JNGNI LI, RADA CHIRKOVA, AND YAHYA FATHI

AN |P MODEL FOR THE VIEW SELECTION PROBLEM
(Technical Report)

December 7, 2004
Operations Research Program, North Carolina State University, 2004©

Abstract:

A commonly used and powerful technique for improving query response time over
large databases isto materialize frequently asked queries. The problemisto select an
appropriate set of views, given a limited amount of storage resources. The
contribution of this project isthe integer programming model that is developed to
solve the view selection problem. Given a list of queries and a lattice, return the
definition of the materialized views. Moreover, the view selection problem can be
compared with the UFL and k-Median problem that are well defined and analyzed in
IP area.

In this project, there are many computation components besides the analysis work. A
lot of instances with different size of the IP model are solved by using mathematical
programming software package. Then the LP relaxation of the problem gives strong
average lower bound for the IP problem. Further more, Greedy algorithmis used to
solve the problem and shows good performance.

F AN o =Tt SO RR PP TRRRPPRRURTIIN 2

I 1 01 (oo L8 1 o] o PP SOPR PP 4
2. Integer Programming MOGEcooeiiiiiiiiiiieiee e 4
2.1 Parameters and Variables...........cocueiiiiiiiiiiecieeee e 4
2.2 Integer Programming MOGELoouiiiiiiiiiie s 5
2.3 EXAIMPIE ...ttt n e an e be e ennes 6
3. DA@SITUCIUIE ...ttt e e e e enn e e anee e 7
4. Experiments by eXxact MethOd..........cooouiiiiiiiiiiieeie s 8
4.1 Solve three instances of different workload.............coocoveiiiniiicne, 8
4.2 Sensitivity ANalYSISON D ... 9
4.3 Variation iNthe QUENY IStoooiiiieee s 13
5. LPrelaxation and LOWEr BOUNGcooouiiiiiiiiieiiieniie e 16
6. The Greedy AlGOrthM..... ..o s 19
6.1 AlGOrtNM OULIINE ..o 20
6.2 Solve the three instances by greedy algorithm............cccccovveeiiiiicnen e, 20
7. Comparison with UFL and k-Median problem............cccoooiiiiiniineeee 21
8. CONCIUSION ...ttt ettt ettt e et e et e b e e b e beeenne e 24
REFEIEINCES ...ttt e e n e san e nnee s 25
Y 6] 1< 00 | G SO P RO U ST PPRRPPRPRROT 26
1. AMPL filefor the small example.........cccoiiiiiiiiiiin e 26
2. AMPL MOGEl TIlE... e 27
3. Matlabfileto generate AMPL datafile.......cccooiiiiiiiiiiiiee e 28
4. Matlab file for greedy algorithmccceoiiiiiiie e 30

1.

Introduction

Decision support system involves complex queries on large databases. A common
and powerful query optimization technique isto materialize some queries instead of
computing them from raw data each time. But we can not materialize all the queries
when the storage space is limited. Thusit is critical to select an appropriate set of
views to materialize to improve the performance of frequent and important queries.
The dependency among the views is defined by the lattice. Suppose alist of queries
and a lattice in database are already given, the goal of the project isto develop an
efficient integer programming model for the view select problem in the case that each
guery can be answered by one qualified view in the lattice framework.

The project report is organized as follows. In Section 2, we introduce the P model to
represent the view selection problem in mathematical way. In Section 3, we present
the data structure for each node of view in the lattice. In Section 4, we solve several
instances of the I P with quite different sizes by mathematical programming software
package AMPL/CPLEX and do the sensitivity analysis experiments on the value of b.
In Section 5, we compute the lower bound for the IP problem by solving its LP
relaxation. In Section 6, we implement the greedy algorithm to the view selection
problem and compare the result with those got from exact method. Section 7
compares the view selection problem with UFL and k-Median problems in I P that
have been well developed. Finally, Section 8 summarizes the results in this project
and plans some further work in the future.

. Integer Programming model

In this project report, we skip the work about how to generate the lattice but
concentrate on the optimization part. Given the tables in the large relational database,
a lattice framework can be constructed to express dependencies among views. A
guery can be answered by any one of its ancestorsin the lattice that includes the raw
data and itself. Assume that the lattice based on the database and the set of queriesto
be answered are already given. The objective isto materialize a subset of right views
in the lattice to minimize the time cost to answer the required queries subject to the
storage space constraints. The materialized views must be precomputed and stored on
disk, and the storage space of aview is set to be linear to the number of rows in the
view. The time to answer a query istaken to be equal to the storage space occupied
by the view from which the query is answered.

There are n views in the lattice and m queries to be answered. The input is the cost
vector associated with each view, the queries to be answered and the storage space
limit, while the output is the views that need to be materialized.

2.1 Parameters and Variables

Declare the parameters of this|P:
i . Index of viewsinthesearchspace i =1ton

-4-

j: Index of queries j =1tom
Let a bethe number of rowsinviewi .
Let b be the storage space limit.

Let ¢; bethe cost to answer query j by using viewi .

_ | & if viewi can used to answer query |
T oo otherwise

Define the variables of this I P:

Let x = 1 if view i ismaterialized
5= 0 otherwise
Let v. = 1 if weuseview i toanswer query |
YiTo otherwise

2.2 Integer Programming Model
Formulate the P model:
Mininmize Gy,
Oi, j

Subject to:

¥ =10

y; <% O, j wherec; # Inf
X =1

x =0or1 [i

y; 20 [i, |

The first constraint is the storage constraint which limits the total number of rowsin
the materialized views to be no more than the current storage space. The second set of
constraints guarantee that each query must be answered by any one view in the lattice.
The third set of constraints shows that no query can be answered be view j if view j is
not materialized. For each i, considering only those views that can be used to answer
query j, wherec, # Inf , decreases the number of constraints. The fourth constraint

indicates the existence of the raw data. The left constraints are binary and sign
constraints.

2.3 Example
In this part, we show a small example to verify our |P model.
Given the lattice of Example 4.1 in Page 13 of Ullman’s paper in the following Figure
1,

100

f@

Figure 1: Example lattice with space costs

We can get the cost matrix as follows.

=[100 50 75 20 30 40 1 10|

[100 100 100 100 100 100 100 100]
o 50 o 50 50 o 50 50

o o 75 o 75 75 75 75
| o 00 o 20 oo oo 20 oo
““le ® o © 30 o 30 30
00 00 00 00 00 40 o 40
00 00 00 00 00 00 1 00
00 00 00 00 00 00 00 10

Assume the objective queriesto be answered are all the nodes in the lattice. Set the
cost to be equal to 500 that is five times the cost of the raw dataif there is no edge
between i and j. Suppose we can only materialize three more views except the raw
data. Then set the storage space constraint becomes that the number of materialized
views is equal to 4 including the raw data

Solve the IP problem using AMPL/CPLEX and get the same solution as that in that
paper. The solution indicates that in order to attain the minimal cost to answer all the
8 queries, we should materialize view 2, 4, 6 (corresponding to b, d, f in the lattice
graph) besides the raw data and thus achieve the optimal cost of 420. The code file
for this example is attached to the end of the report.

. Data Structure

In this section, we analyze the data set file that comes from the real world. The data
about the lattice that comes from the realistic world contains two columns. Each row
in the data file that corresponds to anode in the lattice has aview 1D and aview size.

The view size here is taken to be the number of rows in the view. Given the workload
of the number of attributes, the structure of the lattice and dependency among the
views are fixed. The only variation is the view size associated with each node in the
lattice. We define the data structure of each node, which can be used to expressthe
relationship among the views and can be tracked back to the definition of the derived
views once we get the solution of the P model.

