
- 1 -

JINGNI LI, RADA CHIRKOVA, AND YAHYA FATHI

AN IP MODEL FOR THE VIEW SELECTION PROBLEM

(Technical Report)

December 7, 2004

Operations Research Program, North Carolina State University, 2004©

- 2 -

Abstract:

 A commonly used and powerful technique for improving query response time over
large databases is to materialize frequently asked queries. The problem is to select an
appropriate set of views, given a limited amount of storage resources. The
contribution of this project is the integer programming model that is developed to
solve the view selection problem. Given a list of queries and a lattice, return the
definition of the materialized views. Moreover, the view selection problem can be
compared with the UFL and k-Median problem that are well defined and analyzed in
IP area.

In this project, there are many computation components besides the analysis work. A
lot of instances with different size of the IP model are solved by using mathematical
programming software package. Then the LP relaxation of the problem gives strong
average lower bound for the IP problem. Further more, Greedy algorithm is used to
solve the problem and shows good performance.

- 3 -

Abstract: ... 2
1. Introduction... 4
2. Integer Programming model .. 4

2.1 Parameters and Variables... 4
2.2 Integer Programming Model.. 5
2.3 Example .. 6

3. Data Structure ... 7
4. Experiments by exact method.. 8

4.1 Solve three instances of different workload.. 8
4.2 Sensitivity Analysis on b ... 9
4.3 Variation in the query list .. 13

5. LP relaxation and Lower Bound .. 16
6. The Greedy Algorithm... 19

6.1 Algorithm outline .. 20
6.2 Solve the three instances by greedy algorithm.. 20

7. Comparison with UFL and k-Median problem... 21
8. Conclusion .. 24
References .. 25
Appendix .. 26

1. AMPL file for the small example... 26
2. AMPL model file... 27
3. Matlab file to generate AMPL data file .. 28
4. Matlab file for greedy algorithm .. 30

- 4 -

1. Introduction
Decision support system involves complex queries on large databases. A common
and powerful query optimization technique is to materialize some queries instead of
computing them from raw data each time. But we can not materialize all the queries
when the storage space is limited. Thus it is critical to select an appropriate set of
views to materialize to improve the performance of frequent and important queries.
The dependency among the views is defined by the lattice. Suppose a list of queries
and a lattice in database are already given, the goal of the project is to develop an
efficient integer programming model for the view select problem in the case that each
query can be answered by one qualified view in the lattice framework.

The project report is organized as follows. In Section 2, we introduce the IP model to
represent the view selection problem in mathematical way. In Section 3, we present
the data structure for each node of view in the lattice. In Section 4, we solve several
instances of the IP with quite different sizes by mathematical programming software
package AMPL/CPLEX and do the sensitivity analysis experiments on the value of b.
In Section 5, we compute the lower bound for the IP problem by solving its LP
relaxation. In Section 6, we implement the greedy algorithm to the view selection
problem and compare the result with those got from exact method. Section 7
compares the view selection problem with UFL and k-Median problems in IP that
have been well developed. Finally, Section 8 summarizes the results in this project
and plans some further work in the future.

2. Integer Programming model
In this project report, we skip the work about how to generate the lattice but
concentrate on the optimization part. Given the tables in the large relational database,
a lattice framework can be constructed to express dependencies among views. A
query can be answered by any one of its ancestors in the lattice that includes the raw
data and itself. Assume that the lattice based on the database and the set of queries to
be answered are already given. The objective is to materialize a subset of right views
in the lattice to minimize the time cost to answer the required queries subject to the
storage space constraints. The materialized views must be precomputed and stored on
disk, and the storage space of a view is set to be linear to the number of rows in the
view. The time to answer a query is taken to be equal to the storage space occupied
by the view from which the query is answered.

There are n views in the lattice and m queries to be answered. The input is the cost
vector associated with each view, the queries to be answered and the storage space
limit, while the output is the views that need to be materialized.

2.1 Parameters and Variables
Declare the parameters of this IP:

i : Index of views in the search space i = 1 to n

- 5 -

j : Index of queries j = 1 to m

Let ia be the number of rows in view i .

Let b be the storage space limit.

