comm. of the ACM, v. 42, n. 3, Mar. 1999, pp. 62 — 69.

7. Fadli, M. “Socia Interactions in Multi-agent Systems. a Formal Approach” In
Proc. Int’l Conf. on Intelligent Agent Tech. (IAT'03), Oct. 2003, pp. 240 — 246.

8. Fornara, N., Colombetti, M. “Defining Interaction Protocols Using a Commitment-
based Agent Communication Language.” In Proc. of the 2" Joint Int'l Conf. on
Auto. Agents and Multi-agent Systems, Melbourne, Australia, pp. 520 — 527.

9. Dignum, F., Broerson, J., Dignum, V., Meyer, J-J. “Meeting the Deadline: Why,
When and How” In Proc. of the 3" Workshop on Formal Approaches to Agent-
based Sys. (FAABS 04), Greenbelt, MD, Apr. 2004, LNCS, v. 3228, pp. 30 —40.

10.FIPA Policies and Domains Abstract Architecture Specification (PC0O0089B).
Published by Foundation for Intelligent Physical Agents (FIPA). Jan. 2003.

11.Beigi, M., Cdlo, S., Verma, D. “Policy Transformation Techniques in Policy-based
Systems Management” In Proc. of the IEEE 5™ Int'| Workshop on Poalicies for
Distributed Systems and Networks (POLICY’ 04), Yorktown Heights, NY, USA,
Jun. 2004, p. 13 -22.



12.Bechofer, S., van Harmelen, F., Hendler, J., Horrocks, 1., McGuiness, D., Patel-
Schneider, P. F., Stein, L. A. “OWL Web Ontology Language Reference’,
http://www.w3.0rg/TR/owl-ref/

13.Damianou, N., Dulay, N., Lupu, E., Sloman, M., “The Ponder Specification
Language,” In Proc. of the Int’| Workshop on Policies for Distributed Systems and
Networks (POLICY' 01), Bristol, UK, Jan. 2001, pp. 29-31.

14.Montanari, R., Lupu, E., Stefanelli, C. Policy-based Dynamic Reconfiguration of
Mobile-Code Applications.” IEEE Computer, v. 37, no. 7, Jul. 2004, pp. 73 — 80.

15.0déll, J., van Dyke Paranuk, H., Fleischer, M. “The Role of Roles in Designing
Effective Agent Organizations’ In Proc. 2™ Int'| Workshop on Soft. Engr. for
Large-scale Multi-agent Sys. (SELMAS 03), Portland, OR, May 2003, pp. 27 — 38.

16.Tonti, G., Bradshaw, J., Jeffers, R., Montanari, R., Suri, N., Uszok, A. “ Semantic
Web Languages for Policy Representation and Reasoning: A Comparison of
KA0S, Rei, and Ponder” In Proc. of the 2™ Int'| Semantic Web Conference
(ISWC’03). LNCS, Springer-Verlag, Sep. 2003, pp. 419 — 437.

17.Kagadl, L., Finn, T., Joshi, A. “A Policy Language for a Pervasive Computing
Environment” In Proc. of the 4™ Int'l Workshop on Policies for Distributed
Systems and Networks (POLICY’ 03), Jun. 2003, pp. 63 — 74.

18.Bggj, S, Box, D., Chappel, D., et a. “Web Services Policy Framework (WS-
Policy)” Published online by BEA, IBM, Microsoft, et a., Sep. 2004, http://www-
106.ibm.com/devel operworks/library/ws-polfram/

19.Anderson, A. H. “An Introduction to the Web Services Policy Language (WSPL)”
In Proc. Int'l Workshop on Policies for Distributed Systems and Networks
(POLICY-04), Y orktown Heights, NY, Jun. 2004, pp. 189 — 192.

20.Moses, T., ed. “eXtensible Access Control Markup Language (XACML) Version
2.0,” Dec. 2004, Published by OASIS, http://docs.oasis-
open.org/xacml/access_control-xacml-2_0-core-spec-cd-04.pdf

21.Andrews, T., Curbera, F., Dholakia, H., et a. “Business Process Execution
Language for Web Services (BPEL4AWS)”, Published by IBM, May 2003,
ftp:/lwww6.software.ibm.com/software/devel oper/library/ws-bpel . pdf

22.Vida, J. M., Buhler, P., and Stahl, C. “Multiagent Systems with Workflows.”
|EEE Internet Computing, v. 8, no. 1, pp. 76 — 82, Jan. 2004.

23.Breaux, T. D., Antdn, A. I. “Deriving Semantic Models from Privacy Policies,” In
Proc. |IEEE 6th Int'l Workshop on Distributed Systems and Networks (POLICY-
2005), Stockholm, Sweden, Jun. 2005.