Suppose the workload of the attributes from the database is K. The number of nodes
in the lattice is 2" and it increases exponentially as the number of attributes increases.
For each node in the lattice, let the binary vector define the characteristics whether or
not each attributes is used to aggregate the tuples in database. It isequal to 1 if the
attribute has the characteristics at this node and O otherwise. Then each node can be
express by a 0-1 vector and the dependency can be derived expressively from this
kind of data structure. A view in the lattice can be computed directly from its ancestor
if there is dependency relationship between them. In the example shown in Table 1,
we compare each element in any pair of vector E and F. If there exists any element
that isequal to 1 in E while the corresponding element in F is O, then view F can not
be used to answer view E as shown.

Table 1. Dependency expressed by binary vector

View | View ID | View Definition
E 5 1,0, 1
F 4 1,00

The evaluation cost to answer query j by using view i is taken to be storage cost of
view i if query j can be answered by view i and infinity otherwise. Following the
above criteria, the cost matrix to answer a list of objective queries can be computed
and transformed to the input of the IP model. Moreover, we can transform the binary
vector of each node to decimal that can be used as the index of views. Thus the view
ID istaken to be consecutive decimal integer that starts at 0 and ends at 2 —1. After
solving the IP instance, the solution that is in decimal form can be transformed back
to the definition of views in binary format.

4. Experiments by exact method

In realistic world, the total space available to store the materialized views is usually
smaller than the cost of the objective queries. Otherwise we can precompute all the
gueries in advance and store them on disk, and then there is no need to optimize this
view selection problem. Moreover, the available storage space is no more than five
times than the raw data because we would rather not spend that much to store those
materialized. There is a tradeoff between the cost and the efficiency during the
decision process.

4.1 Solve three instances of different workload.

Given the lattice, we can get the input for the IP model in section 2. The structure of
the parameters and variables for the three instances is shown as follows in Table 2.
The cardinality of vector A is smaller than the number of nodes in the lattice because
we skip those nodes that can not be used to answer anyone in the query list and those
views have been taken to be zero in the dataset file. Then the number of rowsin the
cost matrix C istaken to be the same asthat in A and the number of columnsin Cis
equal to the cardinality of the query set. We use Matlab to write the input datafile for
the IP model and then use AMPL/CPLEX to solve the | P instances. The timing of
each workload instance is shown in the following Table 3, in the unit of the system

CPU seconds.
Table 2. Sizes of the problem

Workload | Number of nhodes | Number of queries | A C X Y

View 7 128 7 60x1 60x7 60x1 60x7
View_13 | 8192 8 4104x1 4104%8 4104x1 4104%8
View_15 | 32768 8 17464x1 | 17464x8 | 17464x1 | 17464%8

Table 3. Timing of Matlab and AMPL/CPLEX

Workload | Matlab | AMPL/CPLEX | Total Time
View_7 0.22s 0.05s 0.27s
View 13 | 20.91s | 3.04s 23.95s
View_15 | 391.20s | 18.64s 409.84s

Given three redlistic instances of different workload size which is 7, 13 and 15, we
can solve them by AMPL/CPLEX by setting a reasonable storage space limit b.

Let R denote the number of rows in the raw data
Let W denote the total number of rowsin the queries in the objective list.

Setb=min{ R+ AW, 6R} , whereO< <16 >1.

We solve the three instances for § =.3,6 =3 in Table 4, where b is taken to be the

value in the reasonable range. The result shows that the views that should be
materialized are those indexes with x equal to 1, and each query | is to be answered
by view i with y equal to 1.

Table 4. Results of solving three instances

View workload b Optimal Cost X Y
View_7 702709 | 1347820 | X[i|[}] := ylijl:=
17 1 17 17 1
88 1 88 88 1
112 1 112112 1
127 1 1275 1
1277 1
12769 1
12781 1
View_13 669194 | 1264190 | x[i|[}] = ylijl:=
88 1 88 88 1

112 1 112 112 1
912 1 912 912 1

2050 1 | 20502050 1

6656 1 | 6656 6656 1

8191 1 | 8191593 1

8191 2368 1

81917936 1

View_15 737056 | 1522810 | X[i|[] = yIiil =
224 1 | 224 224 1
1

2848 2848 2848 1
8194 1 | 8194 8194 1
26624 1 | 26624 26624 1
32767 1| 32767152 1
327673201 1

32767 8832 1

1

32767 31232

4.2 Sensitivity Analysison b

Intuitively, the optimal cost decreases as the storage space increases. If we have
limited space that can only store the raw data, then every query must compute directly
from the root node and the evaluation cost to answer all the queries is the number of
the queries times the cost of the raw data. If we have space to store al the queries
precomputed, there is no optimization issues in this case and the total evaluation cost
is simply the summation of the cost of all the queries.

In Table 4 as follows, we do the sensitivity analysis on b for the view-7 and view-13
workload instances. Given the same query list asin section 4.1, asthe storage space
[imit increases in the above range, the optimal cost decreases step piece wise. Unless
there is more space available that is large enough to hold one more materialized query,
the evaluation cost remains the same for the given objective query list. Asshown in
Table 5 and 6, the first column b is the storage space limit. The first value b takes is
the number of rowsin the raw data and the last value it takesis the cos of the raw
data plus the total cost of the queries. Since the query list is short in the given
instances, the total cost of the queries never exceeds the threshold of five times the
raw data. The second column is the optimal objective value of the IP model for the
given b. The third column corresponds to X in the model which is the optimal
solution that defines the index of the materialized views. The rest columns correspond
to Y inthe model that defines each query in the list should be answered by which
view. As we can see from the tables and the figures below, the optimal cost decreases

-9-

piece wise as the value of b increases. Within the range in each piece, the objective
value and the optimal solution remain the same. They only change when the value of
b grows big enough to hold another possible materialized view.

