Information about Queries Obtained by a Set of Views

Foto Afrati
Nat'l Technical Univ. Athens,
Athens, Greece

afrati@softlab.ntua.gr

Rada Chirkova
NC State University, Raleigh,
NC 27695 USA

chirkova@csc.ncsu.edu

ABSTRACT

Significant research has been done on examining the prob-
lems of generating equivalent rewritings (ER) or max-
imally-contained rewritings (MCR) of queries. At the same
time, when ERs and MCRs do not exist, users can still use
views to obtain meaningful information on their queries.
Emerging applications require a study of the problem of
rewriting queries using views in a variety of new scenar-
ios. For example, in web-search applications when MCRs
may not exist, users may want to obtain a rewriting that
provides all query answers (but may contain false positives).
Even when an MCR is not available, security requirements of
other applications may require checking whether any rewrit-
ing exists for a query using a set of views expressed in the
fixed query language in which users can pose queries.

In this paper we study contained and containing rewritings
of a query using a set of views; the rewritings give a sub-
set and a superset, respectively, of the query answer. We
consider queries and views in the language of conjunctive
queries with arithmetic comparisons (CQAC queries), and
rewritings in the language of unions of CQAC queries. To
the best of our knowledge, no algorithm is known for check-
ing for the existence of MCRs for many interesting cases of
CQAC queries and views. In those cases, our results can be
used to compute some answers to a query using views —
depending on the application — even if some other answers
are missing or if false positives are obtained.

We refer to a containing rewriting that contains no false
negatives and with the minimal number of false positives
(when using a given set of views) as a “minimally containing
rewriting” (MiCR). While the running time of our algorithm
for finding MiCRs is worst-case exponential in the size of the
problem inputs, the algorithm performs well in many prac-
tical cases, due to its extensive pruning of the search space.
Our experiments show good scalability of our algorithm.

1. INTRODUCTION

Rewriting queries using views and then executing the re-
writings to answer the queries is an important technique
used in data warehousing, information integration, query
optimization, and other applications [8, 20, 22, 26, 36, 35,
12]. Previous research has focused primarily on obtaining
equivalent rewritings (ERs) that can be used to derive all
answers (see, e.g., [25, 1, 3] and references therein) or maxi-
mally contained rewritings (MCRs) that can be used to de-

Manik Chandrachud
NC State University, Raleigh,
NC 27695 USA

mnchandr@ncsu.edu

Prasenjit Mitra
The Penn. State Univ.,
University Park, PA, USA

pmitra@ist.psu.edu

rive a maximal subset of the set of query answers using given
views (see, e.g., [21, 37, 29, 32, 5] and references therein).
Various recent applications have put forth the problem of
going beyond ERs or MCRs for view-based rewritings. For
instance, when equivalent or maximally contained rewrit-
ings of a user query in terms of the available views do not
exist, then traditional query-processing engines will return
no answers at all to the query. At the same time, in many
applications, such as querying the web or mass marketing
using data warehouses, users prefer to get a superset of the
answers to the query, rather than no answers at all. In
particular, in mass marketing getting no answers to queries
means that users may lose customers. On the other hand,
in peer-to-peer networks queries are rewritten as they are
routed along a path, and the best option is to use the in-
complete information available from neighboring peers to
obtain an approximate rewriting. In such cases a seriously
restricted subset — in addition to a superset — of answers
to the query is also acceptable, as they can act as upper
and lower bounds [17] on the actual set of answers. When
security issues exist, then we want to know whether users
who have access to a set of views can obtain answers to a
secure query by using the query language available to them
to pose queries on the view schema. If this is not the case
then the set of views may be considered secure [15].

The following is a motivating example for types of rewrit-
ings that we consider in this paper.

EXAMPLE 1.1. Consider a user query Q that asks for
phone numbers of people in Raleigh, NC, such that the house-
hold income of those people is at least $70K.

Q: SELECT ResidencePhone FROM Person
WHERE City = ‘Raleigh’ AND State = ‘NC’
AND HouseholdIncome >= 70000;

Suppose we have access only to view V1, which returns phone
numbers of people with income greater than $80000. Clearly,
this view discloses some information about query Q, since
each answer to V1 is also an answer to Q. Consider an-
other view, V2, which lists only the incomes (rather than the
names, phone numbers, or other identifying information) of
people in Raleigh. If Q is a sensitive query, view V2 can
be considered a “secure” view with respect to Q because the
set of answers to V2 is disjoint from the set of answers to
the query. If users can use a more expressive language than
CQAC then view V2 may not be secure any more. However,

it is reasonable to assume that for many users the only access
to the information is via a given query language [15].

Now suppose we have access to view V3, which returns the
phone numbers of all people in Raleigh, NC. Mass-marketers
or analysts looking for terrorism suspects would accept tuples
that are not among the answers to the query (false posi-
tives), rather than lose some answers or get no answers at
all. Hence, they will be satisfied if they obtain the answers
to V3, rather than the answers to V1, because the answers to
V3 contain the answers the users are looking for. (E.g., for
mass marketing losing customers is not an option.) How-
ever, if the users had available a view V4 that returns phone
numbers of people in Raleigh with income over $60,000, then
the users would prefer to get the information from V4, rather
than from V3, to minimize the number of false positives.
In this case, view V4 is a minimally-containing rewriting
(MiCR) of the query using the view V4. In another scenario,
e.g., in peer-to-peer systems, and in the absence of an MCR
the answers obtained by the view V4 (containing rewriting)
together with the answers obtained by the view V1 (contained
rewriting) give a better idea of the real set of answers to the
query than the answers to either V4 or V1 alone. a

We study contained rewritings and containing rewritings
of a query using a set of views in the presence of arithmetic
comparisons, since in many practical applications arithmetic
comparisons have to be used. We consider queries and views
in the language of CQACs and rewritings in the language
of unions of CQACs. In presence of arithmetic comparisons
the problems of finding equivalent rewritings and MCRs are
recognized to be significantly more complex, and many cases
have remained unexplored [37, 5].

We explore the following two classes of the problem of
obtaining approximate query answers:

1. For contained rewritings, we study the decision prob-
lem of whether non-trivial rewritings exist, and de-
velop an algorithm for finding such rewritings. Clearly,
if a maximally contained rewriting can be found then
the above questions are answered. However, the ap-
proaches in the literature that address the problem of
maximally contained rewritings [29, 32] consider pri-
marily CQ queries without ACs, with very little work
on more general cases (see, e.g., [5]). Thus the prob-
lem of finding MCRs in the presence of arithmetic
comparisons remains open in the general case. The
complexity of the problem is mainly due to the more
complex containment test in the presence of arithmetic
comparisons — it is IT§ -complete [37, 38].

2. For containing rewritings, we study the decision prob-
lem of whether such rewritings exist. Ideally, the set
of answers returned by a rewriting should be mini-
mal, that is, should contain as few false positives as
possible. We call such a rewriting the minimally con-
taining rewriting (MiCR) of a query using views [13].
Intuitively, a MiCR is the analog of MCR, as it finds
all the answers to the query that are in all contain-
ing rewritings. In this sense, MiCRs give the highest
guarantee on the quality of the answers that can be
obtained, by minimizing the number of false positives
in the answers. We give a sound algorithm that finds
MiCRs. The algorithm is complete in the special case
where the “homomorphism property”! holds between

ntuitively, the homomorphism property is said to hold be-

the expansions of the rewritings and the query.
Our contributions in detail are as follows:

1. We investigate the existence-of-a-rewriting problem for
both contained and containing rewritings. For spe-
cial cases, we give decidability and complexity results
for the existence of nontrivial contained rewritings.?
Although decidability of the general problem remains
open, our results cover a much larger class of queries
and views than the class for which decidability is known
about MCRs in the literature. For containing rewrit-
ings, we prove that the problem of existence of such a
rewriting for a given query and set of views is decid-
able (in the general case), thus also showing that this
is an easier problem than the existence-of-a-contained-
rewriting problem, where decidability of the general
case is still open. We then investigate special (still
intractable) lower-complexity cases of the problem.

2. We develop an efficient heuristic algorithm to find a
nontrivial contained rewriting whenever there exists
one. The algorithm is sound and complete (a) when
the query uses only semi-interval arithmetic compar-
isons (i.e., each comparison compares a variable to
a constant), and (b) when the views have no non-
distinguished variables in their definition (the case of
full views). In the general case, the algorithm is still
sound and complete whenever it halts, but it is not
guaranteed to halt.

