JINGNI LI, RADA CHIRKOVA, AND YAHYA FATHI

AN IP MODEL FOR THE VIEW SELECTION PROBLEM (Technical Report)

December 7, 2004

Operations Research Program, North Carolina State University, 2004©

Abstract:

A commonly used and powerful technique for improving query response time over large databases is to materialize frequently asked queries. The problem is to select an appropriate set of views, given a limited amount of storage resources. The contribution of this project is the integer programming model that is developed to solve the view selection problem. Given a list of queries and a lattice, return the definition of the materialized views. Moreover, the view selection problem can be compared with the UFL and k-Median problem that are well defined and analyzed in IP area.

In this project, there are many computation components besides the analysis work. A lot of instances with different size of the IP model are solved by using mathematical programming software package. Then the LP relaxation of the problem gives strong average lower bound for the IP problem. Further more, Greedy algorithm is used to solve the problem and shows good performance.

1. Introduction

Decision support system involves complex queries on large databases. A common and powerful query optimization technique is to materialize some queries instead of computing them from raw data each time. But we can not materialize all the queries when the storage space is limited. Thus it is critical to select an appropriate set of views to materialize to improve the performance of frequent and important queries. The dependency among the views is defined by the lattice. Suppose a list of queries and a lattice in database are already given, the goal of the project is to develop an efficient integer programming model for the view select problem in the case that each query can be answered by one qualified view in the lattice framework.

The project report is organized as follows. In Section 2, we introduce the IP model to represent the view selection problem in mathematical way. In Section 3, we present the data structure for each node of view in the lattice. In Section 4, we solve several instances of the IP with quite different sizes by mathematical programming software package AMPL/CPLEX and do the sensitivity analysis experiments on the value of b. In Section 5, we compute the lower bound for the IP problem by solving its LP relaxation. In Section 6, we implement the greedy algorithm to the view selection problem and compare the result with those got from exact method. Section 7 compares the view selection problem with UFL and k-Median problems in IP that have been well developed. Finally, Section 8 summarizes the results in this project and plans some further work in the future.

2. Integer Programming model

In this project report, we skip the work about how to generate the lattice but concentrate on the optimization part. Given the tables in the large relational database, a lattice framework can be constructed to express dependencies among views. A query can be answered by any one of its ancestors in the lattice that includes the raw data and itself. Assume that the lattice based on the database and the set of queries to be answered are already given. The objective is to materialize a subset of right views in the lattice to minimize the time cost to answer the required queries subject to the storage space constraints. The materialized views must be precomputed and stored on disk, and the storage space of a view is set to be linear to the number of rows in the view. The time to answer a query is taken to be equal to the storage space occupied by the view from which the query is answered.

There are n views in the lattice and m queries to be answered. The input is the cost vector associated with each view, the queries to be answered and the storage space limit, while the output is the views that need to be materialized.

2.1 Parameters and Variables

Declare the parameters of this IP:

i : Index of views in the search space $i = 1$ to n

j : Index of queries $j = 1$ to m

Let a_i be the number of rows in view *i*.

Let b be the storage space limit.

Let c_{ij} be the cost to answer query *j* by using view *i*.

if view i can used to answer query j otherwise $\mu_{ij} = \left\{ \begin{array}{c} u_i \\ v_j \end{array} \right\}$ $c_{ii} = \begin{cases} a & \text{if } a \neq b \neq a \end{cases}$ $=\begin{cases} \frac{n}{\infty} & \text{if } n \neq 0 \end{cases}$

Define the variables of this IP:

Let x_i if view i is materialized otherwise \sim \sim \sim \sim \sim \sim \sim $=\begin{cases} 1 & \text{if } \\ 0 & \text{if } \end{cases}$ Let 1 if we use view i to answer query j $y_{ij} = \begin{cases} 0 & \text{otherwise} \end{cases}$ $=\left\{\begin{array}{cc} 1 & \cdots \\ 0 & \cdots \end{array}\right\}$

2.2 Integer Programming Model

Formulate the IP model:

Mininmize

, *ij ij i j c y* ∀

Subject to:

$$
\sum_{i=1}^{n} a_i x_i \leq b
$$
\n
$$
\sum_{i=1}^{n} y_{ij} = 1 \quad \forall j
$$
\n
$$
y_{ij} \leq x_i \quad \forall i, j \text{ where } c_{ij} \neq Int
$$
\n
$$
x_1 = 1
$$
\n
$$
x_i = 0 \text{ or } 1 \quad \forall i
$$
\n
$$
y_{ij} \geq 0 \quad \forall i, j
$$

The first constraint is the storage constraint which limits the total number of rows in the materialized views to be no more than the current storage space. The second set of constraints guarantee that each query must be answered by any one view in the lattice. The third set of constraints shows that no query can be answered be view j if view j is not materialized. For each i, considering only those views that can be used to answer query j, where $c_{ij} \neq Inf$, decreases the number of constraints. The fourth constraint indicates the existence of the raw data. The left constraints are binary and sign constraints.

2.3 Example

In this part, we show a small example to verify our IP model.

Given the lattice of Example 4.1 in Page 13 of Ullman's paper in the following Figure 1,

Figure 1: Example lattice with space costs

We can get the cost matrix as follows.