Table 5. Sensitivity analysis results on b for view-7 instance

b cost sol 5 7 17 69 81 88 | 112
299814 | 2098698 127 127 | 127 | 127 | 127 | 127 | 127 | 127
326674 | 1802697 R 127 | 127 | 127 | 127 | 127 | 127 | 112
353533 | 1544080 88,112,127 127 | 127 | 127 | 127 | 127 | 88 | 112
380393 | 1544080 88,112,127 127 | 127 | 127 | 127 | 127 | 88 | 112
407253 | 1544080 112,120,127 127 | 127 | 127 | 127 | 127 | 120 | 112
434113 | 1544080 112,120,127 127 | 127 | 127 | 127 | 127 | 120 | 112
460972 | 1347815 17,88,112,127 127 | 127 | 17 | 127 | 127 | 88 | 112
487832 | 1347815 17,88,112,127 127 | 127 | 17 | 127 | 127 | 88 | 112
514692 | 1347815 17,88,112,127 127 | 127 | 17 | 127 | 127 | 88 | 112
541551 | 1347815 17,88,112,127 127 | 127 | 17 | 127 | 127 | 88 | 112
568411 | 1347815 17,88,112,127 127 | 127 | 17 | 127 | 127 | 88 | 112
595271 | 1347815 17,88,112,127 127 | 127 | 17 | 127 | 127 | 88 | 112
622131 | 1347815 17,88,112,127 127 | 127 | 17 | 127 | 127 | 88 | 112
648990 | 1347815 17,88,112,127 127 | 127 | 17 | 127 | 127 | 88 | 112
675850 | 1347815 17,88,112,127 127 | 127 | 17 | 127 | 127 | 88 | 112
702710 | 1347815 17,88,112,127 127 | 127 | 17 | 127 | 127 | 88 | 112
729570 | 1347815 17,88,112,127 127 | 127 | 17 | 127 | 127 | 88 | 112
756429 | 1344186 17,81,88,112,127 127 | 127 | 17 | 127 | 81 | 88 | 112
783289 | 1344186 17,81,88,112,127 127 | 127 | 17 | 127 | 81 | 88 | 112
810149 | 1344186 17,81,88,112,127 127 | 127 | 17 | 127 | 81 | 88 | 112
837008 | 1344186 17,81,88,112,127 127 | 127 | 17 | 127 | 81 | 88 | 112
863868 | 1344186 17,81,88,112,127 127 | 127 | 17 | 127 | 81 | 88 | 112
goo72g | 1344186 17,81,88,112,127 127 | 127 | 17 | 127 | 81 | 88 | 112
917588 | 1344186 17,81,88,112,127 127 | 127 | 17 | 127 | 81 | 88 | 112
944447 | 1344186 17,81,88,112,127 127 | 127 | 17 | 127 | 81 | 88 | 112
971307 | 1344186 17,81,88,112,127 127 | 127 | 17 | 127 | 81 | 88 | 112
998167 | 1344186 17,81,88,112,127 127 | 127 | 17 | 127 | 81 | 88 | 112
1025026 | 1344186 17,81,88,112,127 127 | 127 | 17 | 127 | 81 | 88 | 112
1051886 | 1343013 5,17,81,88,112,127 5 | 127 | 17 | 127 | 81 | 88 | 112
1078746 | 1343013 5,17,81,88,112,127 5 |127| 17 | 127 | 81 | 88 | 112
1105606 | 1343013 5,17,81,88,112,127 5 | 127 | 17 | 127 | 81 | 88 | 112
1132465 | 1343013 5,17,81,88,112,127 5 | 127 | 17 | 127 | 81 | 88 | 112
1159325 | 1343013 5,17,81,88,112,127 5 |127| 17 | 127 | 81 | 88 | 112
1186185 | 1343013 5,17,81,88,112,127 5 |127| 17 | 127 | 81 | 88 | 112
1213044 | 1343013 5,17,81,88,112,127 5 |127| 17 | 127 | 81 | 88 | 112
1239904 | 1343013 5,17,81,88,112,127 5 | 127 | 17 | 127 | 81 | 88 | 112
1266764 | 1343013 5,17,81,88,112,127 5 | 127 | 17 | 127 | 81 | 88 | 112
1293624 | 1343013 5,17,81,88,112,127 5 | 127 | 17 | 127 | 81 | 88 | 112
1320483 | 1343013 5,17,81,88,112,127 5 | 127 | 17 | 127| 81 | 88 | 112
1347343 | 1342994 | 57,17,81,88,112,127 | 5 17 | 127 | 81 | 88 | 112
1374203 | 1342994 | 57,17,81,88,112,127 | 5 17 | 127 | 81 | 88 | 112
1401063 | 1342994 | 57,17,81,88,112,127 | 5 17 | 127 | 81 | 88 | 112

-10-

1427922 | 1342994 5,7,17,81,88,112,127 5 7 17 | 127 | 81 | 88 | 112

1454782 | 1342994 5,7,17,81,88,112,127 5 7 17 | 127 | 81 | 88 | 112

1481642 | 1342994 5,7,17,81,88,112,127 5 7 17 | 127 | 81 | 88 | 112

1508501 | 1342994 5,7,17,81,88,112,127 5 7 17 | 127 | 81 | 88 | 112

1535361 | 1342994 5,7,17,81,88,112,127 5 7 17 | 127 | 81 | 88 | 112

1562221 | 1342994 5,7,17,81,88,112,127 5 7 17 | 127 | 81 | 88 | 112

1589081 | 1342994 5,7,17,81,88,112,127 5 7 17 | 127 | 81 | 88 | 112

1615940 | 1342994 5,7,17,81,88,112,127 5 7 17 | 127 | 81 | 88 | 112

1642800 | 1342986 | 5,7,17,69,81,88,112,127 | 5 7 17 | 69 | 81 | 88 | 112

Table 6. Sensitivity analysis results on b for view-13 instance

b cost sol 88 112 593 912 | 2050 | 2368 | 6656 | 7936
299814 | 2398512 8191 8191 | 8191 | 8191 | 8191 | 8191 | 8191 | 8191 | 8191
324439 | 2102511 112, 8191 8191 | 112 | 8191 | 8191 | 8191 | 8191 | 8191 | 8191
349065 | 1840358 112, 2050, 8191 8191 | 112 | 8191 | 8191 | 2050 | 8191 | 8191 | 8191
373690 | 1840358 112, 2050, 8192 8191 | 112 | 8191 | 8191 | 2050 | 8191 | 8191 | 8191
398315 | 1581741 88,112, 2050, 8192 88 112 | 8191 | 8191 | 2050 | 8191 | 8191 | 8191
422941 | 1581741 88,112, 2050, 8193 88 112 | 8191 | 8191 | 2050 | 8191 | 8191 | 8191
447566 | 1581741 88,112, 2050, 8193 88 112 | 8191 | 8191 | 2050 | 8191 | 8191 | 8191
472192 | 1581741 88,112, 2050, 8193 88 112 | 8191 | 8191 | 2050 | 8191 | 8191 | 8191
496817 | 1385161 88,112, 912, 2050, 8191 88 112 | 8191 | 912 | 2050 | 8191 | 8191 | 8191
521442 | 1385161 88,112, 912, 2050, 8191 88 112 | 8191 | 912 | 2050 | 8191 | 8191 | 8191
546068 | 1385161 88,112, 912, 2050, 8191 88 112 | 8191 | 912 | 2050 | 8191 | 8191 | 8191
570693 | 1385161 88,112, 912, 2050, 8191 88 112 | 8191 | 912 | 2050 | 8191 | 8191 | 8191
595318 | 1385161 88,112, 912, 2050, 8191 88 112 | 8191 | 912 | 2050 | 8191 | 8191 | 8191
619944 | 1385161 88,112, 912, 2050, 8191 88 112 | 8191 | 912 | 2050 | 8191 | 8191 | 8191
644569 | 1385161 88,112, 912, 2050, 8191 88 112 | 8191 | 912 | 2050 | 8191 | 8191 | 8191
669194 | 1264193 88,112, 912, 2050, 6656, 8191 88 112 | 8191 | 912 | 2050 | 8191 | 6656 | 8191
693820 | 1264193 88,112, 912, 2050, 6656, 8191 88 112 | 8191 | 912 | 2050 | 8191 | 6656 | 8191
718445 | 1264193 88,112, 912, 2050, 6656, 8191 88 112 | 8191 | 912 | 2050 | 8191 | 6656 | 8191
743070 | 1264193 88,112, 912, 2050, 6656, 8191 88 112 | 8191 | 912 | 2050 | 8191 | 6656 | 8191
767696 | 1264193 88,112, 912, 2050, 6656, 8191 88 112 | 8191 | 912 | 2050 | 8191 | 6656 | 8191
792321 | 1264193 88,112, 912, 2050, 6656, 8191 88 112 | 8191 | 912 | 2050 | 8191 | 6656 | 8191
816947 | 1264193 88,112, 912, 2050, 6656, 8191 88 112 | 8191 | 912 | 2050 | 8191 | 6656 | 8191
841572 | 1264193 88,112, 912, 2050, 6656, 8191 88 112 | 8191 | 912 | 2050 | 8191 | 6656 | 8191
866197 | 1264193 88,112, 912, 2050, 6656, 8191 88 112 | 8191 | 912 | 2050 | 8191 | 6656 | 8191
890823 | 1264193 88, 112, 912, 2050, 6656, 8191 88 112 | 8191 | 912 | 2050 | 8191 | 6656 | 8191
915448 | 1264193 88, 112, 912, 2050, 6656, 8191 88 112 | 8191 | 912 | 2050 | 8191 | 6656 | 8191
940073 | 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 | 8191 | 912 | 2050 | 2368 | 6656 | 8191
964699 | 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 | 8191 | 912 | 2050 | 2368 | 6656 | 8191
989324 | 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 | 8191 | 912 | 2050 | 2368 | 6656 | 8191
1013949 | 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 | 8191 | 912 | 2050 | 2368 | 6656 | 8191
1038575 | 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 | 8191 | 912 | 2050 | 2368 | 6656 | 8191
1063200 | 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 | 8191 | 912 | 2050 | 2368 | 6656 | 8191
1087826 | 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 | 8191 | 912 | 2050 | 2368 | 6656 | 8191
1112451 | 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 | 8191 | 912 | 2050 | 2368 | 6656 | 8191
1137076 | 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 | 8191 | 912 | 2050 | 2368 | 6656 | 8191
1161702 | 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 | 8191 | 912 | 2050 | 2368 | 6656 | 8191
1186327 | 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 | 8191 | 912 | 2050 | 2368 | 6656 | 8191
1210952 | 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 | 8191 | 912 | 2050 | 2368 | 6656 | 8191
1235578 | 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 | 2050 | 2368 | 6656 | 8191