Let ijc be the cost to answer query j by using view i .

 if view i can used to answer query j

 otherwise
i

ij

a
c

�
= �

∞
�

Define the variables of this IP:

Let
1 if view i is materialized

0 otherwiseix

�
= � �

Let
1 if we use view i to answer query j

0 otherwiseijy

�
= � �

2.2 Integer Programming Model
Formulate the IP model:

Mininmize
,

ij ij
i j

c y
∀

	

Subject to:

1

n

i i
i

a x b
=

≤

1

1
n

ij
i

y j
=

= ∀
�

 , where ij i ijy x i j c Inf≤ ∀ ≠

1 1x =

 = 0 or 1

0 ,
i

ij

x i

y i j

∀
≥ ∀

The first constraint is the storage constraint which limits the total number of rows in
the materialized views to be no more than the current storage space. The second set of
constraints guarantee that each query must be answered by any one view in the lattice.
The third set of constraints shows that no query can be answered be view j if view j is
not materialized. For each i, considering only those views that can be used to answer
query j, where ijc Inf≠ , decreases the number of constraints. The fourth constraint
indicates the existence of the raw data. The left constraints are binary and sign
constraints.

- 6 -

2.3 Example
In this part, we show a small example to verify our IP model.

Given the lattice of Example 4.1 in Page 13 of Ullman’s paper in the following Figure
1,

Figure 1: Example lattice with space costs

We can get the cost matrix as follows.

[]100 50 75 20 30 40 1 10
t

a =

100 100 100 100 100 100 100 100

50 50 50 50 50

75 75 75 75 75

20 20

30 30 30

40 40

1

10

c

� �
� �

∞ ∞ ∞� �
� �

∞ ∞ ∞� �

∞ ∞ ∞ ∞ ∞ ∞� �

= � �
∞ ∞ ∞ ∞ ∞� �

∞ ∞ ∞ ∞ ∞ ∞
� �
� �

∞ ∞ ∞ ∞ ∞ ∞ ∞� �

∞ ∞ ∞ ∞ ∞ ∞ ∞
� �� �

Assume the objective queries to be answered are all the nodes in the lattice. Set the
cost to be equal to 500 that is five times the cost of the raw data if there is no edge
between i and j. Suppose we can only materialize three more views except the raw
data. Then set the storage space constraint becomes that the number of materialized
views is equal to 4 including the raw data.

- 7 -

Solve the IP problem using AMPL/CPLEX and get the same solution as that in that
paper. The solution indicates that in order to attain the minimal cost to answer all the
8 queries, we should materialize view 2, 4, 6 (corresponding to b, d, f in the lattice
graph) besides the raw data and thus achieve the optimal cost of 420. The code file
for this example is attached to the end of the report.

3. Data Structure
In this section, we analyze the data set file that comes from the real world. The data
about the lattice that comes from the realistic world contains two columns. Each row
in the data file that corresponds to a node in the lattice has a view ID and a view size.

The view size here is taken to be the number of rows in the view. Given the workload
of the number of attributes, the structure of the lattice and dependency among the
views are fixed. The only variation is the view size associated with each node in the
lattice. We define the data structure of each node, which can be used to express the
relationship among the views and can be tracked back to the definition of the derived
views once we get the solution of the IP model.

Suppose the workload of the attributes from the database is K. The number of nodes
in the lattice is 2K and it increases exponentially as the number of attributes increases.
For each node in the lattice, let the binary vector define the characteristics whether or
not each attributes is used to aggregate the tuples in database. It is equal to 1 if the
attribute has the characteristics at this node and 0 otherwise. Then each node can be
express by a 0-1 vector and the dependency can be derived expressively from this
kind of data structure. A view in the lattice can be computed directly from its ancestor
if there is dependency relationship between them. In the example shown in Table 1,
we compare each element in any pair of vector E and F. If there exists any element
that is equal to 1 in E while the corresponding element in F is 0, then view F can not
be used to answer view E as shown.

Table 1. Dependency expressed by binary vector

View View ID View Definition

E 5 1, 0, 1
F 4 1, 0, 0

The evaluation cost to answer query j by using view i is taken to be storage cost of
view i if query j can be answered by view i and infinity otherwise. Following the
above criteria, the cost matrix to answer a list of objective queries can be computed
and transformed to the input of the IP model. Moreover, we can transform the binary
vector of each node to decimal that can be used as the index of views. Thus the view
ID is taken to be consecutive decimal integer that starts at 0 and ends at 2 1K − . After
solving the IP instance, the solution that is in decimal form can be transformed back
to the definition of views in binary format.