Assume the objective queries to be answered are all the nodes in the lattice. Set the cost to be equal to 500 that is five times the cost of the raw data if there is no edge between i and j. Suppose we can only materialize three more views except the raw data. Then set the storage space constraint becomes that the number of materialized views is equal to 4 including the raw data.

Solve the IP problem using AMPL/CPLEX and get the same solution as that in that paper. The solution indicates that in order to attain the minimal cost to answer all the 8 queries, we should materialize view 2, 4, 6 (corresponding to b, d, f in the lattice graph) besides the raw data and thus achieve the optimal cost of 420. The code file for this example is attached to the end of the report.

3. Data Structure

In this section, we analyze the data set file that comes from the real world. The data about the lattice that comes from the realistic world contains two columns. Each row in the data file that corresponds to a node in the lattice has a view ID and a view size.

The view size here is taken to be the number of rows in the view. Given the workload of the number of attributes, the structure of the lattice and dependency among the views are fixed. The only variation is the view size associated with each node in the lattice. We define the data structure of each node, which can be used to express the relationship among the views and can be tracked back to the definition of the derived views once we get the solution of the IP model.

Suppose the workload of the attributes from the database is K. The number of nodes in the lattice is 2^K and it increases exponentially as the number of attributes increases. For each node in the lattice, let the binary vector define the characteristics whether or not each attributes is used to aggregate the tuples in database. It is equal to 1 if the attribute has the characteristics at this node and 0 otherwise. Then each node can be express by a 0-1 vector and the dependency can be derived expressively from this kind of data structure. A view in the lattice can be computed directly from its ancestor if there is dependency relationship between them. In the example shown in Table 1, we compare each element in any pair of vector E and F. If there exists any element that is equal to 1 in E while the corresponding element in F is 0, then view F can not be used to answer view E as shown.

View	View ID View Definition
	1. 0. 1
	1.0.0

Table 1. Dependency expressed by binary vector

The evaluation cost to answer query j by using view i is taken to be storage cost of view i if query j can be answered by view i and infinity otherwise. Following the above criteria, the cost matrix to answer a list of objective queries can be computed and transformed to the input of the IP model. Moreover, we can transform the binary vector of each node to decimal that can be used as the index of views. Thus the view ID is taken to be consecutive decimal integer that starts at 0 and ends at $2^K - 1$. After solving the IP instance, the solution that is in decimal form can be transformed back to the definition of views in binary format.

4. Experiments by exact method

In realistic world, the total space available to store the materialized views is usually smaller than the cost of the objective queries. Otherwise we can precompute all the queries in advance and store them on disk, and then there is no need to optimize this view selection problem. Moreover, the available storage space is no more than five times than the raw data because we would rather not spend that much to store those materialized. There is a tradeoff between the cost and the efficiency during the decision process.

4.1 Solve three instances of different workload.

Given the lattice, we can get the input for the IP model in section 2. The structure of the parameters and variables for the three instances is shown as follows in Table 2. The cardinality of vector A is smaller than the number of nodes in the lattice because we skip those nodes that can not be used to answer anyone in the query list and those views have been taken to be zero in the dataset file. Then the number of rows in the cost matrix C is taken to be the same as that in A and the number of columns in C is equal to the cardinality of the query set. We use Matlab to write the input data file for the IP model and then use AMPL/CPLEX to solve the IP instances. The timing of each workload instance is shown in the following Table 3, in the unit of the system CPU seconds.

Table 2. Sizes of the problem

Workload	Matlab	AMPL/CPLEX Total Time	
View	0.22s	0.05s	0.27s
View 13	20.91s	3.04s	23.95s
View 15	391.20s	18.64s	409.84s

Table 3. Timing of Matlab and AMPL/CPLEX

Given three realistic instances of different workload size which is 7, 13 and 15, we can solve them by AMPL/CPLEX by setting a reasonable storage space limit b.

Let R denote the number of rows in the raw data.

Let W denote the total number of rows in the queries in the objective list.

Set $b = \min\{R + \beta W, \theta R\}$, where $0 \le \beta \le 1, \theta > 1$.

We solve the three instances for $\beta = 0.3$, $\theta = 3$ in Table 4, where b is taken to be the value in the reasonable range. The result shows that the views that should be materialized are those indexes with x equal to 1, and each query j is to be answered by view i with y equal to 1.

View workload	b	Optimal Cost	X	Y
View_7	702709	1347820	x[i] [*] :=	$y[i,j] :=$
			17 1	17 17 1
			88 -1	88 88 1
			112 1	112 112 1
			127 ₁	1275 1
				1 127.7
				1 127 69
				12781 1
View_13	669194	1264190	x[i] [*] :=	$y[i,j] :=$
			88 1	88 88 1
			112 1	112 112 1
			912 1	1 912 912
			2050 1	2050 2050 1
			6656 1	6656 6656 1
			8191 1	8191 593 1
				8191 2368 $\mathbf 1$
				8191 7936 1
View_15	737056	1522810	x[i] [*] :=	$y[i,j] :=$
			224 1	224 224 1
			2848 1	2848 2848 1
			8194 1	8194 8194 1
			26624 1	26624 26624 1
			32767 1	32767 152 1
				1 32767 3201
				1 327678832
				32767 31232 1

Table 4. Results of solving three instances

4.2 Sensitivity Analysis on b

Intuitively, the optimal cost decreases as the storage space increases. If we have limited space that can only store the raw data, then every query must compute directly from the root node and the evaluation cost to answer all the queries is the number of the queries times the cost of the raw data. If we have space to store all the queries precomputed, there is no optimization issues in this case and the total evaluation cost is simply the summation of the cost of all the queries.