-11-

1260203 | 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 | 2050 | 2368 | 6656 | 8191
1284828 | 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 | 2050 | 2368 | 6656 | 8191
1309454 | 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 | 2050 | 2368 | 6656 | 8191
1334079 | 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 | 2050 | 2368 | 6656 | 8191
1358704 | 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 | 2050 | 2368 | 6656 | 8191
1383330 | 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 | 2050 | 2368 | 6656 | 8191
1407955 | 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 | 2050 | 2368 | 6656 | 8191
1432581 | 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 | 2050 | 2368 | 6656 | 8191
1457206 | 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 | 2050 | 2368 | 6656 | 8191
1481831 | 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 | 2050 | 2368 | 6656 | 8191
1506457 | 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 | 2050 | 2368 | 6656 | 8191
1531082 | 1231268 | 88, 112, 593, 912, 2050, 2368, 6656, 7936, 8191 88 112 593 912 | 2050 | 2368 | 6656 | 7936

X10°
22 T T T T T T T T T T T T T T

214
204

194

174

16

A ;
| ;

Optimal Cost

134 4

2 ' 4 6 8 10 12 14 16
Storage Limit, b

Figure 2. Sensitivity analysis on b for view-7 instance

X10°

24
20

. 1
181 \ 4
161 —

Optimal Cost

14 ENEEEEE

124 -

2 ' 4 6 ' 8 10 12 14 16 ' X11%5
Storage Limit, b

Figure 3. Sensitivity analysis on b for view-7 instance

-12-

4.3 Variation in the query list

Aswe can see in section 4.1, in the solution of the three instances, some queries in the
list are answered by themselves and the others are answered by the raw data. None of
the materialized view except the raw datais used to answer more than one query. The
reason here is that there is only small number of elements in the objective query list
and there is no dependent relationship among those queries. Suppose there are more
gueries in the objective list, there may be some materialized view that can be used to
answer more than one view. In order to further check the validity of our |P model, we
also do some experiments by varying the query list for the view_7 and view_13
instances as shown in the following Table 7 and 8. The first column b is the storage
gpace limit. The first value b takes is the number of rows in the raw data and the last
value it takesis the cost of the raw data plus the total cost of the queries. The second
column is the optimal objective value of the IP model for the given b. The third and
fourth columns are related to the LP lower bound that we will discuss in the next
section. The fifth column corresponds to X in the model which is the optimal solution
that defines the index of the materialized views. The rest columns correspond to Y in
the model that defines each query in the objective list should be answered by which
view. The objective query list changes in each instance in the following tables.

For example, in sixth instance of the view_7 experiment, when b equals to 836345,
View 49 is used to answer query 17 and 49, and View 120 is used to answer query 88
and 120. And in last instance of the view_13 experiment, when b equals to 547176,
View 120 is used to answer query 88, 112 and 120, View 3078 is used to answer
query 2050, 2054, 3074 and 3078, View 3110 is used to answer query 2082, 2086,
3106 and 3110, View 4464 is used to answer query 368, 4208 and 4464. These
instances indicates that some of the materialized views other than the raw data can be
used to answer more than one queriesin the list if there is dependency among the
query list.

-13-

Table 7. Variation in the query list for view_7 instance

b cost cost-LP rate Sol queries
702709 | 1347815 | 1344699 0.99768811 | 17,88,112,127 5 7 17 69 81 88 | 112
127 | 127 17 | 127 | 127 88 | 112
792623 | 1644000 | 1643811 | 0.999885036 | 17,81,88,112,127 5 7 13 17 69 81 88 | 112
127 | 127 | 127 17 | 127 81 88 | 112
899442 | 2129267 | 2107487 | 0.989771128 | 17,57,127 17 25 57 81 92 | 113 | 116 | 124
17 57 57 | 127 | 127 | 127 | 127 | 127
639211 | 1193740 | 1168217 | 0.978619297 | 17,49,112,120,127 7 17 25 49 88 | 112 | 116 | 120
127 17 | 127 49 | 120 | 112 | 127 | 120
804982 | 1685197 | 1684960 | 0.999859364 | 17,81,112,120,127 5 7 13 17 69 81 88 | 112 | 120
127 | 127 | 127 17 | 127 81 | 120 | 112 | 120
836345 | 1790732 | 1789861 | 0.999513607 | 49,81,112,120,127 5 7 13 17 49 69 81 88 | 112 | 120
127 | 127 | 127 49 49 | 127 81 | 120 | 112 | 120
899442 | 2067528 | 2066366 | 0.999437976 | 17,49,112,116,120,127 5 7 13 17 49 69 81 88 | 112 | 116 | 120
127 | 127 | 127 17 49 | 127 | 127 | 120 | 112 | 116 | 120
899442 | 2356506 | 2340024 | 0.993005747 | 17,49,57,112,120,127 5 7 13 17 49 57 69 81 88 | 112 | 116 | 120
127 | 127 | 127 17 49 57 | 127 | 127 | 120 | 112 | 127 | 120
899442 | 2656320 | 2639838 | 0.993795175 | 17,49,57,112,120,127 5 7 17 49 57 69 81 88 92 | 112 | 116 | 120 | 124
127 | 127 17 49 57 | 127 | 127 | 120 | 127 | 112 | 127 | 120 | 127
899442 | 2919644 | 2903162 | 0.994354791 | 17,49,57,112,120,127 5 7 17 25 49 57 81 88 92 | 112 | 113 | 116 | 120 | 124
127 | 127 17 57 49 57 | 127 | 120 | 127 | 112 | 127 | 127 | 120 | 127