- 8 -

4. Experiments by exact method
In realistic world, the total space available to store the materialized views is usually
smaller than the cost of the objective queries. Otherwise we can precompute all the
queries in advance and store them on disk, and then there is no need to optimize this
view selection problem. Moreover, the available storage space is no more than five
times than the raw data because we would rather not spend that much to store those
materialized. There is a tradeoff between the cost and the efficiency during the
decision process.

4.1 Solve three instances of different workload.
Given the lattice, we can get the input for the IP model in section 2. The structure of
the parameters and variables for the three instances is shown as follows in Table 2.
The cardinality of vector A is smaller than the number of nodes in the lattice because
we skip those nodes that can not be used to answer anyone in the query list and those
views have been taken to be zero in the dataset file. Then the number of rows in the
cost matrix C is taken to be the same as that in A and the number of columns in C is
equal to the cardinality of the query set. We use Matlab to write the input data file for
the IP model and then use AMPL/CPLEX to solve the IP instances. The timing of
each workload instance is shown in the following Table 3, in the unit of the system
CPU seconds.

Table 2. Sizes of the problem

Workload Number of nodes Number of queries A C X Y
View_7 128 7 60×1 60×7 60×1 60×7
View_13 8192 8 4104×1 4104×8 4104×1 4104×8
View_15 32768 8 17464×1 17464×8 17464×1 17464×8

Table 3. Timing of Matlab and AMPL/CPLEX

Workload Matlab AMPL/CPLEX Total Time
View_7 0.22s 0.05s 0.27s
View_13 20.91s 3.04s 23.95s
View_15 391.20s 18.64s 409.84s

Given three realistic instances of different workload size which is 7, 13 and 15, we
can solve them by AMPL/CPLEX by setting a reasonable storage space limit b.

Let R denote the number of rows in the raw data.

Let W denote the total number of rows in the queries in the objective list.

Set { }min ,b R W Rβ θ= + , where0 1, 1β θ≤ ≤ > .

We solve the three instances for .3, 3β θ= = in Table 4, where b is taken to be the
value in the reasonable range. The result shows that the views that should be
materialized are those indexes with x equal to 1, and each query j is to be answered
by view i with y equal to 1.

- 9 -

Table 4. Results of solving three instances

View workload b Optimal Cost X Y

View_7 702709 1347820 x[i] [*] :=
 17 1
 88 1
112 1
127 1

y[i,j] :=
17 17 1
88 88 1
112 112 1
127 5 1
127 7 1
127 69 1
127 81 1

View_13 669194 1264190 x[i] [*] :=
 88 1
 112 1
 912 1
2050 1
6656 1
8191 1

y[i,j] :=
88 88 1
112 112 1
912 912 1

2050 2050 1
6656 6656 1
8191 593 1
8191 2368 1
8191 7936 1

View_15 737056 1522810 x[i] [*] :=
 224 1
 2848 1
 8194 1
26624 1
32767 1

y[i,j] :=
224 224 1
2848 2848 1
8194 8194 1
26624 26624 1
32767 152 1
32767 3201 1
32767 8832 1
32767 31232 1

4.2 Sensitivity Analysis on b
Intuitively, the optimal cost decreases as the storage space increases. If we have
limited space that can only store the raw data, then every query must compute directly
from the root node and the evaluation cost to answer all the queries is the number of
the queries times the cost of the raw data. If we have space to store all the queries
precomputed, there is no optimization issues in this case and the total evaluation cost
is simply the summation of the cost of all the queries.

In Table 4 as follows, we do the sensitivity analysis on b for the view-7 and view-13
workload instances. Given the same query list as in section 4.1, as the storage space
limit increases in the above range, the optimal cost decreases step piece wise. Unless
there is more space available that is large enough to hold one more materialized query,
the evaluation cost remains the same for the given objective query list. As shown in
Table 5 and 6, the first column b is the storage space limit. The first value b takes is
the number of rows in the raw data and the last value it takes is the cost of the raw
data plus the total cost of the queries. Since the query list is short in the given
instances, the total cost of the queries never exceeds the threshold of five times the
raw data. The second column is the optimal objective value of the IP model for the
given b. The third column corresponds to X in the model which is the optimal
solution that defines the index of the materialized views. The rest columns correspond
to Y in the model that defines each query in the list should be answered by which
view. As we can see from the tables and the figures below, the optimal cost decreases

- 10 -

piece wise as the value of b increases. Within the range in each piece, the objective
value and the optimal solution remain the same. They only change when the value of
b grows big enough to hold another possible materialized view.