3. We develop an algorithm for computing a MiCR. It is
efficient, in that we prune the search space significantly
by testing views for usability and rejecting early views
that are not useful. The algorithm is sound, and is
also complete when the homomorphism property holds
[6, 23]. (When the homomorphism property does not
hold, multiple mappings may be needed to prove the
containment.)

Table 1 gives a summary of our results and contributions.

Related Work

The problem of using views in query answering [25] is rel-
evant in applications in information integration [37], data
warehousing [21], web-site design [16], and query optimiza-
tion [12, 25, 39]. Algorithms for finding rewritings of queries
using views include the bucket algorithm [18, 26], the inverse-
rule algorithm [4, 14, 33|, the MiniCon algorithm [31], and
the shared-variable-bucket algorithm [29]; see [21] for a sur-
vey. Almost all of the above work focuses on investigating
MCRs or ERs [37, 1], as it takes its motivation mostly from
information integration and query optimization. Query-
rewriting algorithms depend upon efficient algorithms for
checking query containment. It is known from existing work
on query containment [19, 23, 38] that adding arithmetic
comparisons to queries and views makes these problems sig-
nificantly more challenging.

Since we consider rewritings that may return false posi-
tives, false negatives, or both, our work has similarities with
approximate answering of queries using views (see [2, 7, 10,
30] and references therein). Approximate query answering

tween a query and its rewriting when a single mapping from
the query to the expansion of the rewriting is sufficient to
establish the containment of the rewriting in the query.
2The trivial query that returns no tuples on all databases is
contained in all queries.

Contained Rewritings Containing Rewritings
Decidability SI-CQAC or views no non-distinguished variables | CQAC homomorphism property
Complexity CQ: NP [25] CQAC homomorphism property: NP
Algorithms Finds nontrivial CR Finds MiCR
Previous Work | MCR [21, 5] MiCR [13]
Applications Data warehousing, security, privacy Mass marketing, P2P, information retrieval

Table 1: Our contributions, previous work, and applications. The algorithms are sound and complete for the
decidable cases for contained rewritings and when the homomorphism property holds for MiCR.

is useful when exact answers to the queries cannot be found,
and the user would rather have a good-quality approximate
answer returned by the system.® Lee et al [24] have consid-
ered non-equivalent query rewritings, applied to the problem
of maintaining view definitions using a quantitative estima-
tion of the quality of the relaxed query and enabling a trade-
off between performance and the quality of answers. Rather
than focusing on performance, our work considers the prob-
lem when no rewritings are possible even when computa-
tional or storage resources are not constrained.

The problem of finding containing rewritings of queries us-
ing views was introduced by Deutsch et al. [13]. In [13] the
authors consider answering queries using views via equiva-
lent, contained, and containing rewritings, in the presence of
access patterns, integrity constraints, disjunction, and nega-
tion. The paper reports complexity results, which render the
problem intractable in the general case. The language of
rewritings considered in [13] is union of conjunctive queries
with negation. Our work focuses on finding rewritings in
the language of conjunctive queries with arithmetic com-
parisons (i.e., without negation). In the absence of negation
in the language for rewritings, existence of rewritings is an
issue that we address in our paper. Also, in view of the in-
tractability results, we identify special cases where a more
efficient algorithm exists for constructing rewritings.

Other related work includes the results of Rizvi et al. [34],
where query-rewriting techniques are used for fine-grained
access control, and the work of Miklau et al. [28], which
contains a formal probabilistic analysis of information dis-
closure in data exchange under the assumption of indepen-
dence among the relations and data in a database. Related
work in security and privacy includes [27]. Calvanese et
al. [9] have discussed query answering, rewriting and loss-
lessness with respect to two-way regular path queries. In
our work, we concentrate only on query rewritings.

2. PRELIMINARIES

2.1 Queries, Containment, and Views

We consider conjunctive queries with arithmetic compar-
isons (CQAC for short), i.e., select-project-join SQL queries
with equality and comparison selection conditions. Each
arithmetic comparison (AC) subgoal C; is of the form X0Y
or X#fec,* where the comparison operator 6 is one of <, <,
>, >. We assume that database instances are over densely
totally ordered domains. A variable is called distinguished if
it appears in the query head. In the rest of the paper, for a

3In our work, we do not measure approximations using prob-
abilities or uncertainty, but the answers to the queries are
approximate in the sense that the derived answers may con-
tain false positives.

4We use uppercase letters to denote variables and lowercase
letters for constants.

query @ we denote the conjunction of all relational subgoals
in Q as Qo and the conjunction of all arithmetic compar-
isons in @ as 8. We will use the term semi-interval CQAC
(SI-CQAC) to refer to conjunctive queries with arithmetic
comparisons, where all comparisons in the query are either
one of X < ¢, X < ¢ (left semi-interval) or one of X > ¢,
X > c (right semi-interval).

DEFINITION 2.1. (Query containment) A query Q1 is
contained in a query Q2, denoted Q1 T Q2, if and only if,
for all databases D, the answer to Q1 on D is a subset of
the answer to Q2 on D, that is, Q1(D) C Q2(D). O

Chandra and Merlin [11] have shown that a CQ Qi is
contained in another CQ Q2 if and only if there exists a
containment mapping from Q2 to Q1. The containment test
for CQACs is more complicated. There are two ways to test
for containment [19, 23]; we will describe them very briefly,
for more details see, e.g., [6]. The first test for CQACs uses
the notion of a canonical database: For each relational sub-
goal p;(X;) of a query Q, a canonical database for Q has one
tuple t in the base relation P;, such that ¢ is a list of “frozen”
variables (i.e., assignments of the variables to constants) and
constants in X;. We define one canonical database for each
total ordering of the variables and constants of ()1 that sat-
isfies the ACs of Q1. The test says that a query Q1 is con-
tained in query Q2 if and only if Q2 computes the same head
tuple as Q1 on all the canonical databases of Q1.

The second containment test is as follows:

THEOREM 2.1. Q1 C Q2 if and only if the following logi-
cal implication ¢ is true:

¢:pL=p(B2) V...V uk(Ba)

where p;’s are all containment mappings from Qb5 to Q}
and 3} is a conjunction of all arithmetic comparisons in Q5.
That is, the comparisons in the normalized query’® Q) log-
ically imply (denoted “=7) the disjunction of the images
of the comparisons of the normalized query Qb5 under each
mapping ;. O

If there exists a containment mapping p; such that the right-
hand side of ¢ is reduced to only one p;(83), we say the
homomorphism property holds. It has been shown [6] that
when the homomorphism property holds, the implication
can be checked directly on queries that are not normalized.
Checking CQAC containment is less complex in that case,
because one just needs to check for the existence of one map-
ping that satisfies the implication. In Section 4 we outline
an algorithm for finding minimally containing rewritings for
cases where the homomorphism property holds.

5 An equivalent normalized version of a CQAC query Q does
not have constants or repetitions of variable names in rela-
tional subgoals and has compensating built-in equality con-
ditions.

2.2 Rewriting Queries using Views

‘We consider the problem under the closed-world assump-
tion [1] (where the views are both sound and complete, i.e.,
for a given database, each view instance stores exactly the
tuples satisfying the view definition), as well as under the
open-world assumption [1, 26] (where the views are sound,
i.e., a view instance might store only some of the tuples
satisfying the view definition).

Suppose we are given a query @, a database D, and a
set of views V = {V1,...,V;,}. We seek an answer to @ on
D using some rewriting R in terms of ¥V — that is, R is a
query defined in terms of the relation names in V. We are
considering contained rewritings both under the open-world
assumption (OWA) and under the closed-world assumption
(CWA).

We consider the following types of rewritings R of a query
Q using views V:

DEFINITION 2.2. (Rewritings)

1. a. (CWA) R is a contained rewriting of Q using V
under the CWA if and only if R(Dyv) C Q(D) for all
databases D.

b. (OWA) R is a contained rewriting of @ using V
under the OWA if and only if R(Iv) C Q(D) for all
databases D and view instances Iy such that Iy C Dy,.

2. (CWA) R is a containing rewriting of @ using V if
and only if Q(D) C R(Dy) for all D.

3. (CWA) R is an equivalent rewriting of Q using V if
and only if Q(D) = R(Dv) for all D. O

Given a query) and a set of views V, whether a con-
tained or containing rewriting of () using V exists depends
on the language of the rewriting. We consider the problem
of existence of such rewritings in the language of union of
CQAQCs. In the rest of the paper, we will assume that this
is the language of the rewritings unless otherwise stated.