-14 -

Table 8. Variation in the query list for view_13 instance

b cost cost-LP rate Sol Queries
669194 | 1264193 | 1263699 | 0.999609237 | 88, 112, 912, 2050, 6656, 8191 88 112 593 912 | 2050 | 2368 | 6656 | 7936
88 112 | 8191 912 | 2050 | 8191 | 6656 | 8191
481648 836777 800684 | 0.956866644 | 88, 3078, 3110, 4208, 8191 88 112 368 | 2050 | 3078 | 3110 | 4208 | 7936
88 | 4208 | 8191 | 3078 | 3078 | 3110 | 4208 | 8191
494007 862847 811646 | 0.940660395 | 112, 120, 3078, 3110, 4208, 8191 88 112 120 368 | 2050 | 3078 | 3110 | 4208 | 7936
120 112 120 | 8191 | 3078 | 3078 | 3110 | 4208 | 8191
481759 | 1232346 | 1205459 | 0.978182264 | 120, 3074, 3110, 4208, 8191 88 120 368 945 | 2050 | 2082 | 2160 | 3074 | 3110 | 4208
120 120 | 8191 | 8191 | 3074 | 3110 | 8191 | 3074 | 3110 | 4208
501997 | 1192077 | 1172008 | 0.983164678 | 120, 3106, 4464, 8191 88 112 120 368 945 | 2050 | 2082 | 2160 | 3074 | 3106 | 4464
120 120 120 | 4464 | 8191 | 3106 | 3106 | 8191 | 3106 | 3106 | 4464
592514 | 1384708 | 1267478 | 0.915339552 | 112, 120, 2054, 3074, 3106, 4464, 8191 88 112 120 368 945 | 2054 | 2082 | 2160 | 3106 | 4464 | 7936
120 112 120 | 4464 | 8191 | 2054 | 3106 | 8191 | 3106 | 4464 | 8191
668998 | 1473472 | 1404291 | 0.953048989 | 112,120, 2160, 3078, 3106, 4464, 8191 88 112 120 344 368 945 | 2054 | 2082 | 2160 | 3074 | 4464 | 7936
120 112 120 | 8191 | 4464 | 8191 | 3078 | 3106 | 2160 | 3078 | 4464 | 8191
731857 | 1663128 | 1586692 | 0.954040819 | 112,120, 2160, 3110, 4464, 5041, 8191 88 112 120 344 368 624 945 | 2054 | 2082 | 2160 | 3074 | 3106 | 4464 | 7936
120 112 120 | 8191 | 4464 | 8191 | 5041 | 3110 | 3110 | 2160 | 3110 | 3110 | 4464 | 8191
554554 | 1334638 | 1284152 | 0.962172514 | 112,120, 3074, 3110, 4464, 8191 88 112 120 368 945 | 2050 | 2082 | 2086 | 2160 | 3074 | 3106 | 3110 | 4208 | 4464
120 112 120 | 4464 | 8191 | 3074 | 3110 | 3110 | 8191 | 3074 | 3110 | 3110 | 4464 | 4464
547176 | 1156782 | 1129862 | 0.976728545 | 120, 3078, 3110, 4464, 8191 88 112 120 368 | 2050 | 2054 | 2082 | 2086 | 2160 | 3074 | 3078 | 3106 | 3110 | 4208 | 4464
120 120 120 | 4464 | 3078 | 3078 | 3110 | 3110 | 8191 | 3078 | 3078 | 3110 | 3110 | 4464 | 4464

-15-

5. LP relaxation and Lower Bound

The linear programming relaxation can give a lower bound of the IP problem. If
solving the LP relaxation gives integer solution, the I P problem can be simple solved
by its LP version. Otherwise, the result of objective value of the LP defines a lower
bound for the I P problem and it can be derived that the optimal value of the IP isno
smaller than that of the LP problem.

In Table 9 and 10, we get the lower bound given by the LP relaxation for the same
range of b in section 4.2. Aswe can see in the following tables, the LP lower bound is
very close to the optimal value of the I P problem most of the time. We also compare
the LP lower bound with the optimum in Table 7 and 8 when we do the sensitivity
analysis for the variations on the queries. Linear programming relaxation provides
good lower bound in all the instances and the ratio of the lower bound to the optimum
IS ninety-nine percent for most of the cases. The distance between the LP lower

bound and the optimal value varies as the value of b changes. Because inthe LP
problem, X can take any value between 0 and 1, and then the knapsack constraint,
which isthe first constraint of the storage limit in the model, is always binding. While
inthe IP problem, X is binary variables and the knapsack constraint is not active
sometime and there is some space left that is not big enough to hold one more useful
materialized view. Thus the optimal value of the LP problem is continuous while the
optimal value of the | P problem is step piece wise as b changes within the range.

Table 9. Sensitivity Analysis and LP Lower Bound for view_7 instances

b cost cost-LP | Lower Bound rate
299814 | 2098698 | 2098698 1
326674 | 1802697 | 1658018 | 0.919743029
353533 | 1544080 | 1527573 | 0.989309492
380393 | 1544080 | 1476663 | 0.956338402
407253 | 1544080 | 1425753 | 0.923367313
434113 | 1544080 | 1374843 | 0.890396223
460972 | 1347815 | 1347661 | 0.999885741
487832 | 1347815 | 1347332 | 0.999641642
514692 | 1347815 | 1347002 | 0.999396801
541551 | 1347815 | 1346673 | 0.999152703
568411 | 1347815 | 1346344 | 0.998908604
595271 | 1347815 | 1346015 | 0.998664505
622131 | 1347815 | 1345686 | 0.998420406
648990 | 1347815 | 1345357 | 0.998176308
675850 | 1347815 | 1345028 | 0.997932209
702710 | 1347815 | 1344698 | 0.997687368
729570 | 1347815 | 1344370 | 0.997444011
756429 | 1344186 | 1344139 | 0.999978425
783289 | 1344186 | 1344034 0.99990031
810149 | 1344186 | 1343928 | 0.999821451

-16-

837008 | 1344186 | 1343823 | 0.999743336
863868 | 1344186 | 1343717 | 0.999664476
800728 | 1344186 | 1343612 | 0999586361
917588 | 1344186 | 1343506 | 0.999507502
944447 | 1344186 | 1343401 | 0.999429387
971307 | 1344186 | 1343205 | 0.999350528
998167 | 1344186 | 1343100 | 0.999272412
1025026 | 1344186 | 1343084 | 0999193553
1051886 | 1343013 | 1343012 | 0.999999255
1078746 | 1343013 | 1343011 | 0.999998511
1105606 | 1343013 | 1343009 | 0.999997022
1132465 | 1343013 | 1343007 | 0.999995532
1159325 | 1343013 | 1343006 | 0.999994788
1186185 | 1343013 | 1343004 | 0.999993299
1213044 | 1343013 | 1343002 | 0.999991809
1239904 | 1343013 | 1343001 | 0.999991065
1266764 | 1343013 | 1342999 | 0.999989576
1293624 | 1343013 | 1342997 | 0.999988086
1320483 | 1343013 | 1342995 | 0.999986597
1347343 | 1342994 | 1342994 1

1374203 | 1342994 | 1342993 | 0.999999255
1401063 | 1342994 | 1342992 | 0.999998511
1427922 | 1342994 | 1342992 | 0.999998511
1454782 | 1342994 | 1342991 | 0.999997766
1481642 | 1342994 | 1342990 | 0.999997022
1508501 | 1342994 | 1342990 | 0.999997022
1535361 | 1342994 | 1342989 | 0.999996277
1562221 | 1342994 | 1342988 | 0.999995532
1589081 | 1342994 | 1342987 | 0.999994788
1615940 | 1342994 | 1342987 | 0.999994788
1642800 | 1342986 | 1342986 1

Table 10. Sensitivity Analysis and LP Lower Bound for view_13 instances

b cost cost-LP | Lower Bound rate
299814 | 2398512 | 2398512 1
324439 2102511 | 1957642 0.93109715
349065 | 1840358 | 1791537 0.973472009
373690 | 1840358 | 1636952 0.889474765
398315 1581741 | 1551597 0.980942518
422941 1581741 | 1504704 0.951296072
447566 1581741 | 1457813 0.92165089
472192 1581741 | 1410919 0.892003811
496817 1385161 | 1377655 0.994581135
521442 | 1385161 | 1360999 0.98255654
546068 | 1385161 | 1344329 0.970521838
570693 | 1385161 | 1327686 0.958506628
595318 | 1385161 | 1311030 0.946482033
619944 1385161 | 1294374 0.934457439