Table 5. Sensitivity analysis results on b for view-7 instance

b cost sol 5 7 17 69 81 88 112

299814 2098698 127 127 127 127 127 127 127 127

326674 1802697 112,127 127 127 127 127 127 127 112

353533 1544080 88,112,127 127 127 127 127 127 88 112

380393 1544080 88,112,127 127 127 127 127 127 88 112

407253 1544080 112,120,127 127 127 127 127 127 120 112

434113 1544080 112,120,127 127 127 127 127 127 120 112

460972 1347815 17,88,112,127 127 127 17 127 127 88 112

487832 1347815 17,88,112,127 127 127 17 127 127 88 112

514692 1347815 17,88,112,127 127 127 17 127 127 88 112

541551 1347815 17,88,112,127 127 127 17 127 127 88 112

568411 1347815 17,88,112,127 127 127 17 127 127 88 112

595271 1347815 17,88,112,127 127 127 17 127 127 88 112

622131 1347815 17,88,112,127 127 127 17 127 127 88 112

648990 1347815 17,88,112,127 127 127 17 127 127 88 112

675850 1347815 17,88,112,127 127 127 17 127 127 88 112

702710 1347815 17,88,112,127 127 127 17 127 127 88 112

729570 1347815 17,88,112,127 127 127 17 127 127 88 112

756429 1344186 17,81,88,112,127 127 127 17 127 81 88 112

783289 1344186 17,81,88,112,127 127 127 17 127 81 88 112

810149 1344186 17,81,88,112,127 127 127 17 127 81 88 112

837008 1344186 17,81,88,112,127 127 127 17 127 81 88 112

863868 1344186 17,81,88,112,127 127 127 17 127 81 88 112

890728 1344186 17,81,88,112,127 127 127 17 127 81 88 112

917588 1344186 17,81,88,112,127 127 127 17 127 81 88 112

944447 1344186 17,81,88,112,127 127 127 17 127 81 88 112

971307 1344186 17,81,88,112,127 127 127 17 127 81 88 112

998167 1344186 17,81,88,112,127 127 127 17 127 81 88 112

1025026 1344186 17,81,88,112,127 127 127 17 127 81 88 112

1051886 1343013 5,17,81,88,112,127 5 127 17 127 81 88 112

1078746 1343013 5,17,81,88,112,127 5 127 17 127 81 88 112

1105606 1343013 5,17,81,88,112,127 5 127 17 127 81 88 112

1132465 1343013 5,17,81,88,112,127 5 127 17 127 81 88 112

1159325 1343013 5,17,81,88,112,127 5 127 17 127 81 88 112

1186185 1343013 5,17,81,88,112,127 5 127 17 127 81 88 112

1213044 1343013 5,17,81,88,112,127 5 127 17 127 81 88 112

1239904 1343013 5,17,81,88,112,127 5 127 17 127 81 88 112

1266764 1343013 5,17,81,88,112,127 5 127 17 127 81 88 112

1293624 1343013 5,17,81,88,112,127 5 127 17 127 81 88 112

1320483 1343013 5,17,81,88,112,127 5 127 17 127 81 88 112

1347343 1342994 5,7,17,81,88,112,127 5 7 17 127 81 88 112

1374203 1342994 5,7,17,81,88,112,127 5 7 17 127 81 88 112

1401063 1342994 5,7,17,81,88,112,127 5 7 17 127 81 88 112

- 11 -

1427922 1342994 5,7,17,81,88,112,127 5 7 17 127 81 88 112

1454782 1342994 5,7,17,81,88,112,127 5 7 17 127 81 88 112

1481642 1342994 5,7,17,81,88,112,127 5 7 17 127 81 88 112

1508501 1342994 5,7,17,81,88,112,127 5 7 17 127 81 88 112

1535361 1342994 5,7,17,81,88,112,127 5 7 17 127 81 88 112

1562221 1342994 5,7,17,81,88,112,127 5 7 17 127 81 88 112

1589081 1342994 5,7,17,81,88,112,127 5 7 17 127 81 88 112

1615940 1342994 5,7,17,81,88,112,127 5 7 17 127 81 88 112

1642800 1342986 5,7,17,69,81,88,112,127 5 7 17 69 81 88 112

Table 6. Sensitivity analysis results on b for view-13 instance

b cost sol 88 112 593 912 2050 2368 6656 7936

299814 2398512 8191 8191 8191 8191 8191 8191 8191 8191 8191

324439 2102511 112, 8191 8191 112 8191 8191 8191 8191 8191 8191

349065 1840358 112, 2050, 8191 8191 112 8191 8191 2050 8191 8191 8191