ProprosITION 2.1. For queries and views that are con-
Junctive queries with arithmetic comparisons (CQAC), a
union of CQAC rewriting is a contained rewriting under the
open-world assumption (OWA) iff it is a contained rewriting
under the closed-world assumption (CWA). O

Thus, hereafter, we refer to contained rewritings under ei-
ther the CWA or OWA.
We define the expansion of a rewriting as follows:

DEFINITION 2.3. (Expansion of rewriting) For a
CQAC rewriting R in terms of CQAC views V, an expan-
sion R°*? of R is obtained by replacing each view subgoal
in R by the all the subgoals in the view definition. Fxisten-
tially quantified variables in the definitions of the views in
R are replaced by fresh variables in R*“P. For rewritings
that are unions of CQACs, the expansion is the union of the
expansions of the CQACs contained in the rewriting. o

Evaluation of contained rewritings cannot return false pos-
itives, containing rewritings cannot return false negatives,
and equivalent rewritings cannot return either false posi-
tives or false negatives. We will use the term rewriting to
mean contained or containing rewriting of a given query; we
will specify the rewriting type whenever it is not obvious
from the context.

Theorem 2.2 gives tests for whether a CQAC rewriting R
in terms of views V is contained or containing with respect
to a CQAC query Q.

THEOREM 2.2. Let Q,Vi,..., Vi be CQAC queries in
terms of base relations, and let R be a CQAC rewriting of
Q in terms of Vi, ..., Vm. Then:

1. R is a contained rewriting of Q if R**P C Q.

2. R is a containing rewriting of Q if Q@ C R**P. O

3. CONTAINED REWRITINGS

When queries contain arithmetic comparisons, it is not
easy to find an MCR of a query using views [6]; for cer-
tain languages such rewritings do not even exist. For in-
stance, for certain cases of conjunctive queries with semi-
interval arithmetic comparisons, we cannot find an MCR
in the language of unions of CQAC views, but we can find
an MCR in recursive datalog with ACs [5]. In addition,
an MCR does not exist in certain cases of CQACs for lan-
guages that are polynomially computable [1]. At the same
time, easy subcases are known; for instance, if containment
can be checked using a single containment mapping (the ho-
momorphism property), then we can construct an MCR for
a CQAC query and CQAC views [5, 6]. However, for the
general case there is no known algorithm for finding MCRs
for CQAC queries and views [5].

In this work we study finding contained rewritings for
cases where we do not know how to find an MCR. Because
any query that returns an empty answer on all databases is
contained in all queries, we are interested in finding nontriv-
ial contained rewritings — rewritings that have a nonempty
answer on at least one database.

Problem (CQAC Contained Rewriting Existence): Given
a CQAC Q, a set of CQAC views V, and a language L, is
there a nontrivial contained rewriting of @ using V in L7
(When the views and query are CQs, then we have the CQ
Contained Rewriting Existence problem.)

The language of rewritings we consider in this paper (un-
less otherwise stated) is union of conjunctive queries with
arithmetic comparisons.

3.1 Decidabillity and Complexity

Not surprisingly, deciding the existence of a nontrivial
contained rewriting turns out to be easier than computing
an MCR. In this subsection, we present decidability and
complexity results for contained rewritings.

First we look at the CQ Contained Rewriting Existence
Problem.

THEOREM 3.1. Let both the query and views be conjunc-
tive (without comparisons). Then the following hold:

1. There is a contained rewriting in the language of
CQACs iff there is a contained rewriting in the language
of conjunctive queries.

2. If, in addition, the views do not have distinguished
variables then we can check in PTIME whether there exists
a contained rewriting. O

Proor. To prove item 1, let R be a CQACs contained
rewriting. Let R’ be a conjunctive rewriting which results
from dropping the comparison subgoals of R. We will prove
that R is a contained rewriting. According to the contain-
ment test based on canonical databases, the following holds:
If we take the expansion of R and consider the canonical
database of the expansion where all variables (which are
not explicitly equated after taking the closure of the ACs)
are frozen to distinct constants, then there is a homomor-
phism A from the query subgoals to the expansion subgoals.

Homomorphism A is also a homomorphism from the query
subgoals to the expansion of R’, hence R’ is a contained
rewriting according to the containment test for CQs.

To prove item 2, observe that if all predicates of the query
appear in the views, then there is a rewriting that consists of
all views with head homomorphisms identifying all variables
is a contained rewriting. Otherwise there is no rewriting. [

Now we prove NP-completeness for the CQ case (actually
membership in NP is known [25]:

THEOREM 3.2. Let Q be a CQ query, and let V be a set of
CQ views. It is NP-complete to decide whether there exists

a nontrivial contained rewriting in the language of union of
CQs of Q using V. m|

Proor. To prove NP hardness, we reduce the CQ con-
tainment problem, which is NP complete, to the problem of
existence of a contained rewriting in the language of union of
CQACGCs of a CQAC query using CQAC views. Let Q1,Q2
be CQs; we ask whether Q2 is contained in Q1. We con-
struct a boolean query @ that includes all the subgoals of
Q1. Additionally, for each head variable X in @1, we add a
subgoal rx(X) to Q, where rx is a unique unary predicate
distinct from any other predicate appearing in Q1 or Q2.
We construct a boolean view V from @2 that includes all
subgoals of Q2 together with an additional set of subgoals
over unary predicates as follows: We consider a mapping h
from the head variables of @)1 to the head variables of Q2,
which maps variable in argument position 7 in Q1 to variable
in argument position 4 in Q2. (If there is no such mapping
then Q2 is not contained in @i.) For each distinguished
variable Y in Q2 such that Y = h(X), we add the unary
subgoal rx (h(X)) to the view V. It is easy to prove that
Q2 is contained in Q) iff there is a contained rewriting of @
using V.

If: Let Q2 be contained in Q1. Therefore, there exists
a mapping p from @1 to Q2. The mapping p maps the
subgoals in @ (inherited from Q1) to the subgoals in V' (in-
herited from Q». The mapping p also maps the " variable
in the head of Qi to the *" variable in the head of Q;
therefore for all X for which h is defined, h(X) = p(X).
By construction, y maps the additional unary predicates in-
troduced in the query @ to the unary predicates px (h(X))
introduced in the view V. Because a containment mapping
exists from the query to the body of the view, the view V'
is a contained rewriting of the query @ in the language of
CQAC (a CQ is also a CQAC with no ACs).

Only If: Let there be a rewriting of @ in the language
of CQAC's. Because V is the only view and V' is a boolean
view, we can eliminate muliple occurrences of V' in the rewrit-
ing, keeping only one copy of V. The minimized rewriting
is still a contained rewriting (CR) of (). Furthermore, the
CR has no ACs, because the view V does not have any head
variables on which the ACs can be defined. All the subgoals
of Q1 are present in). Because the additional subgoals in V'
have unique unary predicates, the subgoals in @ inherited
from @)1 map to subgoals in V inherited from Q2. Thus,
there is a mapping from the body of @)1 to that of Q2. By
construction, the head of @1 also has a mapping to the head
of Q2. Therefore, Q1 C Q2.

For membership in NP we use Theorem 3.1: It is known
from the literature [25] that for the CQ case, the problem of
checking whether there exists a contained rewriting for the
case of conjunctive query and views is in NP. [J

Now we investigate the CQAC Contained Rewriting Ex-
istence Problem. Afrati et al. [5] have proved the following:

THEOREM 3.3. Let Q be a CQAC query, and let V be a
set of CQAC wviews that do not have any nondistinguished
variables. If there is a nontrivial contained rewriting of Q
using V, then there is a nontrivial contained rewriting that
uses at most n subgoals, where n is the number of relational
subgoals in Q. Thus there is an exponential algorithm which
finds a non-trivial contained rewriting if such a rewriting
exists. The respective decision problem is in NP. a

We prove in the following theorem that the problem in
Theorem 3.3 is NP hard.

THEOREM 3.4. Let Q be a CQAC query, and letV be a set
of full CQAC views, i.e., the views do not have any nondis-
tinguished variables. Then it is NP hard to check whether a
contained rewriting exists. a

PrOOF. The reduction uses the 3-colorability problem,
where, given a graph G, the question is whether it is 3-
colorable. The reduction is as follows: Let e be the predi-
cate that defines an edge. Let query @ be a Boolean query,
whose body is the graph G. Let view V be a triangle with
all variables exported in the head and with the following
inequalities in the body:

v(@,y,2) : —e(w,y), ey, 2, e(a, 2), e(2.2), e(y, 2), ez, y),
2<2x<3,4<y<5,6<2z<T.