-17 -

644569 | 1385161 | 1277718 0.922432844
669194 | 1264193 | 1263699 0.999609237
693820 | 1264193 | 1261073 0.997532022
718445 | 1264193 | 1258447 0.995454808
743070 | 1264193 | 1255821 0.993377593
767696 | 1264193 | 1253195 0.991300379
792321 | 1264193 | 1250568 0.989222373
816947 | 1264193 | 1247942 0.987145159
841572 | 1264193 | 1245316 0.985067945
866197 | 1264193 | 1242690 0.98299073
890823 | 1264193 | 1240064 0.980913516
915448 | 1264193 | 1237438 0.978836301
940073 | 1235301 | 1235245 0.999954667
964699 | 1235301 | 1234943 0.999710192
989324 | 1235301 | 1234641 0.999465717
1013949 | 1235301 | 1234340 0.999222052
1038575 | 1235301 | 1234038 0.998977577
1063200 | 1235301 | 1233736 0.998733102
1087826 | 1235301 | 1233434 0.998488627
1112451 | 1235301 | 1233133 0.998244962
1137076 | 1235301 | 1232831 0.998000487
1161702 | 1235301 | 1232529 0.997756013
1186327 | 1235301 | 1232228 0.997512347
1210952 | 1235301 | 1231926 0.997267872
1235578 | 1231672 | 1231667 0.99999594
1260203 | 1231672 | 1231633 0.999968336
1284828 | 1231672 | 1231600 0.999941543
1309454 | 1231672 | 1231567 0.99991475
1334079 | 1231672 | 1231534 0.999887957
1358704 | 1231672 | 1231501 0.999861164
1383330 | 1231672 | 1231467 0.99983356
1407955 | 1231672 | 1231434 0.999806767
1432581 | 1231672 | 1231401 0.999779974
1457206 | 1231672 | 1231368 0.999753181
1481831 | 1231672 | 1231334 0.999725576
1506457 | 1231672 | 1231301 0.999698783
1531082 | 1231268 | 1231268 1

-18-

Cost

X10°
22

214

204

194

184

17

16

154

14

134

—=— Optimal Cost
—~— LP lower bound

JADAVAVADANALANAR AR APAVANANAR AN AN AV ADAVADAN AVAN AN AN APLVAN AR AP AV AR AP ANAVANARARANANL

8

10

12

14

16

Storage Limit, b X1t

Figure 4. Sensitivity analysis and LP lower bound for view-7 instance

X10

244

1Y

2 \
204 \
A

—=— Optimal Cost
—&—LP lower bound

—
% 184 Z“
O \
16 AEM mm
N)
14 1 7‘37523 EmEm
J Thpp
12 1 AR RARAN s a AR RARERANAR AR AARA L
T T T T T T T T T T T T T
2 4 6 8 10 12 14 16

Storage Limit, b

Figure 5. Sensitivity analysis and LP lower bound for view-13 instance

6. The Greedy Algorithm

Suppose we are given a lattice with space costs associated with each view. The
objective queriesto be answered and the dependency relationship among the nodes of
view in the lattice are also given. The objective isto materialize aright set of viewsto
get the optimal or near-optimal cost to answer the given queries in reasonable time
and the total space to store these precomputed views should be within the storage
limit. The evaluation cost of aview in the lattice is taken to be equal to the number of
rowsin the view.

-19-

6.1 Algorithm outline

Let A(v) be the cost of view i. Let Q be the objective queriesto be answered. Given a

set of materialized views S, let S denote the complementary view selection space.
Let C(S) be the cost to answer Q by utilizing the materialized views in S. Suppose
also that there isa limit b on the storage space, including the raw data, let b(S) be the
gpace left after set Sis stored. Let B(v, S) the benefit of view v relative to S after
selecting some set S of views including the top view. B(v, S) is computed as the
difference between C({v, S}) and C(S). At each step of the iteration, the view v* that
can maximize the positive benefit in the current step is selected if A(v*) is no more
than the remaining storage space. Let D be the search space of all qualified views.
Observe that for a given set of objective queries, the number of materialized views is
no more than the number of objective queries since each query is to be answered by
any one view inthe lattice.

The iteration stops where there is no enough available space to hold any one more
view or the number of selected materialized view reaches the number of queries.

Now, we can define the Greedy Algorithm for the view-selection problem as follows.
Step O: Initialization.

S={raw data};
Step 1: Stopping.

If I\V/1I]|§n{ A(v)} <b(S) and |S|<|Q|, goto step 2. Otherwise, stop.

Step 2: Local Optimization.
Choose view v such that

v=ar

_ Max {B(V’S)} where B(v,S) >0.
VS, 0<A(v)<b(S) A(V)

Then update {v,S} — S and goto step 1.

6.2 Solve the three instances by greedy algorithm

Using the above greedy algorithm and code it into Matlab function , we can solve the
three instances with the same parameter and variable definition in section 4.1.

Setb =min{ R+ AW,6R} , where0< f<1,6>1.
We solve the three instances for S =.3,6 =3 in Table 11 by greedy algorithm

Table 11. Results of solving three instances by greedy algorithm

-20-

View workload b Optimal Cost X Y

View_7 702709 | 1347820 | X[[] = yIiil =
17 1 17 17 1
88 1 88 88 1
112 1 112112 1
127 1 1275 1
1277 1
12769 1
12781 1
View_13 669194 | 1264190 | X[i| [] = yIiil =
88 1 88 88 1

112 1 112 112 1
912 1 912 912 1

2050 1 | 20502050 1
6656 1 | 6656 6656 1
8191 1 | 8191593 1
8191 2368 1
81917936 1
View_15 737056 | 1522810 | X[i|[] = yIiil =

224 1 224 224 1
2848 1 | 2848 2848 1
8194 1 | 8194 8194 1
26624 1 | 26624 26624 1
32767 1| 32767152 1

32767 3201 1
32767 8832 1
32767 31232 1

Although the greedy algorithm gives the same results in the three instances as we get
by exact method solved by AMPL/CPLEX in section 4.1, there is no guarantee that it
is always the case. For a counterexample as shown in Table 12, We solve the view_7
instance for other value of b and find that the result given by the greedy algorithm is
not optimal. The ratio may depend on several factors including the lattice structure,
the query list and the value of b. We leave this direction of research for future work.

Table 12. Non-optimal results of view_7 instance by greedy algorithm (GA)

View workload b Optimal Cost | Cost given by GA | X(optimal) | X(GA)

View_7 971307 | 1344186 1346642 X = | X[=
171 51
81 1 17 1
88 1 88 1

112 1 112 1
127 1 127 1

. Comparison with UFL and k-Median problem

Aswe know, Uncapacited Facility Location problem (UFL) and k-Median problem
have been well developed in I P research area and there are a lot of efficient

algorithms related to these two problems. We review some basic idea about these two
problems as follows.

UFL Problem is defined as follows.

-21-

Given:

n Potential facility locations

m Clients

f. Fixed cost of opening a facility at location j

¢, Cog of serving client i from facility j

y, Binary variable designating whether facility j isopen

x, Binary variable designating whether client i is assigned to facility j
The IP model for UFL problem is as follows.

Minimize Z:ifiyJJ’iiQJ’%

Subject to

n

Yx, =1 i

j=1

X<y, Lij

X%,Y;=0orl 0ij
The objective isto select a set of facility locations and assign each client to afacility
to minimize total cost. The first set of constraints defines that every client must be
assigned to some facility to satisfy its demand. The second set of constraints limits
that no clients can be assigned to this facility if it is not open. These two set of
congtraints are also in the IP model for the view-selection problem in section 2. The
difference isthat our model doesn’'t count the fixed cogt into the total cost of the
objective value and there is one more knapsack constraint to limit the total storage

space in our IP model. Moreover, the view-selection requires the existence of the raw
datathat force x =1 as shown in section 2.