In Table 4 as follows, we do the sensitivity analysis on b for the view-7 and view-13 workload instances. Given the same query list as in section 4.1, as the storage space limit increases in the above range, the optimal cost decreases step piece wise. Unless there is more space available that is large enough to hold one more materialized query, the evaluation cost remains the same for the given objective query list. As shown in Table 5 and 6, the first column b is the storage space limit. The first value b takes is the number of rows in the raw data and the last value it takes is the cost of the raw data plus the total cost of the queries. Since the query list is short in the given instances, the total cost of the queries never exceeds the threshold of five times the raw data. The second column is the optimal objective value of the IP model for the given b. The third column corresponds to X in the model which is the optimal solution that defines the index of the materialized views. The rest columns correspond to Y in the model that defines each query in the list should be answered by which view. As we can see from the tables and the figures below, the optimal cost decreases

piece wise as the value of b increases. Within the range in each piece, the objective value and the optimal solution remain the same. They only change when the value of b grows big enough to hold another possible materialized view.

b	cost	sol	5	$\overline{7}$	17	69	81	88	112
299814	2098698	127	127	127	127	127	127	127	127
326674	1802697	112,127	127	127	127	127	127	127	112
353533	1544080	88,112,127	127	127	127	127	127	88	112
380393	1544080	88,112,127	127	127	127	127	127	88	112
407253	1544080	112,120,127	127	127	127	127	127	120	112
434113	1544080	112,120,127	127	127	127	127	127	120	112
460972	1347815	17,88,112,127	127	127	17	127	127	88	112
487832	1347815	17,88,112,127	127	127	17	127	127	88	112
514692	1347815	17,88,112,127	127	127	17	127	127	88	112
541551	1347815	17,88,112,127	127	127	17	127	127	88	112
568411	1347815	17,88,112,127	127	127	17	127	127	88	112
595271	1347815	17,88,112,127	127	127	17	127	127	88	112
622131	1347815	17,88,112,127	127	127	17	127	127	88	112
648990	1347815	17,88,112,127	127	127	17	127	127	88	112
675850	1347815	17,88,112,127	127	127	17	127	127	88	112
702710	1347815	17,88,112,127	127	127	17	127	127	88	112
729570	1347815	17,88,112,127	127	127	17	127	127	88	112
756429	1344186	17,81,88,112,127	127	127	17	127	81	88	112
783289	1344186	17,81,88,112,127	127	127	17	127	81	88	112
810149	1344186	17,81,88,112,127	127	127	17	127	81	88	112
837008	1344186	17,81,88,112,127	127	127	17	127	81	88	112
863868	1344186	17,81,88,112,127	127	127	17	127	81	88	112
890728	1344186	17,81,88,112,127	127	127	17	127	81	88	112
917588	1344186	17,81,88,112,127	127	127	17	127	81	88	112
944447	1344186	17,81,88,112,127	127	127	17	127	81	88	112
971307	1344186	17,81,88,112,127	127	127	17	127	81	88	112
998167	1344186	17,81,88,112,127	127	127	17	127	81	88	112
1025026	1344186	17,81,88,112,127	127	127	17	127	81	88	112
1051886	1343013	5, 17, 81, 88, 112, 127	5	127	17	127	81	88	112
1078746	1343013	5,17,81,88,112,127	5	127	17	127	81	88	112
1105606	1343013	5, 17, 81, 88, 112, 127	5	127	17	127	81	88	112
1132465	1343013	5, 17, 81, 88, 112, 127	5	127	17	127	81	88	112
1159325	1343013	5,17,81,88,112,127	5	127	17	127	81	88	112
1186185	1343013	5, 17, 81, 88, 112, 127	5	127	17	127	81	88	112
1213044	1343013	5, 17, 81, 88, 112, 127	5	127	17	127	81	88	112
1239904	1343013	5, 17, 81, 88, 112, 127	5	127	17	127	81	88	112
1266764	1343013	5, 17, 81, 88, 112, 127	5	127	17	127	81	88	112
1293624	1343013	5, 17, 81, 88, 112, 127	5	127	17	127	81	88	112
1320483	1343013	5, 17, 81, 88, 112, 127	5	127	17	127	81	88	112
1347343	1342994	5,7,17,81,88,112,127	5	7	17	127	81	88	112
1374203	1342994	5,7,17,81,88,112,127	5	7	17	127	81	88	112
1401063	1342994	5,7,17,81,88,112,127	5	$\overline{7}$	17	127	81	88	112

Table 5. Sensitivity analysis results on b for view-7 instance

Table 6. Sensitivity analysis results on b for view-13 instance

Figure 2. Sensitivity analysis on b for view-7 instance

Figure 3. Sensitivity analysis on b for view-7 instance

4.3 Variation in the query list

As we can see in section 4.1, in the solution of the three instances, some queries in the list are answered by themselves and the others are answered by the raw data. None of the materialized view except the raw data is used to answer more than one query. The reason here is that there is only small number of elements in the objective query list and there is no dependent relationship among those queries. Suppose there are more queries in the objective list, there may be some materialized view that can be used to answer more than one view. In order to further check the validity of our IP model, we also do some experiments by varying the query list for the view_7 and view_13 instances as shown in the following Table 7 and 8. The first column b is the storage space limit. The first value b takes is the number of rows in the raw data and the last value it takes is the cost of the raw data plus the total cost of the queries. The second column is the optimal objective value of the IP model for the given b. The third and fourth columns are related to the LP lower bound that we will discuss in the next section. The fifth column corresponds to X in the model which is the optimal solution that defines the index of the materialized views. The rest columns correspond to Y in the model that defines each query in the objective list should be answered by which view. The objective query list changes in each instance in the following tables.