Observe that for view V| any non-empty rewriting will not

equate any pair of x, y, z because, e.g.,2 <z <3A4 <z <5

cannot be satisfied by any value of . The intuition is that

the expansion of any non-empty rewriting is such that the

graph of the expansion is 3-colorable.

We claim that there is a contained rewriting of the query
Q using the view V iff the graph G is 3-colorable. Observe
that @ has no ACs. Thus, if there is a contained rewriting
R, then any mapping, say h, from the query to R®*? that
proves containment can be used to produce a mapping from
Q@ to the body of one view. The reason for that is that
R;™ (which is R**P without the ACs) can be mapped to
the body of a single view, i.e., to a triangle. This mapping
can be composed with h to map @ on the triangle. This
proves that the graph is 3-colorable. For the other direction,
if the graph is 3-colorable then the single view is a contained
rewriting. [

Finally, consider the case where the query and views are
conjunctive with semi-interval arithmetic comparisons (ACs).
In this case, if there is a contained rewriting, then there is
one that uses only semi-interval ACs and is of bounded size.
Thus, the CQAC Contained Rewriting Existence Problem
is in EXPTIME in this case.

THEOREM 3.5. Let query @ and views V be conjunctive
queries with semi-interval ACs. If there is a nontrivial con-
tained rewriting of Q wusing V, then there is a montrivial
contained rewriting that (1) uses only semi-interval ACs on
constants that are contained either in view definitions or in
the query, and (2) uses at most a number of relational sub-
goals that is exponential in the size of the query and views
(actually, only the maximum arity of the head of a view
definition appears in the exponent). Thus, there is a double
exponential time algorithm that finds a non-trivial contained
rewriting if such a rewriting exists. The respective decision
problem is in NEXPTIME. a

The following theorem summarizes the complexity results:

THEOREM 3.6. 1. The problem of CQ contained rewriting
existence is NP-complete (Theorem 3.2).

2. If the query and views are CQs and, in addition, views
do not have nondistinguished variables, then we can find a
contained rewriting in PTIME if one exists (Theorem 8.1).

3. If the views have no nondistinguished variables, then
the problem of CQAC contained rewriting existence is NP
complete (Theorems 3.3 and 3.4).

4. If the query and views are CQs with semi-interval arith-
metic comparisons, then the problem of CQAC contained
rewriting existence is in NEXPTIME (Theorem 8.5). O

Thus, even decidability in the general case of CQAC query
and views and UCQAC rewritings remains open.

3.2 Reducing the CQAC case to the CQ case

In the remainder of this section, for the case of CQAC
query and views we work toward an efficient heuristic al-
gorithm that (1) checks whether there exists a nontrivial
contained rewriting, and (2) produces such a rewriting. Be-
fore presenting the algorithm, we develop some results that
will help us establish the efficiency of the algorithm.

We present Proposition 3.1: (1) It establishes a prelimi-
nary test for existence of a rewriting; the test is easier to
apply, since it concerns CQ query and views (that is, with-
out arithmetic comparisons). (2) Proposition 3.1 states that
if a rewriting exists, then a “simple” rewriting also exists
and is easier to find. Intuitively, the preliminary test as-
serts that we can construct CQ query and views, such that
the non-existence of a rewriting of the CQ query using the
CQ views implies the non-existence of a rewriting for the
original query and views.

Let Q = Qo + (8 be a query, and let V be a set of views
Vi=Vio+ Bi, i = 1,...,k. Consider query Qo compris-
ing the relational subgoals of @, and a set of views Vo with
views as in V but defined using only the relational subgoals
in their bodies. Can we prove the following: If there exists
a contained rewriting of @) using V), then there exists a con-
tained rewriting of Qo using Vo7 Unfortunately, this result
does not hold; here is a counterexample:

EXAMPLE 3.1. For a query @ and view V,

q() 1= p(X, X).
o(X,2) - p(X,Y), r(2), X<Y,Y<Z
a contained rewriting is r() : — v(X,Z2), Z < X.
But by removing all the ACs, we obtain
q/() . p(va) and UI(X7 Z) B p(X’ Y)7 T(Z)
where a rewriting of Q' using V' is not possible. O

At the same time, with a slight modification in the defini-
tion of the views 1V we can take advantage of such a remark.
To define Vo, we need this definition from [6]:

DEFINITION 3.1. (Exportable view variable) A nondis-
tinguished variable X of a view V is exportable if and only
if there exists a head homomorphism h (a mapping from the
set H of head variables of V' to H that maps a head variable
in H to either itself or to another variable in H), such that in
the expansion of h(V), X can be equated to a distinguished
variable in h(V') by either using the ACs in the view or by
adding ACs on distinguished variables in h(V). O

For example, variable Y in the view definition in Exam-

ple 3.1 is an exportable variable, because if we equate X = Z

then the ACs in the view definition imply ¥ = X = Z.
Now, we define the set of CQ views V), and state our result.

PROPOSITION 3.1. Let Q = Qo + B be a query and V be

a set of views V; = Vio+ i, i =1,...,k. Consider a set of

views Vo with views as in' V but (1) defined using only their

relational subgoals, and (2) with additional head variables,

those that are exportable. Suppose there exists a contained
rewriting of Q using V. Then:

1. there ezists a contained rewriting of Qo using Vo, and

2. there exists a contained rewriting of Q using V with

ACs that define a total order on its variables and with

relational subgoals that define a contained rewriting of

Qo using V. O

The proof of Proposition 3.1 is based on containment map-
pings for Qo and Vo, which (the mappings) are made possible
by using the exportable variables of the views V in the heads
of the views V.

Note that although we restricted the search space to rewrit-
ings with a total order on their variables and constants, we
have not eliminated the source of some complications. As
illustrated in the following example, we cannot take advan-
tage of the homomorphism property that simplifies CQAC
query containment and rewriting generation.

EXAMPLE 3.2. Consider a query Q and its rewriting R
using views Vi and Va:

Q() :_p(X74)7 X <4
v1(X) :— p(3,X).

v2(X) = p(X,4).

r() = (X)), va(X), X <4.

There exists no single containment mapping from the ex-
pansion r*P() : —p(3,X),p(X,4),X < 4 to the query that
will satisfy the conditions of Theorem 2.1. Thus, the homo-
morphism property does not hold. The intuitive reason is
that if X < 4, then the subgoal of the query will map to the
p(X,4) subgoal of the rewriting, whereas if X = 4, then the
subgoal of the query will map to the p(3,X) subgoal of the
rewriting. O

3.3 Algorithm

We now outline an algorithm for checking containment
of rewritings in queries; the algorithm uses properties of
containment tests to prune the search space by (1) test-
ing for contained rewritings of Qo using Vo and halting if
none exists, and then (2) considering containment checks in
a systematic way, so that it does not repeat unnecessarily
checks that can be deduced from the previous iterations.
The complexity of the algorithm is doubly exponential. The
algorithm is sound and complete for a broad class of queries
and views, in fact for all cases stated in Theorem 3.6.

In conjunctive queries, shared variables express a join
condition, that is, a constraint that two attributes should
have the same value. When checking for containment of
two queries, we have to ensure that this constraint is satis-
fied in the contained query. We define the shared-variable
condition (SV condition) as follows: If one occurrence of
a nondistinguished query variable X maps to a nondistin-
guished view variable Y, then all occurrences of X must map
to Y. First, the algorithm tests all views for candidacy in
a contained rewriting (CR). A view is a candidate view if it
covers at least one relational subgoal of the query, and the

shared-variable condition is satisfied. In all its stages, the
algorithm uses only candidate views.

The first stage of the algorithm checks whether there ex-
ists a CR of Qo using Vy. If there exists none, then the
algorithm returns “no”. Otherwise, it starts with any CR
Ry of Qo using Vy. Then it considers all rewritings with the
relational subgoals of Ry and with added ACs that define a
total order on the variables, for all total orders.

The algorithm starts with a contained rewriting of Qo
using Vo, say with k& view subgoals. Then stage 2 of the
algorithm checks for containment all rewritings with k& +
1 view subgoals, stage 3 checks all rewritings with k + 2
view subgoals, and so on. In each stage of the algorithm,
the containment test is pruned as follows: In stage n, the
algorithm considers all rewritings of stage n — 1, say R is
such a rewriting. R comes with a set of canonical databases
(of R’s expansion) that did not pass the containment test.
For all candidate views not yet added to R, the algorithm
forms rewritings R, where each R’ is R with an additional
subgoal that comes from one of the candidate views — for
each view we try all additional subgoals with all different
head homomorphisms. Then the algorithm checks each R’
for containment. The correctness of the algorithm is based
on the following observation: Adding a new view to the
rewriting does not break containment on those canonical
databases that did pass the test in the previous stage.