373690 1840358 112, 2050, 8192 8191 112 8191 8191 2050 8191 8191 8191

398315 1581741 88,112, 2050, 8192 88 112 8191 8191 2050 8191 8191 8191

422941 1581741 88,112, 2050, 8193 88 112 8191 8191 2050 8191 8191 8191

447566 1581741 88,112, 2050, 8193 88 112 8191 8191 2050 8191 8191 8191

472192 1581741 88,112, 2050, 8193 88 112 8191 8191 2050 8191 8191 8191

496817 1385161 88,112, 912, 2050, 8191 88 112 8191 912 2050 8191 8191 8191

521442 1385161 88,112, 912, 2050, 8191 88 112 8191 912 2050 8191 8191 8191

546068 1385161 88,112, 912, 2050, 8191 88 112 8191 912 2050 8191 8191 8191

570693 1385161 88,112, 912, 2050, 8191 88 112 8191 912 2050 8191 8191 8191

595318 1385161 88,112, 912, 2050, 8191 88 112 8191 912 2050 8191 8191 8191

619944 1385161 88,112, 912, 2050, 8191 88 112 8191 912 2050 8191 8191 8191

644569 1385161 88,112, 912, 2050, 8191 88 112 8191 912 2050 8191 8191 8191

669194 1264193 88,112, 912, 2050, 6656, 8191 88 112 8191 912 2050 8191 6656 8191

693820 1264193 88,112, 912, 2050, 6656, 8191 88 112 8191 912 2050 8191 6656 8191

718445 1264193 88,112, 912, 2050, 6656, 8191 88 112 8191 912 2050 8191 6656 8191

743070 1264193 88,112, 912, 2050, 6656, 8191 88 112 8191 912 2050 8191 6656 8191

767696 1264193 88,112, 912, 2050, 6656, 8191 88 112 8191 912 2050 8191 6656 8191

792321 1264193 88,112, 912, 2050, 6656, 8191 88 112 8191 912 2050 8191 6656 8191

816947 1264193 88,112, 912, 2050, 6656, 8191 88 112 8191 912 2050 8191 6656 8191

841572 1264193 88,112, 912, 2050, 6656, 8191 88 112 8191 912 2050 8191 6656 8191

866197 1264193 88,112, 912, 2050, 6656, 8191 88 112 8191 912 2050 8191 6656 8191

890823 1264193 88, 112, 912, 2050, 6656, 8191 88 112 8191 912 2050 8191 6656 8191

915448 1264193 88, 112, 912, 2050, 6656, 8191 88 112 8191 912 2050 8191 6656 8191

940073 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 8191 912 2050 2368 6656 8191

964699 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 8191 912 2050 2368 6656 8191

989324 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 8191 912 2050 2368 6656 8191

1013949 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 8191 912 2050 2368 6656 8191

1038575 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 8191 912 2050 2368 6656 8191

1063200 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 8191 912 2050 2368 6656 8191

1087826 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 8191 912 2050 2368 6656 8191

1112451 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 8191 912 2050 2368 6656 8191

1137076 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 8191 912 2050 2368 6656 8191

1161702 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 8191 912 2050 2368 6656 8191

1186327 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 8191 912 2050 2368 6656 8191

1210952 1235301 88, 112, 912, 2050, 2368, 6656, 8191 88 112 8191 912 2050 2368 6656 8191

1235578 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 2050 2368 6656 8191

- 12 -

1260203 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 2050 2368 6656 8191

1284828 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 2050 2368 6656 8191

1309454 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 2050 2368 6656 8191

1334079 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 2050 2368 6656 8191

1358704 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 2050 2368 6656 8191