For example, in sixth instance of the view_7 experiment, when b equals to 836345, View 49 is used to answer query 17 and 49, and View 120 is used to answer query 88 and 120. And in last instance of the view_13 experiment, when b equals to 547176, View 120 is used to answer query 88, 112 and 120, View 3078 is used to answer query 2050, 2054, 3074 and 3078, View 3110 is used to answer query 2082, 2086, 3106 and 3110, View 4464 is used to answer query 368, 4208 and 4464. These instances indicates that some of the materialized views other than the raw data can be used to answer more than one queries in the list if there is dependency among the query list.

Table 7. Variation in the query list for view_7 instance

Table 8. Variation in the query list for view_13 instance

5. LP relaxation and Lower Bound

The linear programming relaxation can give a lower bound of the IP problem. If solving the LP relaxation gives integer solution, the IP problem can be simple solved by its LP version. Otherwise, the result of objective value of the LP defines a lower bound for the IP problem and it can be derived that the optimal value of the IP is no smaller than that of the LP problem.

In Table 9 and 10, we get the lower bound given by the LP relaxation for the same range of b in section 4.2. As we can see in the following tables, the LP lower bound is very close to the optimal value of the IP problem most of the time. We also compare the LP lower bound with the optimum in Table 7 and 8 when we do the sensitivity analysis for the variations on the queries. Linear programming relaxation provides good lower bound in all the instances and the ratio of the lower bound to the optimum is ninety-nine percent for most of the cases. The distance between the LP lower bound and the optimal value varies as the value of b changes. Because in the LP problem, X can take any value between 0 and 1, and then the knapsack constraint, which is the first constraint of the storage limit in the model, is always binding. While in the IP problem, X is binary variables and the knapsack constraint is not active sometime and there is some space left that is not big enough to hold one more useful materialized view. Thus the optimal value of the LP problem is continuous while the optimal value of the IP problem is step piece wise as b changes within the range.

b	cost	cost-LP	Lower Bound rate
299814	2098698	2098698	1
326674	1802697	1658018	0.919743029
353533	1544080	1527573	0.989309492
380393	1544080	1476663	0.956338402
407253	1544080	1425753	0.923367313
434113	1544080	1374843	0.890396223
460972	1347815	1347661	0.999885741
487832	1347815	1347332	0.999641642
514692	1347815	1347002	0.999396801
541551	1347815	1346673	0.999152703
568411	1347815	1346344	0.998908604
595271	1347815	1346015	0.998664505
622131	1347815	1345686	0.998420406
648990	1347815	1345357	0.998176308
675850	1347815	1345028	0.997932209
702710	1347815	1344698	0.997687368
729570	1347815	1344370	0.997444011
756429	1344186	1344139	0.999978425
783289	1344186	1344034	0.99990031
810149	1344186	1343928	0.999821451

Table 9. Sensitivity Analysis and LP Lower Bound for view_7 instances

837008	1344186	1343823	0.999743336
863868	1344186	1343717	0.999664476
890728	1344186	1343612	0.999586361
917588	1344186	1343506	0.999507502
944447	1344186	1343401	0.999429387
971307	1344186	1343295	0.999350528
998167	1344186	1343190	0.999272412
1025026	1344186	1343084	0.999193553
1051886	1343013	1343012	0.999999255
1078746	1343013	1343011	0.999998511
1105606	1343013	1343009	0.999997022
1132465	1343013	1343007	0.999995532
1159325	1343013	1343006	0.999994788
1186185	1343013	1343004	0.999993299
1213044	1343013	1343002	0.999991809
1239904	1343013	1343001	0.999991065
1266764	1343013	1342999	0.999989576
1293624	1343013	1342997	0.999988086
1320483	1343013	1342995	0.999986597
1347343	1342994	1342994	1
1374203	1342994	1342993	0.999999255
1401063	1342994	1342992	0.999998511
1427922	1342994	1342992	0.999998511
1454782	1342994	1342991	0.999997766
1481642	1342994	1342990	0.999997022
1508501	1342994	1342990	0.999997022
1535361	1342994	1342989	0.999996277
1562221	1342994	1342988	0.999995532
1589081	1342994	1342987	0.999994788
1615940	1342994	1342987	0.999994788
1642800	1342986	1342986	1

Table 10. Sensitivity Analysis and LP Lower Bound for view_13 instances

Figure 4. Sensitivity analysis and LP lower bound for view-7 instance

Figure 5. Sensitivity analysis and LP lower bound for view-13 instance

6. The Greedy Algorithm

Suppose we are given a lattice with space costs associated with each view. The objective queries to be answered and the dependency relationship among the nodes of view in the lattice are also given. The objective is to materialize a right set of views to get the optimal or near-optimal cost to answer the given queries in reasonable time and the total space to store these precomputed views should be within the storage limit. The evaluation cost of a view in the lattice is taken to be equal to the number of rows in the view.