The following is an example that explains how we find the
view set Vo and why the exported variables are critical in
the definition of Vy (and consequently the role they play in
the rewriting of the original query and views).

EXAMPLE 3.3. We refer to Example 3.1. For Qo we
have qo() : — p(X,X). For Vo we have vo(X,Z,Y)

— p(X,Y), r(Z), because variable Y is exportable. That
is, Y can be equated to a distinguished variable by adding
an equality between distinguished variables, in this case by
adding the equality X = Z.
A contained rewriting of Qo using Vo is:
(0 :—w(X,Z X).

Hence, since there is such a rewriting (of Qo using Vo), the
algorithm does not halt and continues to find a rewriting of
Q using V. The algorithm considers only rewritings with a
total order among the variables and constants in the rewrit-
ing. In this case, X = Z is a total order among the variables
of V' that produces a rewriting of Q) using V. Hence, the al-
gorithm finds the rewriting

70 —v(X,2), X=2. |

THEOREM 3.7. Let a query and all views be CQAC.

(1) If the algorithm halts, it produces a nontrivial con-
tained rewriting if one exists.

(2) For conjunctive queries with semi-interval arithmetic
comparisons, or when views have no nondistinguished
variables, the algorithm produces a nontrivial contained
rewriting if one exists. 0

In the absence of the homomorphism property, for CQACs
there exists no bound on the size of the rewriting. Afrati et
al. [5] have shown that the language of CQACs is not suf-
ficient to express an MCR (recursive Datalog may be nec-
essary). Our algorithm shown above considers rewritings
of iteratively increasing sizes; the lack of a bound indicates
that the algorithm is not guaranteed to halt.

4. CONTAINING REWRITINGS

In this section we discuss containing rewritings of queries
using views. We consider containing rewritings that are safe,
i.e., each variable in the head of a containing rewriting oc-
curs in at least one subgoal in the body of the rewriting. We
investigate decidability and complexity of the problem of ex-
istence of a safe containing rewriting. We develop a pruned-
MiCR algorithm that finds minimally containing rewritings
in an efficient and scalable way.

DEFINITION 4.1. (Minimally containing rewriting) A
query @' is a minimally containing rewriting of a CQAC
query Q using a set of CQAC views V if and only if: (1) Q'
s a containing rewriting of Q, and (2) there exists no con-
taining rewriting Q" of Q using V, such that the expansion
of Q" properly contains the expansion of Q'. O

Notice that containing rewritings and MiCRs make sense
only under the closed-world assumption (CWA), i.e., given
any instance I of a viewset V, I = V(D) where D is the
database of base relations. When the instance is only guar-
anteed to be a subset of V (D), we refer to it as the open-
world assumption (OWA), under which the evaluation of
a rewriting may not produce all the database tuples that
satisfy the query. In this case, generating MiCRs is not
useful. The reason is, even though the expansion of the
rewriting may contain the query, due to the nature of the
views, we are not guaranteed that the rewriting will generate
all the answers that the query computes on D. We could
call such rewritings “overlapping rewritings”. (Informally,
an overlapping rewriting returns on evaluation a subset of
the query answers, and may also return additional tuples —
false positives.) We do not address the problem of generat-
ing overlapping rewritings in this paper.

A MiCR of a CQAC query using CQAC views may have
to be a union of CQACs, as the following example shows.
In this example there is no containing rewriting that is a
CQAC.

EXAMPLE 4.1. Consider a query Q and views Vi and
Va, all defined as follows:

) - p(X,Y), X <10,V < 10.
vi() - p(X,10), X <20.
v2() - p(X,Y), X <20,Y < 10.

The rewriting R : (g() : —v1())U(g() : —v2()) is a containing
rewriting of Q, because X there is less restricted than in the
query and q’s Y is covered by the union of the views. |

We define the language C = U{_; C;, a union of four
sub-languages, which is a subclass of CQACs and has good
properties with respect to checking query containment. We
denote by cLSI (oLSI, respectively) the closed (open, re-
spectively) left-semi-interval arithmetic comparisons, and
by c¢RSI (oRSI, respectively) the closed (open, respectively)
right-semi-interval arithmetic comparisons.

DEFINITION 4.2. (Language C) We say that an arith-
metic comparison is of SI type 1,2,3, or 4 if it is an cLSI,
oLSI, cRSI, or oRSI comparison, respectively.

A query Q belongs to the class C;, i =1,2,3,4, if Q is a
CQ that uses solely arithmetic comparisons of SI type i.

We define C=U}{_; C; and say that a query is in class (or
language) C and of type @ if it belongs to class C;. a

Klug [23] has shown that when queries are expressed in
language C and are both of the same type then the homo-
morphism property holds [23].

‘We now present a theorem, which says that when queries
and views are in one of the C;’s, then there exists a contain-
ing rewriting that is also in one of the four languages.

THEOREM 4.1. For a query Q and a set of views V, where
Q and the views in V are defined using relational predicates
from a set P, and such that both QQ and V are expressed
using the same sublanguage in C, the following holds: If
there ezists a containing rewriting R of Q using V), such that
R is a union of CQAC queries, then there exists a query R’
(in the sublanguage in C) that is a containing rewriting of
Q using V. m]

4.1 Decidability and Complexity

We now examine the complexity of computing containing
rewritings.

THEOREM 4.2. Given a CQAC query and a set of CQAC
views, it is decidable whether there exists a contaning rewrit-
ing that is a union of CQAC queries. Furthermore, there
exists an algorithm for computing a MiCR. a

The following lemma helps prove Theorem 4.2.

LEMMA 4.1. Given a CQAC query q and a set of CQAC
views V. If there exists a union-of-CQAC containing rewrit-
ing R of q using V', then there exists a containing rewriting
R’, which is contained in R and has at most a doubly expo-
nential number of relational subgoals. a

We now turn our attention to special cases. We show
that finding a containing rewriting of a query using views
expressed using one of the four languages in C; indicated
above is NP complete.

THEOREM 4.3. Given (1) a query Q whose relational pred-
icates belong to a set of predicates P, (2) a set of views V
such that all views in V' have relational predicates only from
P, and given that (3) @Q and V are expressed using the same
language C; in C, it is NP complete to decide whether there
ezists a containing rewriting of Q using V. a

The proof that the problem is in NP uses the result of
Lemma 4.2; NP-hardness is by reduction from CQ contain-
ment and is a consequence of the following theorem.

THEOREM 4.4. Let Q be a CQ query, and let V be a set
of CQ views. It is NP hard to decide whether there exists a
containing rewriting in the language of union of CQACSs of
Q using V. a

For safe containing rewritings, the following lemma holds:

LEMMA 4.2. If there exists a safe CQAC rewriting R of a
CQAC query Q, Q C R, and if the homomorphism property
holds between R*“P? and Q, then there exists a safe CQAC
rewriting R’ of Q, Q C R', such that the number of views in
R’ is less than or equal to the arity of the head of Q. m|

PROOF SKETCH. Suppose the rewriting R exists. We try
to get a bound on the size of R. There exists a containment
mapping p from R®*P to @, because the homomorphism
property holds between R and Q. We obtain R’ from R as
follows: (1) drop all arithmetic predicates from R, and (2)
for each distinguished variable X of R, choose exactly one

view V such that X is in the head of V' in (the body of) R;
drop all other views in the body of R. By construction, R’
has n views in its body, where n is the number of unique
distinguished variables of R. We conclude the proof by not-
ing that the number of unique distinguished variables of R
cannot exceed the arity of the head of). Note that R’ is
CQ, rather than CQAC, because the arithmetic predicates
from R were dropped. Hence, the right-hand side of the im-
plication being empty, one containment mapping is enough
to show containment. []

For all Boolean queries, the query ¢ : —, which says that
q is always true, is a safe containing CQAC. Note that this
is consistent with the theorem above, because the number
of variables in the head of ¢ and the number of subgoals in
its body is the same (zero).

4.2 The pruned-MiCR Algorithm

In this subsection, we describe a sound and efficient algo-
rithm, the pruned-MiCR algorithm, to find the MiCR. We
assume that the queries and views are expressed using the
same language C; in C'. However, in general, the algorithm
is sound and complete when there exists a rewriting of the
query in the language of CQACs such that the homomor-
phism property holds between the query and the expansion
of the rewriting.

It turns out that a MiCR is unique up to equivalence as
expansions.