1383330 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 2050 2368 6656 8191

1407955 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 2050 2368 6656 8191

1432581 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 2050 2368 6656 8191

1457206 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 2050 2368 6656 8191

1481831 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 2050 2368 6656 8191

1506457 1231672 88, 112, 593, 912, 2050, 2368, 6656, 8191 88 112 593 912 2050 2368 6656 8191

1531082 1231268 88, 112, 593, 912, 2050, 2368, 6656, 7936, 8191 88 112 593 912 2050 2368 6656 7936

2 4 6 8 10 12 14 16 18

13

14

15

16

17

18

19

20

21

22
X105

X105

O
p

tim
al

 C
os

t

Storage Limit, b

Figure 2. Sensitivity analysis on b for view-7 instance

2 4 6 8 10 12 14 16 18

12

14

16

18

20

22

24

X105

X10
5

O
pt

im
al

 C
os

t

Storage Limit, b

Figure 3. Sensitivity analysis on b for view-7 instance

- 13 -

4.3 Variation in the query list
As we can see in section 4.1, in the solution of the three instances, some queries in the
list are answered by themselves and the others are answered by the raw data. None of
the materialized view except the raw data is used to answer more than one query. The
reason here is that there is only small number of elements in the objective query list
and there is no dependent relationship among those queries. Suppose there are more
queries in the objective list, there may be some materialized view that can be used to
answer more than one view. In order to further check the validity of our IP model, we
also do some experiments by varying the query list for the view_7 and view_13
instances as shown in the following Table 7 and 8. The first column b is the storage
space limit. The first value b takes is the number of rows in the raw data and the last
value it takes is the cost of the raw data plus the total cost of the queries. The second
column is the optimal objective value of the IP model for the given b. The third and
fourth columns are related to the LP lower bound that we will discuss in the next
section. The fifth column corresponds to X in the model which is the optimal solution
that defines the index of the materialized views. The rest columns correspond to Y in
the model that defines each query in the objective list should be answered by which
view. The objective query list changes in each instance in the following tables.

For example, in sixth instance of the view_7 experiment, when b equals to 836345,
View 49 is used to answer query 17 and 49, and View 120 is used to answer query 88
and 120. And in last instance of the view_13 experiment, when b equals to 547176,
View 120 is used to answer query 88, 112 and 120, View 3078 is used to answer
query 2050, 2054, 3074 and 3078, View 3110 is used to answer query 2082, 2086,
3106 and 3110, View 4464 is used to answer query 368, 4208 and 4464. These
instances indicates that some of the materialized views other than the raw data can be
used to answer more than one queries in the list if there is dependency among the
query list.

- 14 -

Table 7. Variation in the query list for view_7 instance

b cost cost-LP rate Sol queries

702709 1347815 1344699 0.99768811 17,88,112,127 5 7 17 69 81 88 112

 127 127 17 127 127 88 112

792623 1644000 1643811 0.999885036 17,81,88,112,127 5 7 13 17 69 81 88 112

 127 127 127 17 127 81 88 112

899442 2129267 2107487 0.989771128 17,57,127 17 25 57 81 92 113 116 124

 17 57 57 127 127 127 127 127

639211 1193740 1168217 0.978619297 17,49,112,120,127 7 17 25 49 88 112 116 120

 127 17 127 49 120 112 127 120

804982 1685197 1684960 0.999859364 17,81,112,120,127 5 7 13 17 69 81 88 112 120

 127 127 127 17 127 81 120 112 120

836345 1790732 1789861 0.999513607 49,81,112,120,127 5 7 13 17 49 69 81 88 112 120

 127 127 127 49 49 127 81 120 112 120

899442 2067528 2066366 0.999437976 17,49,112,116,120,127 5 7 13 17 49 69 81 88 112 116 120

 127 127 127 17 49 127 127 120 112 116 120

899442 2356506 2340024 0.993005747 17,49,57,112,120,127 5 7 13 17 49 57 69 81 88 112 116 120

 127 127 127 17 49 57 127 127 120 112 127 120

899442 2656320 2639838 0.993795175 17,49,57,112,120,127 5 7 17 49 57 69 81 88 92 112 116 120 124

 127 127 17 49 57 127 127 120 127 112 127 120 127

899442 2919644 2903162 0.994354791 17,49,57,112,120,127 5 7 17 25 49 57 81 88 92 112 113 116 120 124