6.1 Algorithm outline

Let $A(v)$ be the cost of view i. Let Q be the objective queries to be answered. Given a set of materialized views S, let \overline{S} denote the complementary view selection space. Let $C(S)$ be the cost to answer Q by utilizing the materialized views in S. Suppose also that there is a limit b on the storage space, including the raw data, let $b(S)$ be the space left after set S is stored. Let $B(v, S)$ the benefit of view v relative to S after selecting some set S of views including the top view. $B(v, S)$ is computed as the difference between $C({v, S})$ and $C(S)$. At each step of the iteration, the view v^* that can maximize the positive benefit in the current step is selected if $A(v^*)$ is no more than the remaining storage space. Let D be the search space of all qualified views. Observe that for a given set of objective queries, the number of materialized views is no more than the number of objective queries since each query is to be answered by any one view in the lattice.

The iteration stops where there is no enough available space to hold any one more view or the number of selected materialized view reaches the number of queries.

Now, we can define the Greedy Algorithm for the view-selection problem as follows. Step 0: Initialization.

 $S = \{raw data\};$

Step 1: Stopping.

If
$$
\underset{v \in S}{Min} \{A(v)\} \le b(S)
$$
 and $|S| < |Q|$, go to step 2. Otherwise, stop.

Step 2: Local Optimization.

Choose view v such that

$$
v = \arg \max_{v \in \overline{S}, \ 0 < A(v) < b(S)} \left\{ \frac{B(v, S)}{A(v)} \right\} \text{ where } B(v, S) > 0.
$$

Then update $\{v, S\} \rightarrow S$ and go to step 1.

6.2 Solve the three instances by greedy algorithm

Using the above greedy algorithm and code it into Matlab function , we can solve the three instances with the same parameter and variable definition in section 4.1. Set $b = \min\{R + \beta W, \theta R\}$, where $0 \le \beta \le 1, \theta > 1$.

We solve the three instances for $\beta = 0.3$, $\theta = 3$ in Table 11 by greedy algorithm

Table 11. Results of solving three instances by greedy algorithm

Although the greedy algorithm gives the same results in the three instances as we get by exact method solved by AMPL/CPLEX in section 4.1, there is no guarantee that it is always the case. For a counterexample as shown in Table 12, We solve the view_7 instance for other value of b and find that the result given by the greedy algorithm is not optimal. The ratio may depend on several factors including the lattice structure, the query list and the value of b. We leave this direction of research for future work.

Table 12. Non-optimal results of view_7 instance by greedy algorithm (GA)

View workload		Optimal Cost	Cost given by GA	X(optimal)	X(GA)
View 7	971307	1344186	1346642	$x[i] [^*] :=$	$x[i] [^*] :=$
				17	51
				81	17 1
				88 1	88 1
				112 ₁	112 ₁
				127	127

7. Comparison with UFL and k-Median problem

As we know, Uncapacited Facility Location problem (UFL) and k-Median problem have been well developed in IP research area and there are a lot of efficient algorithms related to these two problems. We review some basic idea about these two problems as follows.

UFL Problem is defined as follows.

Given:

- *n* Potential facility locations
- *m* Clients

j f Fixed cost of opening a facility at location *j*

 c_{ij} Cost of serving client *i* from facility *j*

 y_j Binary variable designating whether facility *j* is open

 x_{ij} Binary variable designating whether client *i* is assigned to facility *j*

The IP model for UFL problem is as follows.

Minimize $z = \sum_{j=1}^{n} f_j y_j + \sum_{i=1}^{n} \sum_{j=1}^{n}$ *n m n* $\sum_{j=1}^{\infty} J_j Y_j + \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} c_{ij} \alpha_{ij}$ $z = \sum f_i y_i + \sum f_i x_i$ $i=1$ $i=1$ $j=$ $=\sum f_i y_i + \sum \sum c_i x_i$

Subject to

$$
\sum_{j=1}^{n} x_{ij} = 1 \quad \forall i
$$

$$
x_{ij} \le y_j \quad \forall i, j
$$

$$
x_{ij}, y_j = 0 \text{ or } 1 \quad \forall i, j
$$

The objective is to select a set of facility locations and assign each client to a facility to minimize total cost. The first set of constraints defines that every client must be assigned to some facility to satisfy its demand. The second set of constraints limits that no clients can be assigned to this facility if it is not open. These two set of constraints are also in the IP model for the view-selection problem in section 2. The difference is that our model doesn't count the fixed cost into the total cost of the objective value and there is one more knapsack constraint to limit the total storage space in our IP model. Moreover, the view-selection requires the existence of the raw data that force $x_1 = 1$ as shown in section 2.

The view-selection problem is also similar to another famous IP problem: k-median problem.