THEOREM 4.5. Under the CWA, and for queries and views
in the same language C; in C, MiCR is unique up to equiv-
alence as expansions. o

ProOF. Let R1 and Rz be two MiCRs of a query Q ex-
pressed in the language of union of CQACs that are not
equivalent as expansions. The expansions of R; and Ry do
not contain each other; otherwise they would not be min-
imally containing. For each canonical database D; of Q,
consider the rewriting r1; in R; and 72; in Ra that pro-
duces a tuple, ¢, on D; that is the same as that produced
by Q. Consider the mappings from r1; and r2; to the con-
stants in D;, which produce the t. Because the constants in
D; are obtained by freezing the variables in the query, there
exists a mapping from r1; and 72; to Q. Replace distin-
guished variables in r1; and 72; by the query variables they
map to. Construct a rewriting r; by conjoining the bodies
of r1; and r2;. D; corresponds to a total order among the
query variables and constants. Add all the ACs (including
variable-equality constraints) in this total order to r; wher-
ever possible, i.e., on all query variables that appear in r;.
If the ACs indicate that two distinguished query variables
are equal, make them equal in the head of r;.

It is easy to show that this constructed rewriting is con-
tained in both R; and Rz — thus rendering R; and Ra
not minimal. This is a contradiction that concludes the
proof. [

In the remainder of this section we explain the pruned-
MiCR algorithm (see Appendix A), which is guaranteed to
find a minimal MiCR, when queries and views are expressed
using the same language in C. We define a minimal MiCR
such that if a subgoal is deleted from the rewriting, then
it is no longer a MiCR. The algorithm first finds all views
whose bodies contain some query subgoals, and then con-
structs buckets for query subgoals and the views. A rewrit-
ing is constructed by conjoining one view subgoal from each

bucket. Each bucket in the algorithm represents a pair of
subgoals: a query subgoal and a subgoal in the expansion of
the view covering it. We clarify some points of the pruned-
MiCR algorithm in the examples in the remainder of this
section.

Unlike algorithms for determining MCRs, in the pruned-
MiCR algorithm a non-distinguished view variable is allowed
to map to a distinguished query variable. In order to deter-
mine the minimally containing rewriting, we need to keep
the views that cover the queries the most “tightly”. We
formalize the definition of “tightness” with respect to cov-
ering in the following definition, and illustrate the intuition
behind the definition in Example 4.2:

DEFINITION 4.3. (Dominates) Let there be a mapping
w1 from a view subgoal g(X) to a query subgoal g(Z), and a
mapping pe from another view subgoal g(Y) to g(Z).
(9(X),acl) is said to dominate (g(Y),ac2), where acl,ac2
are sets of arithmetic comparisons, iff there is a mapping p
from X toY but not vice versa,® which respects the following
conditions (here, X; is the i*" variable in X):

(] Zf X, = Xj, then ,U/(Xl) = ,U,(Xj),’
e if i1 maps a non-distinguished variable X; to a distin-
guished variable Z;, then Y; is also non-distinguished;

o ac2 = p(acl); and
e if X; = c, where c is a constant, then Y; = c. O

If none of the conditions above are satisfied, then the first
(subgoal, ac) combination is said to dominate the second
one. The “dominates” relation can be extended to two sets,
SS1 and SS2, of view subgoals covering the same set of query
subgoals, by checking that each subgoal (g1,acl) in SS1
dominates the corresponding subgoal (g2, ac2) in SS2. Two
view subgoals are said to correspond if they cover the same
query subgoal in their respective mappings.

The second condition states that a distinguished variable
that maps to a distinguished query variable dominates a
non-distinguished variable that maps to the same query vari-
able. When comparing distinguished (non-shared) variables
and non-distinguished variables, either is not dominated by
the other, and we have to choose based on the other vari-
ables. In Example 4.2 we illustrate the details of bucket con-
struction and dominance checking, techniques that provide
the early pruning for the pruned-MiCR algorithm. Note that
in our algorithm, a bucket corresponds to a (view-subgoal,
query-subgoal) pair instead of corresponding to only query
subgoals as in the traditional algorithms for determining
contained rewritings. We keep the view subgoal that cov-
ers a query subgoal, so that we know how tightly the view
subgoal covers the query subgoal, and use it to check for
dominance, as shown below.

EXAMPLE 4.2. Let:

O(A) (AL B,B), q(4)
v1() — p(X1, Yl ,Z1)
v2(X2) — p(X2 Y2,72)
v3(X) p(X,Y, Y)
vA(X4,Y4) :— p(X4,V4,v4)
v5(Y) —4v)

The algorithm ﬁrst considers vl and inserts the view sub-
goal v1() into the bucket (p(A, B, B),p(X1,Y1,Z1)) corre-
sponding to the first query subgoal and the view subgoal pair.

SFor minimization purposes, we keep all the “domination
equivalent subgoals”.

Next it considers v2. The view subgoal p(X2,Y2,Z2) has
a mapping to p(A, B, B). The subgoal p(X2,Y2,72) domi-
nates p(X1,Y1, Z1) primarily because X2 is a distinguished
variable mapping to a distinguished query variable but X1
is a non-distinguished variable. A bucket for (p(A, B, B),
p(X2,Y2,72)) is created, and v2(A) is inserted into the
bucket.

Next, v3 is considered, and a bucket is created for the pair
(p(X,Y,Y),p(A, B, B)) corresponding to the subgoal in v3
and the first subgoal in Q. The algorithm compares the new
bucket with the existing buckets (i.e., the bucket with v2(A)).
The subgoal p(X,Y,Y) dominates p(X2,Y2, Z2) by virtue of
being more contained. Thus, we delete the existing bucket,
create a bucket for (p(A, B, B),p(X,Y,Y)), and insert v3(A)
into the bucket.

Next v4 is considered. Y4 1is distinguished but does not
map to a shared or distinguished variable. Therefore, it does
not dominate p(X,Y,Y). Thus, in the existing bucket we
wmsert v4 and now have v3(A),v4(A, B).

Finally, v5 goes to the bucket corresponding to the second
query subgoal, i.e., for the (query-subgoal, view-subgoal) pair
(a(A),q(Y)).

Thus, we have two rewritings:

Q(A) - v3(A)v5(A)
Q(A) - vj(A,B), v5(A)

either of which could be chosen as the “minimal” MiCR. O

In order to be a MiCR, a rewriting must satisfy the follow-
ing properties: (a) it has to cover as many query subgoals as
possible (it is ok not to cover some query subgoals as long as
they are not “coverable” by any existing view), (b) a query
subgoal has to be covered in a dominating way (i.e., in a
less relaxed way, explained below), and (c¢) homomorphism
h from a view subgoal to the query has to be “legal”, i.e.,
there is a homomorphism from the view to the query, such
that h is its sub-homomorphism.

Even though the algorithm tries to find one MiCR, in
general we have to check all the view subgoals to find the
tightest cover. For example, if some view Vi covers a query
subgoal p(X, X, X) using a view subgoal whose expansion
provides p(X,Y, X), then the algorithm must check whether
another view, say Vs, covers the query subgoal more tightly
(dominates) — that is, using a view subgoal whose expan-
sion provides p(X, X, X). If such a view V, exists, we can
eliminate the bucket corresponding to the query subgoal
p(X, X, X) and view subgoal p(X,Y, X) that has the view
Vi. Once we have found the tightest possible cover for
p(X, X, X), the algorithm can be altered not to look for
any other view subgoals, provided we do not seek the min-
imal MiCR. If we seek the minimal MiCR, the algorithm
must look at all views, because an unexamined view might
be covering all the subgoals in the query. A view covering
all query subgoals in the tightest possible manner renders
all other views redundant, because it is, by itself, a MiCR.

THEOREM 4.6. If a query QQ and views V are expressed
using the language C, then the algorithm in Appendiz A
finds a MiCR of Q using V. a

4.3 Scalability of the Pruned-MiCR Algorithm

Deutsch et al. [13] have remarked on a way to produce Mi-
CRs using a chase-based method. However, the rewritings

Coverage range 0 to 2

—+—CB-MiCR
—#— Pruned-MiCR

350

300

250

200

150

Time in milliseconds

100

.<<<<—-—<<""“""—/<<4'44_—4'<4<4<'
50 :i:,,g—»»~"‘/'/.</—<‘

02 04 06 08 1 12 14 16 18 2 22
Average number of view subgoals covering each query subgoal

Figure 1: Scalability of the pruned-MiCR algorithm.

produced using the method are not minimal. As an alterna-
tive to the pruned-MiCR algorithm, we consider the Chase-
Backchase MiCR algorithm (CB-MiCR). The CB-MiCR uses
chase to produce a MiCR and then it uses backchase to pro-
duce a minimal MiCR.