The view-selection problem is also similar to another famous I P problem: k-median
problem.

Given:

| : The set of n objects

J: The set of eligible medians (| and J are identical for most applications)
k : The desired number of clusters

d. : Indicates the distance or dissimilarity between object | and object |

ij
x, - Binary variable designating whether object i is assigned to cluster median j
x; =1 indicates the occurrence of a cluster median at j

The homogeneous clustering problem can be formulated as follows:

-22-

Minimize z=>) d;x
J
Subject to
Y %=1 0Oi
J
ZJ:XJJ =k

X <x; O]
x,=0or1 0i,]j

The objective isto select k median objects among the set of eligible ones in order to
minimize the total distance of all the objects to the median ones by assigning each
object to one cluster and there is one median object in each cluster. The set of median
objects is a subset of the set of all the objects. This scenario is similar to the view-
selection problem that the set of objective queriesis also a subset of all the viewsin
the lattice. The first and the third set of constraints are also in our IP model. While the
second constraints in the k-median problem indicate that the total number of median
objects is taken to be equal to k, which is similar in our example in section 2.3. But in
general situation, the first constraint in our model is a knapsack constraint of storage
gpace limit and it is slightly different from the k-median constraint.

-23-

Table 13. Comparison with UFL and k-Median problem

View-selection problem UFL problem k-median problem

Mininmize n m N = X
quyii ZzZJNﬁZZ% ‘ Zzazd”)gj
i=

Oi, i=1 j=1

Subject to n n . -k
Sax <b Sk =1 0 =,
i=1 j=1 .
=1 [i
n _ x <y, O] :;%
izﬂ:yijzlmj %, y;=00r1 0] X =x; i)
x,=0orl 0i,]j
y; <% O, j wherec; # Inf
%=1
x =0or1 i
y; 20 i,

Asshown in Table 13, Comparison our view-selection problem with the UFL and k-
median problem is important because there have been develop a lot of efficient
algorithms to solve these two popular IP problems such as Cut and Branch method
and Lagrangian Relaxation. Considering the similarity between there two problems
and our IP problems will help usto develop useful heuristics algorithm to solve large
scale view-selection problem where exact methods may not be applied.

. Conclusion

In this project, we analyze the view-selection problem that is a research direction in
database. Given a lattice, the objective query list and the storage space limit, we
develop an integer programming model to get the appropriate set of viewsto
materialize. By storing the set of materialized views on disk, we can improve the
query performance and decrease the total evaluation cost.

We develop Matlab code that can transform the dataset from the database system into
the data input file and plug in with the model file into AMPL/CPLEX to solve the
integer programming problem. Given three instances of different workload from
realistic world, we solve these problems and do the sensitivity analysis on the storage
gpace limit. More instances with variations in the query list are solved to verify the
efficiency of the model and to analyze the structure of the problems. Moreover, linear
programming relaxation provides good lower bound in all the instances and the ratio

- 24 -

of the lower bound to the optimum is ninety-nine percent for most of the cases. Since
LP can solve larger scale problem than IP, the LP relaxation of our problem presents
close estimate if the problem istoo big to be solved in IP by exact method.

Thisisthefirst time for the view-selection problem to be investigated in integer
programming area. By formulating the problem in IP in the mathematical way, we
can claim that our integer programming model for the view-selection problem can
solve large instance up to some point. Based on the work so far, we can dig further in
this direction as follows.

1) Analyze the greedy algorithm in empirical way by doing more experiments.

2) Measure the cost of evaluating a query by counting the storage space in bytes
instead of in tuples or rows.

3) Develop new efficient heuristics based on the similarity between the view-
selection problem and the UFL and k-median problems.

References

~

b

10.
11.

12.

13.

Book: Laurence A. Wolsey. “Integer Programming”, 1998.
Book: Ronald L. Rardin. “Optimization in Operations Research”, 1997.
Book: Parker Rardin. “Discrete Optimization”, 1988.

John M. Mulvey; Harlan P. Crowder. “Cluster Analysis: An Application of Lagrangian
Relaxation”, Management Science, Vol. 25, No.4 (Apr., 1979), 329-340.

Bezalel Gavish, Hasan Pirkul. “Algorithms for the Multi-Resource Generalized Assignment
Problem”, Management Science, Vol. 37, No.6 (Jun., 1991), 695-713.

T. D. Klastorin. “The p-Median Problem for Cluste Analysis: A Comparative Test Using the
Mixture Model Approach”, Management Science, Vol. 31, No. 1 (Jan., 1985), 84-95.

Marshall L. Fisher; Pradeep Kedia. “Optimal Solution of Set Covering/Partitioning
Problems Using Dual Heuristics”, Management Science, Vol. 36, No.6 (Jun. 1990), 674-688.

Venky Harinarayan, Anand Rajaraman, Jeffrey D. Ullman. “Implementing Data Cubes
Efficiently”.

Foto Afrati, Rada Chirkova, Shalu Gupta, and Charles Loftis. “Designing and Using Views
To Improve Performance of Aggregate Queries ” (Sept. 9, 2004).

Howard Karloff, Milena Mihail. “On the Complexity of the View-Selection Problem”.
David S. Johnson. “A Theoretician’s G Guide to the Experimental Analysis of Algorithms”.

Pransan Roy, S. Seshadri, S. Sudarshan, Siddhesh Bhobe. “Efficient and Extensible
Algorithms for Multi Query Optimization”.

Amit Shukla, Prased M. Deshpande, Jeffrey F. Naughton. “Materialized View Selection for
Multidimensional Datasets”.

-25-

Appendix

1. AMPL file for the small example

prodl.mod
set N;
set M;

paramb;
paramc{i in N,j in M};

var x{i in N} binary;
var y{i inN, j in M} >=0;

minimize cost: sum{i in N} sum{j in M} c[i,j] *y[i,jl;

subject to congtraint1{i in N, j in M}: y[i,j] <= X{i];
subject to constraint2{j in M}: sum{i in N} y[i,j]=1,
subject to constraint3: sumyi in N} x[i] =b;

subject to constraint4: x[1] =

prodl.dat
set N:= 1,2,34,56,7,8;
setM:= 1,234,5678;

paramb = 4;

paramc12345678-
100 100 100 100 100 100 100 100
50050 50050 50 50050 50
50050075 50075 75 75 75
500 500 500 20 500 500 20 500
500 500 500 500 30 500 30 30
500 500 500 500 500 40 500 40
500 500 500 500 5005001 500
500 500 500 500 500 500 500 10;

O~NOUITDWN B

prodl sol.out
cost = 420

—

*

—
1

O~NOOUTD WNE X
OCORrRPRORrRORrPE

*

cocoococor oM~

F<
[eNoNeNeNoNaN RN

[cReoRoRoRoRo N =N iy

~NO O~ WNE
cooroood
OO0 O0OO0ORrROU
ORrO0OO0OO0CO0OO®
coocorocooo
OrO0OO0OO0OO0OO®™

- 26 -

80000000O

2. AMPL model file

view_7.run (omit view_13.run and view_15.run)

reset;

model prod3.mod;

data prod3_7.dat;

solve,;

display cost, sum{i in N} a[i] *X[i], b, {i in N: X[i]>0} x[i],{i in N, j inM: y[i,j]>0} y[i,j] > sol_7.out;

prod3.mod (for IP problem)
set N;

number of views in the search space given the lattice
set M;

number of queriesto be answered

paramb;

storage space limit
paramend_row integer;