Given:

- *I* : The set of n objects
- *J* : The set of eligible medians (I and J are identical for most applications)
- *k* : The desired number of clusters
- d_{ij} : Indicates the distance or dissimilarity between object I and object j
- x_{ij} : Binary variable designating whether object *i* is assigned to cluster median *j*
- x_{ij} = 1 indicates the occurrence of a cluster median at j

The homogeneous clustering problem can be formulated as follows:

Minimize $z = \sum_{i} \sum_{j} d_{ij} x_{ij}$ $z = \sum d_i x$

Subject to

$$
\sum_{j} x_{ij} = 1 \quad \forall i
$$

$$
\sum_{j} x_{jj} = k
$$

$$
x_{ij} \le x_{jj} \quad \forall i, j
$$

$$
x_{ij} = 0 \text{ or } 1 \quad \forall i, j
$$

The objective is to select k median objects among the set of eligible ones in order to minimize the total distance of all the objects to the median ones by assigning each object to one cluster and there is one median object in each cluster. The set of median objects is a subset of the set of all the objects. This scenario is similar to the viewselection problem that the set of objective queries is also a subset of all the views in the lattice. The first and the third set of constraints are also in our IP model. While the second constraints in the k-median problem indicate that the total number of median objects is taken to be equal to k, which is similar in our example in section 2.3. But in general situation, the first constraint in our model is a knapsack constraint of storage space limit and it is slightly different from the k-median constraint.

	View-selection problem	UFL problem	k-median problem
Mininmize	$\sum_{\forall i,j} c_{ij} y_{ij}$	$z = \sum_{j=1}^{n} f_j y_j + \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$ $z = \sum_{i} \sum_{j} d_{ij} x_{ij}$	
Subject to	$\sum_{i=1}^{n} a_i x_i \leq b$ $\sum_{i=1}^{n} y_{ij} = 1 \ \forall j$ $y_{ij} \le x_i \quad \forall i, j \text{ where } c_{ij} \ne Inf$ $x_1 = 1$ $x_i = 0 \text{ or } 1 \forall i$ $y_{ij} \ge 0 \forall i, j$	$\left \begin{array}{l} \sum_{j=1}^n x_{ij} = 1 \quad \forall i \\[1.5mm] x_{ij} \leq y_j \quad \forall i,j \\[1.5mm] x_{ij}, y_j = 0 \text{ or } 1 \quad \forall i,j \end{array}\right \left \begin{array}{l} \sum_j x_{ij} = k \\[1.5mm] \sum_j x_{ij} = 1 \quad \forall i \\[1.5mm] x_{ij} \leq x_{ij} \quad \forall i,j \end{array}\right $	$x_{ii} = 0$ or $1 \quad \forall i, j$

Table 13. Comparison with UFL and k-Median problem

As shown in Table 13, Comparison our view-selection problem with the UFL and kmedian problem is important because there have been develop a lot of efficient algorithms to solve these two popular IP problems such as Cut and Branch method and Lagrangian Relaxation. Considering the similarity between there two problems and our IP problems will help us to develop useful heuristics algorithm to solve large scale view-selection problem where exact methods may not be applied.

8. Conclusion

In this project, we analyze the view-selection problem that is a research direction in database. Given a lattice, the objective query list and the storage space limit, we develop an integer programming model to get the appropriate set of views to materialize. By storing the set of materialized views on disk, we can improve the query performance and decrease the total evaluation cost.

We develop Matlab code that can transform the dataset from the database system into the data input file and plug in with the model file into AMPL/CPLEX to solve the integer programming problem. Given three instances of different workload from realistic world, we solve these problems and do the sensitivity analysis on the storage space limit. More instances with variations in the query list are solved to verify the efficiency of the model and to analyze the structure of the problems. Moreover, linear programming relaxation provides good lower bound in all the instances and the ratio

of the lower bound to the optimum is ninety-nine percent for most of the cases. Since LP can solve larger scale problem than IP, the LP relaxation of our problem presents close estimate if the problem is too big to be solved in IP by exact method.

This is the first time for the view-selection problem to be investigated in integer programming area. By formulating the problem in IP in the mathematical way, we can claim that our integer programming model for the view-selection problem can solve large instance up to some point. Based on the work so far, we can dig further in this direction as follows.

1) Analyze the greedy algorithm in empirical way by doing more experiments.

2) Measure the cost of evaluating a query by counting the storage space in bytes instead of in tuples or rows.

3) Develop new efficient heuristics based on the similarity between the viewselection problem and the UFL and k-median problems.

References

- $\mathbf{1}$. . Book: Laurence A. Wolseu. "Integer Programming". 1998.
- \blacksquare , \blacksquare
- 3. Book: Parker Rardin. "Discrete Optimization", 1988.
- 4. John M. Mulvey; Harlan P. Crowder. "Cluster Analysis: An Application of Lagrangian 78.1 . 19 at α . The α if α
- 5. Bezalel Gavish, Hasan Pirkul. "Algorithms for the Multi-Resource Generalized Assignment Problem". Management Science. Vol. 37. No.6 (Jun., 1991). 695-713.
- 6. T. D. Klastorin. "The p-Median Problem for Cluste Analysis: A Comparative Test Usinq the Mx,\#H
MN:q>> Cy/I1)M] A%&*l#z^9&,.&)&1_5 qE5 1)aV 5dL  ¹ J24 ` e¹ 4K f{2|`5
- 7. Marshall L. Fisher: Pradeen Kedia. "Ontimal Solution of Set Coverina/Partitionina Problems Usina Dual Heuristics". Management Science. Vol. 36. No.6 (Jun. 1990). 674-688.
- 8. Venky Harinarayan, Anand Rajaraman, Jeffrey D. Ullman. "Implementing Data Cubes $Efficiently$ ".
- \mathbb{R} , if it also the latter of \mathbb{R} and \mathbb{R} is the mass of \mathbb{R} . In the case of \mathbb{R} To Improve Performance of Aggregate Queries " (Sept. 9, 2004).
- 10. Howard Karloff, Milena Mihail. "On the Complexity of the View-Selection Problem".
- 11. David S. Johnson. "A Theoretician's G Guide to the Experimental Analysis of Algorithms".
- 12. Pransan Rou, S. Seshadri, S. Sudarshan, Siddhesh Bhobe, "Efficient and Extensible % R,i#HC*S[|M] "#?, (& <>#?,"*-,@ #?,.0/
- 13. Amit Shukla, Prased M. Deshpande, Jeffrey F. Naughton. "Materialized View Selection for M]9i#?,.:9,.*l&AR,. 9 G#HR#I/