In Section 5 we report our experimental results on com-
paring the scalability of pruned-MiCR and CB-MiCR. The
scalablity of pruned-MiCR stems from early pruning of dom-
inated views. Consider Example 4.2. The CB-MiCR algo-
rithm would first generate the rewriting
Q(A) : —v1(),v2(A),v3(A),v4(A, B),v5(A)
using the chase method, before performing a costly min-
imization (using backchase) that removes redundant sub-
goals. In contrast, the pruned-MiCR algorithm prunes dom-
inated views v1 and v2 early and produces only those can-
didate rewritings that do not include them. Furthermore,
as an additional optimization, pruned-MiCR does not con-
sider the candidate rewriting v3(A),v4(A, B),v5(A). The
reason is, v3 and v4 cover the same query subgoal with sim-
ilar “tightness” (i.e., they do not dominate each other) and
therefore, only one of them needs to appear in the rewrit-
ing. As remarked earlier, we keep both in the same bucket
only for minimization purposes. As shown in Section 5, by
pruning early the pruned-MiCR, algorithm outperforms the
CB-MiCR algorithm significantly.

5. EXPERIMENTAL RESULTS

We have performed experiments to compare the execution
time of the pruned-MiCR algorithm with that of the CB-
MiCR algorithm. We measured the scalability of the two
algorithms in the number of views.

Similarly to the pruned-MiCR algorithm, the CB-MiCR
algorithm finds all possible p; (h(V))’s from views in V to the
query Q.7 After this stage, the pruned-MiCR algorithm uses
its novel strategy to distribute the view subgoals into buck-
ets, and then constructs a minimal MiCR by ensuring that
each bucket is represented in the rewriting. It tries all sub-
sets of the set of possible p;(h(V))’s; candidate rewritings
are formed by taking the conjunction of the subgoals in any
such subset. The CB-MiCR algorithm considers the same

"This is equivalent to chasing Q with forward constraints
obtained from the views in V. Each homomorphism on a
view head from V that gets added to the chase result of
Q@ is analogous to some pu;(h(V)) obtained by the MiCR
algorithm.

Coverage range 0 to 10

——CB-MICR
—=- pruned-MiCR

25000

20000

15000

10000

Time in milliseconds

5000

S il

02 06 1 14 18 22 26 3 34 38 42 46 5 54 58 62 66 7 74 78 82

0

Average number of view subgoals covering each query subgoal

Figure 2: Speedup offered by the pruned-MiCR al-
gorithm over the CB-MiCR approach.

candidate rewritings. However, in the absence of the MiCR-
buckets it is forced to perform an expensive containment test
for each candidate, to check if the expansion of the candi-
date is contained in the expansion of the full MiCR (i.e., in
the conjunction of all p;(h(V))’s). Our experiments demon-
strate that the pruned-MiCR algorithm speeds up rewriting
generation, since it eliminates containment checks by do-
ing an early pruning in the process of generating a minimal
MiCR.

Both algorithms were implemented in Java and compiled
to executables. All experiments were run on a 2 GHz Pen-
tium M processor running Windows XP Professional with 1
GB RAM and a 60GB hard drive. The run-times were aver-
aged over twelve executions, after discarding the minimum
and maximum readings.

We studied the effect of increasing the number of views for
chain queries. Figure 1 shows the results for a chain query
with ten subgoals. It shows that the execution time of the
CB-MiCR algorithm increases rapidly with an increase in
coverage (i.e., the average number of view subgoals covering
each query subgoal). Note that if each query subgoal is cov-
ered by at most one view, the pruned-MiCR’s early pruning
is not used because there are no views that dominate each
other. However, when there are multiple views covering a
query subgoal, the advantages of the early pruning are sub-
stantial. The execution speedup resulting from the use of the
pruned-MiCR algorithm is evident even at the low coverage
values of up to 2. Our experiments with other query shapes
such as star queries, cycles and complete queries show that
it is the increase in the coverage that causes a rapid deterio-
ration in the performance of the CB-MiCR algorithm. Con-
sequently, the choice of the queries and views may adversely
affect its performance. For example, with star queries and
views, the CB-MiCR algorithm had a run-time of around
3000ms for a coverage of just 1.5, while the pruned-MiCR
algorithm took less than 100ms.

Figure 2 shows that the pruned-MiCR algorithm executes
efficiently even for high coverage values. This is in sharp
contrast to the CB-MiCR algorithm, which takes more than
20000ms even for coverages below 5. The increase in the
run-time of the pruned-MiCR algorithm at higher cover-
age values is marginal and stems from the increased time
required for forming the MiCR-buckets. In practice, con-
structing rewritings in the pruned-MiCR algorithm takes
time that is about linear in the number of buckets, which

'Full' MiICR
E'Minimal' MiICR

Number of joins in rewriting
S

S |

1 2 3 4 5 6 7 8 9 10 1" 12
Number of available views to construct rewriting

Figure 3: Comparison of the number of joins in the
full and minimal MiCR rewritings.

Number of Number of joins

available Query/Views Full Minimal | Coverage
views MiCR MiCR

Q() :- p(A, B), r(B, C), s(C, D), t(D, E)

1 vl() :- p(A, B) 0 0 0.25

2 v2() :- r(B, C) 1 1 0.50

3 v3() :- p(d, B), r(B, C) 2 0 1.00

1 va() :- s(C, D) 3 1 1.25

5 v5() :- £(B, C), s(C, D) 4 1 1.75

6 v6() :- t(D, E) 5 2 2.00

7 v7() :- s(C, D), t(D, E) 6 1 2.50

8 v8() :- r(B, C), s(C, D), t(D, E) 7 1 3.25

9 v9() :- u(L, M) 7 1 3.25

10 vi0() :- p(A, B), £(B, C), s(C, D), t(D, E) 8 0 4.25

11 vI1() :- s(C, D), u(L, M) 9 0 4.50

12 v12() :- r(B, C), t(D, E) 10 0 5.00

Figure 4: Example query and views.

does not slow down significantly the overall algorithm ex-
ecution. The CB-MiCR algorithm spends significant time
(potentially exponential in the number of subgoals in the
rewriting) on testing each candidate rewriting for contain-
ment in the full MiCR. In our experiments, we observed that
typically even a single containment test took more time than
the entire bucket-forming procedure over all views in the in-
put. The scalability of the pruned-MiCR algorithm makes it
useful in finding minimal MiCRs for practical cases involving
a large number of applicable views.

Any new view that is made available to generate a MiCR
for the query, may generate 0 or more u;(h(V))’s. Every
time that a p;(h(V)) is made available: (i) the number of
joins in the MiCR increases by 1, to attain a new value of
say n, and (ii) the number of joins in the minimal MiCR in-
creases by 1, decreases by any amount, or remains the same,
to take on some value between 0 and n. In the worst case,
the maximum value that n can take is one less than the
sum, over all query subgoals, of the number of u;(h(V))’s
covering that subgoal. The number of joins, both in the full
and minimal MiCR, depends upon the number of views in
the input. In general, a plot of the number of joins versus
the number of available views may take any shape subject
to conditions (i) and (ii) above, and normally the number of
joins in a minimal MiCR is significantly lower than the num-
ber of joins in the full MiCR. In particular, once all query
subgoals have been covered, the number of joins in a min-

imal MiCR can only decrease or remain the same, whereas
the number of joins in the full MiCR go on increasing with
every new p;(h(V')). Figure 3 illustrates these ideas for the
simple example of Figure 4.

In summary, we have shown that (i) the pruned-MiCR
algorithm outperforms the CB-MiCR algorithm significantly
due to its early pruning, and that (ii) the pruned-MiCR
algorithm scales gracefully with an increase in the number of
views and is able to generate rewritings within a reasonable
time even for a very large number of views.