#index of theraw data
paramend_column integer;

#index of thefirst one in the query list;
parama{i in N};

number of rows in each view
paramc{i in N,j in M};

cogt to answer query j by using view i

var x{i in N} binary;
egualsto oneif we materialize view i
var Y{i inN, jin M} >=0;
nonzero if we answer query j by using view i

minimize cost: sumyi in N} sum{j in M} c[i,jl*y[i,jl;
cost to answer all the objective queries

subject to constraint1{i in N, j in M}: if c[i,j] <= c[end_row,end_column] then y[i,j] <= X[i];
no queries can be answered by view i if it is not materialized
subject to constraint2{j in M}: sum{i in N} y[i,j1=1;
each query must be answer by any one view
subject to congtraint3: sum{i in N} a[i] *x[i] <=b;
storage space constraint
subject to congtraint4: x[end_row]=1;
existance of the raw data

prod2.mod (for LP problem)
set N;

number of views in the search space given the lattice
set M;

number of queriesto be answered

paramb;

storage space limit
paramend_row integer;

#index of theraw data
paramend_column integer;

#index of thefirst onein the query list;
parama{i in N};

-27-

number of rows in each view
paramc{i in N,j in M};
cogt to answer query j by using view i

var X{i inN} >=0<=1;
LP relaxation;
var Y{i inN, jin M} >=0;
nonzero if we answer query j by using view i

minimize cost: sumy{i in N} sum{j in M} c[i,jl1*y[i,jl;
cost to answer all the objective queries

subject to congtraint1{i in N, j in M}: if c[i,j] <= c[end_row,end_column] then y[i,j] <= X[i];
no queries can be answered by view i if it is not materialized
subject to constraint2{j in M}: sum{i in N} y[i,j]=1;
each query must be answer by any one view
subject to congtraint3: sum{i in N} a[i] *x[i] <=b;
storage space constraint
subject to congtraint4: x[end_row]=1;
existance of the raw data

3. Matlab file to generate AMPL data file

getBin.m
function viewBin = getBin(attr Num)

% get the binary matrix given the number of attributes
% attrNum: number of attributes
% return: M*N binary matrix where M is view number

len = 27attrNum-1;

vievNum = O:len;

viewNum = viewNum';

vienBin = zeros(len,attr Num);

fori= Llent+1
tmp = dec2bin(vienNum(i,1));
tmp = sprintf('%0* s,attr Num,tmp);
str = grrep(tmp,'1,'A);
tmpBin = idetter(str);
viewBin(i,:)=tmpBin;

end

getMatrix.m
function C = getMatrix(T,A,J)
% get the cost matrix C

width = sz&(T,2);

len = length(T);

tmpA = A(A~=0);

tmpRow = length(tmpA);
tmpColumn = length(J);

C = zeros(tmpRow,tmpCol umn);

ldx = O:len-1;
paramA = [Idx' Al;
paramA(A==0,:)=[];
tmpldx = paramA(:,1);

for j = 1:tmpColumn
C(:.)) = tmpA;

-28-

for i = 1:tmpRow
for k=1:width
if T(tmpldx(i)+1,k) < T(J()+1,k)
C(i,j) = Inf;
break;
end
end
end
end
C(C==Inf)=C(end,end)* 5; % exchange theinfinity with 10 times the cost of the root

getData_7.m (omit getData_13.m and getData 15.m)

% write the data file for theinput of AMPL

clear;

attrNum = 7;% number of attributes in the database tables

storeRatio = .3; % ratio of maximum b to thetotal number of rows in the queries
storeTimes = 3; % maximal b no larger than how many times the raw data;

len = 27attrNum;
ldx = O:len-1;

% construct the cost vector
A= zeros(len,1);
infile = fopen('vw_sizes fact.txt','r");
i=1;
tmp = fscanf(infile,'%d");
fori= 1l:len
A(i,1) = tmp(2*i-1);
end
fclose(infile);

J=[5717698188112]; % the objective query
gueryNum = length(J);

T = getBin(attrNum); % construct the data table
C = getMatrix(T,A,J); % get the cost matrix

paramA = [Idx' Al;
paramA(A==0,:)=[];
ldx = paramA(:,1);

tmp_b = min(A(end)+ sum(A(J+ 1))* stor eRati 0,A(end)* stor €Ti mes);
b = floor(tmp_b); % the storage space limit

fid = fopen('prod3_7.dat','w);
tmpSring = sprintf('set N:=");
fori= 1:len
if A(i,1)~=0
tmpSring = sprintf('%s %i' tmpSring,i-1);
end
end
fprintf(fid,'%s ;\n',tmpString);

tmpSring = sprintf('set M :=");
for i = 1:queryNum
tmpString = sprintf('%s %i',tmpString,J(i));
end
fprintf(fid,'%s ;\n',tmpString);

fprintf(fid,'\nparamb : = %i;\n'", b);
fprintf(fid,\nparam end_row := %i;\n',len-1);

-29.-

fprintf(fid,\nparam end_column := %i;\n',J(end));

fprintf(fid,'\nparama := \n');
fprintf(fid,'%i %i\n', paramA’);
fprintf(fid,";\n’);

tmpSring = sprintf(\nparamc: *);
for i = 1:length(J)
tmpString = sprintf('%s %i',tmpString,J(i));
end
fprintf(fid,'%s := \n',tmpString);
for i = 1:length(C)
for j = 0:length(J)
|f] ==
fprintf(fid,'%i *,1dx(i));
ese
fprintf(fid,'%i ',C(i,));
end
if j == length(J)
fprintf(fid,"\n");
end
end
end
fprintf(fid,";\n’);

fol ose(fid);

4. Matlab file for greedy algorithm

greedyAlg.m
function [cogt, X, Y] = greedyAlg(A,J,C,b)
% sol ve the view-sel ection problem by greedy algorithm

len = length(A);
ldx = find(A~=0)-1;
tmpA = A(A~=0);

tmpRow = length(tmpA);
tmpColumn = length(J);

X = zeros(tmpRow, 1);
X(end) = 1;
Y = zer os(tmpRow,tmpCol umn);
Y(end,:) = 1;
M = C(end,end); % the number of rows in raw data
bBar = b - sum(tmpA.*X);
t=0;
while bBar >= 0
t=1t+1;
if t > tmpColumn;
break;
end
curCost = sum(sum(C.*Y)); % cost to answer the query list Jif only with the raw data
curBen = zeros(tmpRow, 1);
for i = 1:tmpRow
if (min(C(i,:)) >= M)
continue;
end
if X(i) ==
curBen(i) = O;
continue;

-30-

end
tmpY =Y,
tmpY_Row = (C(i,:) <= M);
for k= 1:tmpColumn
if tmpY_Row(k) ==
tmpY(:,k) = O;
end
end
tmpY_Row = (C(i,:) <= M);
tmpY(i,:) = tmpY_Row;
tmpBen = curCost - sum(sum(C.*tmpY));
curBen(i) = tmpBen;
end
[stBen stldX] = sort(-curBen./tmpA); % sort in descending order
for j = 1:tmpRow
if tmpA(stldx(j)) <= bBar
curldx = stldx());
X(curldx) = 1;
break;
end
end
tmpY =Y,
tmpY_Row = (C(curldx,:) <= M);
for k= 1:tmpColumn
if tmpY_Row(k) ==
tmpY(:,k) = O;
end
end
tmpY_Row = (C(curldx,:) <= M);
tmpY(curldx,:) = tmpY_Row;
Y = tmpY,;
bBar = b - sum(tmpA.*X);
end

cost = sum(sum(C.*Y));
X=[ldx X;
Y=[ldx Y];

-31-