Appendix

1. AMPL file for the small example

prod1.mod *set N; set M;*

param b; param c{i in N,j in M};

var x{i in N} binary; var y{i in N, j in M} >=0;

*minimize cost: sum{i in N} sum{j in M} c[i,j]*y[i,j];*

subject to constraint1{i in N, j in M}: $y[i,j] \leq x[i]$; *subject to constraint2{j in M}: sum{i in N} y[i,j]=1; subject to constraint3: sum{i in N} x[i]=b; subject to constraint4: x[1]=1;*

prod1.dat

set N := 1,2,3,4,5,6,7,8; set M := 1,2,3,4,5,6,7,8;

param b = 4;

param c: 1 2 3 4 5 6 7 8:=

- *1 100 100 100 100 100 100 100 100*
- *2 500 50 500 50 50 500 50 50*
- *3 500 500 75 500 75 75 75 75*
- *4 500 500 500 20 500 500 20 500*
- *5 500 500 500 500 30 500 30 30*
- *6 500 500 500 500 500 40 500 40*
- *7 500 500 500 500 500 500 1 500*
- *8 500 500 500 500 500 500 500 10;*

prod1_sol.out

8 0 0 0 0 0 0 0 0

;

2. AMPL model file

view_7.run (omit view_13.run and view_15.run) *reset; model prod3.mod; data prod3_7.dat; solve;* display cost, sum{i in N} a[i]*x[i], b, {i in N: x[i]>0} x[i], {i in N, j in M: y[i,j]>0} y[i,j] > sol_7.out;

prod3.mod (for IP problem)

set N; # number of views in the search space given the lattice set M; # number of queries to be answered param b; # storage space limit param end_row integer;

index of the raw data param end_column integer; # index of the first one in the query list; param a{i in N}; # number of rows in each view param c{i in N,j in M}; # cost to answer query j by using view i

var x{i in N} binary; # equals to one if we materialize view i var y{i in N, j in M} >=0; # nonzero if we answer query j by using view i

*minimize cost: sum{i in N} sum{j in M} c[i,j]*y[i,j]; # cost to answer all the objective queries*

subject to constraint1{i in N, j in M}: if c[i,j] \lt *= c[end_row,end_column] then* $y[i,j] \lt = x[i]$; *# no queries can be answered by view i if it is not materialized subject to constraint2{j in M}: sum{i in N} y[i,j]=1; # each query must be answer by any one view subject to constraint3: sum{i in N} a[i]*x[i]<=b; # storage space constraint subject to constraint4: x[end_row]=1; # existance of the raw data*

prod2.mod (for LP problem)

set N; # number of views in the search space given the lattice set M; # number of queries to be answered

param b; # storage space limit param end_row integer; # index of the raw data param end_column integer; # index of the first one in the query list; param a{i in N};

number of rows in each view param c{i in N,j in M}; # cost to answer query j by using view i

var $x[i \text{ in } N] > = 0 \leq -1$; *# LP relaxation; var y{i in N, j in M} >=0; # nonzero if we answer query j by using view i*

*minimize cost: sum{i in N} sum{j in M} c[i,j]*y[i,j]; # cost to answer all the objective queries*

subject to constraint1{i in N, j in M}: if c[i,j] <= c[end_row,end_column] then y[i,j] <= x[i]; # no queries can be answered by view i if it is not materialized subject to constraint2{j in M}: sum{i in N} $y[i,j]=1$; *# each query must be answer by any one view subject to constraint3: sum{i in N} a[i]*x[i]<=b; # storage space constraint subject to constraint4: x[end_row]=1; # existance of the raw data*

3. Matlab file to generate AMPL data file

getBin.m *function viewBin = getBin(attrNum)*

*% get the binary matrix given the number of attributes % attrNum: number of attributes % return: M*N binary matrix where M is view number*

```
len = 2^attrNum-1;
viewNum = 0:len;
viewNum = viewNum';
viewBin = zeros(len,attrNum);
for i = 1:len+1
  tmp = dec2bin(viewNum(i,1));tmp = sprintf('%0*s',attrNum,tmp);
  str = strep(tmp, '1', 'A');tmpBin = isletter(str);
  viewBin(i,:)=tmpBin;
end
```
getMatrix.m