6. CONCLUSIONS

In this paper we explored the problems of existence of con-
tained and containing rewritings in the language of union of
CQACs for queries and views that are CQACs. We out-
lined complexity results and proposed a sound algorithm
to determine the existence of a contained rewriting of a
query using views. The algorithm is also complete when
the query and views are expressed using conjunctive queries
with semi-interval arithmetic comparisons and when we use
views that do not have nondistinguished variables. We also
examined the problem of generating minimally containing
rewritings using views. We showed that the decision prob-
lem is NP-hard in general and is NP-complete when the
query and views are expressed using a class of conjunc-
tive queries with semi-interval arithmetic predicates. We
introduced a pruned-MiCR algorithm that extends a chase-
based algorithm, using backchase to derive minimal MiCRs.
The algorithm is sound and complete for queries and views
expressed in a subclass of conjunctive queries with semi-
interval arithmetic comparisons, as well as for other cases
where the homomorphism property (see Footnote 1) holds
between the expansion of the rewriting and the query. By
pruning dominated views early, the pruned-MiCR algorithm
outperforms the CB-MiCR algorithm (that has to perform
an exponential minimization step) significantly in practice,
and scales well for reasonably sized queries. For both con-
tained and containing rewritings, similar problems remain
open for a more general class of queries and views than the
classes we considered here.

7. ADDITIONAL AUTHORS
8[. REFERENCES

1] S. Abiteboul and O. Duschka. Complexity of answering queries
using materialized views. In PODS, pages 254-263, 1998.

[2] S. Acharya, P. Gibbons, V. Poosala, and S. Ramaswamy. The
Aqua approximate query answering system. In SIGMOD, pages
574-576, 1999.

[3] F. Afrati, R. Chirkova, M. Gergatsoulis, and V. Pavlaki.
Finding equivalent rewritings in the presence of arithmetic
comparisons. In EDBT, pages 941-960, 2006.

[4] F. Afrati, M. Gergatsoulis, and T. Kavalieros. Answering
queries using materialized views with disjunctions. In ICDT,
pages 435-452, 1999.

[5] F. Afrati, C. Li, and P. Mitra. Answering queries using views
with arithmetic comparisons. In PODS, 2002.

[6] F. Afrati, C. Li, and P. Mitra. On containment of conjunctive
queries with arithmetic comparisons. In EDBT, 2004.

[7] B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample
selection for approximate query processing. In SIGMOD, pages
539-550, 2003.

[8] R. Bayardo, W. Bohrer, R. Brice, A. Cichocki, J. Fowler,

A. Helal, V. Kashyap, T. Ksiezyk, G. Martin, M. Nodine,

M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikrishnan,

A. Unruh, and D. Woelk. InfoSleuth: Semantic integration of
information in open and dynamic environments. In SIGMOD,
pages 195-206, 1997.

(10]

(11]

(12]

(13]

[14]
[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(28]

(26]

[27)
[28]

(29]

(30]

(31]
(32]
(33]
(34]
(35]
(36]
(37]
38]

(39]

D. Calvanese, G. Giacomo, M. Lenzerini, and M. Vardi.
View-based query processing: On the relationship between
rewriting, answering and losslessness. In ICDT, pages 321-326,
2005.

K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim.
Approximate query processing using wavelets. In VLDB, pages
111-122, 2000.

A. Chandra and P. Merlin. Optimal implementation of
conjunctive queries in relational data bases. ACM STOC,
pages 77-90, 1977.

S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim.
Optimizing queries with materialized views. In ICDE, pages
190-200, 1995.

A. Deutsch, B. Ludéscher, and A. Nash. Rewriting queries
using views with access patterns under integrity constraints. In
ICDT, pages 352-367, 2005.

O. Duschka and M. Genesereth. Answering recursive queries
using views. In PODS, pages 109-116, 1997.

W. Fan, C. Chan, and M. Garofalakis. Secure XML querying
with security views. In SIGMOD, pages 587-598, 2004.

D. Florescu, A. Levy, D. Suciu, and K. Yagoub. Optimization
of run-time management of data intensive web-sites. In VLDB,
pages 627-638, 1999.

A. Fuxman, E. Fazli, and R. Miller. Conquer: Efficient
management of inconsistent databases. In SIGMOD, pages
155-166, 2005.

G. Grahne and A. Mendelzon. Tableau techniques for querying
information sources through global schemas. In ICDT, pages
332-347, 1999.

A. Gupta, Y. Sagiv, J. Ullman, and J. Widom. Constraint
checking with partial information. In PODS, pages 45-55, 1994.
L. Haas, D. Kossmann, E. Wimmers, and J. Yang. Optimizing
queries across diverse data sources. In VLDB, pages 276-285,
1997.

A. Halevy. Answering queries using views: A survey. VLDB
Journal, 10(3):270-294, 2001.

Z. Ives, D. Florescu, M. Friedman, A. Levy, and D. Weld. An
adaptive query execution engine for data integration. In
SIGMOD, pages 299-310, 1999.

A. Klug. On conjunctive queries containing inequalities.
JACM, 35(1):146-160, 1988.

A. Lee, A. Koeller, A. Nica, and E. Rundensteiner.
Non-equivalent query rewritings. In International Database
Conference, Hong Kong, July 1999.

A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava. Answering
queries using views. In PODS, pages 95-104, 1995.

A. Levy, A. Rajaraman, and J. Ordille. Querying heterogeneous
information sources using source descriptions. In VLDB, pages
251-262, 1996.

G. Miklau. Confidentiality and Integrity in Data Exchange.
PhD thesis, University of Washington, 2005.

G. Miklau and D. Suciu. A formal analysis of information
disclosure in data exchange. In SIGMOD, pages 575-586, 2004.
P. Mitra. An algorithm for answering queries efficiently using
views. In Proceedings of the Australasian Database
Conference, 2001.

V. Poosala, V. Ganti, and Y. loannidis. Approximate query
answering using histograms. IEEE Data Engineering Bulletin,
22(4):5-14, 1999.

R. Pottinger and A. Halevy. MiniCon: A scalable algorithm for
answering queries using views. VLDB Journal, 2001.

R. Pottinger and A. Levy. A scalable algorithm for answering
queries using views. In VLDB, 2000.

X. Qian. Query folding. In ICDE, pages 48-55, 1996.

S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Extending
query rewriting techniques for fine-grained access control. In
SIGMOD, pages 551-562, 2004.

D. Theodoratos and T. Sellis. Data warehouse configuration. In
VLDB, 1997.

J. Ullman. Information integration using logical views. In
ICDT, pages 19-40, 1997.

J. Ullman. Information integration using logical views.
Theoretical Computer Science, 239(2):189-210, 2000.

R. van der Meyden. The complexity of querying indefinite data
about linearly ordered domains. In PODS, pages 331-345, 1992.
M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, and

M. Urata. Answering complex SQL queries using automatic
summary tables. In SIGMOD, 2000.

APPENDIX

A. PSEUDOCODE FOR MICR

The pseudocode of the algorithm for MiCR is given in this
optional appendix.

Input : CQAC Q, Set of CQAC Views V
Output: minimal MiCR of Q using views V

begin

—

end

for each v,v' € V do
if v and v’ are equivalent then
| Keep only one of v,v’

for each view v in V do
for each containment mapping u; from the core subgoals in the body of v to @Q do
Construct h(v) by replacing each distinguished variable in v with p; (V)

ac «— null

acwview — AC(h(v))

for each ac; € AC(Q) do

if all variables in ac; appear in h(v) then
L ac_view <« ac_view A ac;

if AC(Q) = pi(acview)) then
for each subgoal g in Q that h(v) covers do

Let p; map g; in exp(h(v)) to g
{ SS is the set of query subgoals covered by the view for which a bucket is being constructed. }
SS«—g
for each non-distinguished view variable that p; maps to a non-distinguished, shared query variable Y
do

| Add all subgoals in @ that Y appears in and that appears in the range of p;(h(V)) to SS

{ project(ac, g) outputs only those arithmetic comparisons in ac whose variables appear in g }
Let ac; = project(acview,SS)
create_bucket — true

for each Bucket(S;,ac;) covering SS do
if (S;,ac;) dominates (S;,ac;) then
{ (S}, ac;) is redundant }

| delete Bucket(S;,ac;)

else
if (S;,ac;) dominates (Sj,ac;) then
{ (S:,ac;) is redundant, do not need to do anything }
create_bucket < false
L break
else
if (S;,ac;) and (S;,ac;) are equivalent then
{ (Si,ac;) and (Sj, ac;) are equivalent, no need to create a new bucket }
create_bucket — false
Insert h(v), ac; into Bucket(S;, ac;)

if create_bucket == true then
create Bucket(SS, ac;) covering g
| insert h(v), ac into Bucket(SS, ac;)

{ Now we have a set of buckets and a set of view subgoals that cover each bucket. }
Run a minimum set cover algorithm to select a set of view subgoals such that all buckets are covered.

{ Constructing one rewriting is enough because it is a MiCR. }
Construct a rewriting by taking a conjunction of the selected views and their associated arithmetic predicates.