 127 127 17 57 49 57 127 120 127 112 127 127 120 127

- 15 -

Table 8. Variation in the query list for view_13 instance

b cost cost-LP rate Sol Queries

669194 1264193 1263699 0.999609237 88, 112, 912, 2050, 6656, 8191 88 112 593 912 2050 2368 6656 7936

 88 112 8191 912 2050 8191 6656 8191

481648 836777 800684 0.956866644 88, 3078, 3110, 4208, 8191 88 112 368 2050 3078 3110 4208 7936

 88 4208 8191 3078 3078 3110 4208 8191

494007 862847 811646 0.940660395 112, 120, 3078, 3110, 4208, 8191 88 112 120 368 2050 3078 3110 4208 7936

 120 112 120 8191 3078 3078 3110 4208 8191

481759 1232346 1205459 0.978182264 120, 3074, 3110, 4208, 8191 88 120 368 945 2050 2082 2160 3074 3110 4208

 120 120 8191 8191 3074 3110 8191 3074 3110 4208

501997 1192077 1172008 0.983164678 120, 3106, 4464, 8191 88 112 120 368 945 2050 2082 2160 3074 3106 4464

 120 120 120 4464 8191 3106 3106 8191 3106 3106 4464

592514 1384708 1267478 0.915339552 112, 120, 2054, 3074, 3106, 4464, 8191 88 112 120 368 945 2054 2082 2160 3106 4464 7936

 120 112 120 4464 8191 2054 3106 8191 3106 4464 8191

668998 1473472 1404291 0.953048989 112, 120, 2160, 3078, 3106, 4464, 8191 88 112 120 344 368 945 2054 2082 2160 3074 4464 7936

 120 112 120 8191 4464 8191 3078 3106 2160 3078 4464 8191

731857 1663128 1586692 0.954040819 112, 120, 2160, 3110, 4464, 5041, 8191 88 112 120 344 368 624 945 2054 2082 2160 3074 3106 4464 7936

 120 112 120 8191 4464 8191 5041 3110 3110 2160 3110 3110 4464 8191

554554 1334638 1284152 0.962172514 112, 120, 3074, 3110, 4464, 8191 88 112 120 368 945 2050 2082 2086 2160 3074 3106 3110 4208 4464

 120 112 120 4464 8191 3074 3110 3110 8191 3074 3110 3110 4464 4464

547176 1156782 1129862 0.976728545 120, 3078, 3110, 4464, 8191 88 112 120 368 2050 2054 2082 2086 2160 3074 3078 3106 3110 4208 4464

 120 120 120 4464 3078 3078 3110 3110 8191 3078 3078 3110 3110 4464 4464

 - 16 -

5. LP relaxation and Lower Bound
The linear programming relaxation can give a lower bound of the IP problem. If
solving the LP relaxation gives integer solution, the IP problem can be simple solved
by its LP version. Otherwise, the result of objective value of the LP defines a lower
bound for the IP problem and it can be derived that the optimal value of the IP is no
smaller than that of the LP problem.

In Table 9 and 10, we get the lower bound given by the LP relaxation for the same
range of b in section 4.2. As we can see in the following tables, the LP lower bound is
very close to the optimal value of the IP problem most of the time. We also compare
the LP lower bound with the optimum in Table 7 and 8 when we do the sensitivity
analysis for the variations on the queries. Linear programming relaxation provides
good lower bound in all the instances and the ratio of the lower bound to the optimum
is ninety-nine percent for most of the cases. The distance between the LP lower
bound and the optimal value varies as the value of b changes. Because in the LP
problem, X can take any value between 0 and 1, and then the knapsack constraint,
which is the first constraint of the storage limit in the model, is always binding. While
in the IP problem, X is binary variables and the knapsack constraint is not active
sometime and there is some space left that is not big enough to hold one more useful
materialized view. Thus the optimal value of the LP problem is continuous while the
optimal value of the IP problem is step piece wise as b changes within the range.