 $function C = getMatrix(T, A, J)$ *% get the cost matrix C*

 $width = size(T, 2);$ $len = length(T);$ *tmpA = A(A~=0);* $tmpRow = length(tmpA);$ $tmpColumn = length(J);$ *C = zeros(tmpRow,tmpColumn);*

Idx = 0:len-1; $paramA = [Idx'A]$; *paramA(A==0,:)=[];* $tmpIdx = paramA(:,1);$

for j = 1:tmpColumn $C(:,j) = tmpA;$

for i = 1:tmpRow for k=1:width if T(tmpIdx(i)+1,k) < T(J(j)+1,k) $C(i,j) = Inf$; *break; end end end end C(C==Inf)=C(end,end)*5;% exchange the infinity with 10 times the cost of the root*

getData_7.m (omit getData_13.m and getData_15.m)

% write the data file for the input of AMPL clear; attrNum = 7;% number of attributes in the database tables storeRatio = .3; % ratio of maximum b to the total number of rows in the queries storeTimes = 3; % maximal b no larger than how many times the raw data;

len = 2^attrNum; Idx = 0:len-1;

% construct the cost vector $A = \text{zeros}(len, 1);$ *infile = fopen('vw_sizes_fact.txt','r');* $i = 1$; $tmp = fscanf(intile, '%d');$ *for i = 1:len* $A(i,1) = \text{tmp}(2*i-1);$ *end fclose(infile);*

J = [5 7 17 69 81 88 112]; % the objective query queryNum = length(J);

T = getBin(attrNum);% construct the data table C = getMatrix(T,A,J); % get the cost matrix

paramA = [Idx' A]; paramA(A==0,:)=[]; $Idx = paramA(:,1);$

*tmp_b = min(A(end)+sum(A(J+1))*storeRatio,A(end)*storeTimes); b = floor(tmp_b); % the storage space limit*

fid = fopen('prod3_7.dat','w'); tmpString = sprintf('set N := '); for $i = 1$ *:len* $if A(i,1) \sim = 0$ *tmpString = sprintf('%s %i',tmpString,i-1); end end fprintf(fid,'%s ;\n',tmpString);*

 $tmpString = sprintf('set M :=');$ *for i = 1:queryNum tmpString = sprintf('%s %i',tmpString,J(i)); end fprintf(fid,'%s ;\n',tmpString);*

fprintf(fid, \langle *nparam b* : = %*i*; $\langle n', b \rangle$; *fprintf(fid,'\nparam end_row := %i;\n',len-1);*

```
fprintf(fid,'\nparam end_column := %i;\n',J(end));
```

```
fprintf(fid, \langle n \ranglearam a := \langle n' \rangle;
fprintf(fid,'%i %i\n', paramA');
fprintf(fid,';\n');
```

```
tmpString = sprintf('\nparam c: ');
for i = 1:length(J)tmpString = sprintf('%s %i',tmpString,J(i));
end
fprintf(fid,'%s := \n',tmpString);
for i = 1:length(C)
  for j = 0: length(J)if j == 0fprintf(fid,'%i ',Idx(i));
     else
       fprintf(fid,'%i ',C(i,j));
     end
     if j == length(J)fprintf(fid,'\n');
     end
   end
end
fprintf(fid,';\n');
```

```
fclose(fid);
```
4. Matlab file for greedy algorithm

```
greedyAlg.m
function [cost, X, Y] = greedyAlg(A,J,C,b)
% solve the view-selection problem by greedy algorithm
```

```
len = length(A);Idx = find(A \sim = 0) - 1;tmpA = A(A \sim = 0);tmpRow = length(tmpA);
tmpColumn = length(J);
```

```
X = zeros(tmpRow,1);X(end) = 1;Y = zeros(tmpRow,tmpColumn);
Y(end,:) = 1;M = C(end,end); % the number of rows in raw data
bBar = b - sum(tmpA.*X);
t = 0;
while bBar >= 0
  t = t + 1;
  if t > tmpColumn;
    break;
  end
  curCost = sum(sum(C.*Y)); % cost to answer the query list J if only with the raw data
  curBen = zeros(tmpRow,1);
  for i = 1:tmpRow
    if (min(C(i,:)) >= M)continue;
     end
     if X(i) == 1curBen(i) = 0;continue;
```

```
end
    tmpY = Y;tmpY\_Row = (C(i,:) <= M);for k = 1:tmpColumn
      if tmpY\_Row(k) == 1tmpY(:,k) = 0;
      end
    end
    tmpY_Row = (C(i,:) \le M);tmpY(i,:) = tmpY_Row;tmpBen = curCost - sum(sum(C.*tmpY));
    curBen(i) = tmpBen;
  end
  [stBen stIdx] = sort(-curBen./tmpA); % sort in descending order
  for j = 1:tmpRowif tmpA(stIdx(j)) <= bBar
      curl dx = st/dx(j);X(curIdx) = 1;
       break;
    end
  end
  tmpY = Y;tmpY\_Row = (C(curldx,:) \leq M);for k = 1:tmpColumnif tmpY_Row(k) == 1tmpY(:,k) = 0;
    end
  end
  tmpY\_Row = (C(curldx,:) \leq M);tmpY(curIdx,:) = tmpY_Row;Y = tmpY;bBar = b - sum(tmpA.*X);end
cost = sum(sum(C.*Y));X = [Idx X];
Y = [Idx Y];
```