Table 9. Sensitivity Analysis and LP Lower Bound for view_7 instances

b cost cost-LP Lower Bound rate

299814 2098698 2098698 1

326674 1802697 1658018 0.919743029

353533 1544080 1527573 0.989309492

380393 1544080 1476663 0.956338402

407253 1544080 1425753 0.923367313

434113 1544080 1374843 0.890396223

460972 1347815 1347661 0.999885741

487832 1347815 1347332 0.999641642

514692 1347815 1347002 0.999396801

541551 1347815 1346673 0.999152703

568411 1347815 1346344 0.998908604

595271 1347815 1346015 0.998664505

622131 1347815 1345686 0.998420406

648990 1347815 1345357 0.998176308

675850 1347815 1345028 0.997932209

702710 1347815 1344698 0.997687368

729570 1347815 1344370 0.997444011

756429 1344186 1344139 0.999978425

783289 1344186 1344034 0.99990031

810149 1344186 1343928 0.999821451

 - 17 -

837008 1344186 1343823 0.999743336

863868 1344186 1343717 0.999664476

890728 1344186 1343612 0.999586361

917588 1344186 1343506 0.999507502

944447 1344186 1343401 0.999429387

971307 1344186 1343295 0.999350528

998167 1344186 1343190 0.999272412

1025026 1344186 1343084 0.999193553

1051886 1343013 1343012 0.999999255

1078746 1343013 1343011 0.999998511

1105606 1343013 1343009 0.999997022

1132465 1343013 1343007 0.999995532

1159325 1343013 1343006 0.999994788

1186185 1343013 1343004 0.999993299

1213044 1343013 1343002 0.999991809

1239904 1343013 1343001 0.999991065

1266764 1343013 1342999 0.999989576

1293624 1343013 1342997 0.999988086

1320483 1343013 1342995 0.999986597

1347343 1342994 1342994 1

1374203 1342994 1342993 0.999999255

1401063 1342994 1342992 0.999998511

1427922 1342994 1342992 0.999998511

1454782 1342994 1342991 0.999997766

1481642 1342994 1342990 0.999997022

1508501 1342994 1342990 0.999997022

1535361 1342994 1342989 0.999996277

1562221 1342994 1342988 0.999995532

1589081 1342994 1342987 0.999994788

1615940 1342994 1342987 0.999994788

1642800 1342986 1342986 1

Table 10. Sensitivity Analysis and LP Lower Bound for view_13 instances

b cost cost-LP Lower Bound rate

299814 2398512 2398512 1

324439 2102511 1957642 0.93109715

349065 1840358 1791537 0.973472009

373690 1840358 1636952 0.889474765

398315 1581741 1551597 0.980942518

422941 1581741 1504704 0.951296072

447566 1581741 1457813 0.92165089

472192 1581741 1410919 0.892003811

496817 1385161 1377655 0.994581135

521442 1385161 1360999 0.98255654

546068 1385161 1344329 0.970521838

570693 1385161 1327686 0.958506628

595318 1385161 1311030 0.946482033

619944 1385161 1294374 0.934457439

 - 18 -

644569 1385161 1277718 0.922432844

669194 1264193 1263699 0.999609237

693820 1264193 1261073 0.997532022

718445 1264193 1258447 0.995454808

743070 1264193 1255821 0.993377593

767696 1264193 1253195 0.991300379

792321 1264193 1250568 0.989222373

816947 1264193 1247942 0.987145159

841572 1264193 1245316 0.985067945

866197 1264193 1242690 0.98299073

890823 1264193 1240064 0.980913516

915448 1264193 1237438 0.978836301

940073 1235301 1235245 0.999954667

964699 1235301 1234943 0.999710192

989324 1235301 1234641 0.999465717

1013949 1235301 1234340 0.999222052

1038575 1235301 1234038 0.998977577

1063200 1235301 1233736 0.998733102

1087826 1235301 1233434 0.998488627

1112451 1235301 1233133 0.998244962

1137076 1235301 1232831 0.998000487

1161702 1235301 1232529 0.997756013

1186327 1235301 1232228 0.997512347

1210952 1235301 1231926 0.997267872

1235578 1231672 1231667 0.99999594

1260203 1231672 1231633 0.999968336

1284828 1231672 1231600 0.999941543

1309454 1231672 1231567 0.99991475

1334079 1231672 1231534 0.999887957

1358704 1231672 1231501 0.999861164

1383330 1231672 1231467 0.99983356

1407955 1231672 1231434 0.999806767

1432581 1231672 1231401 0.999779974

1457206 1231672 1231368 0.999753181

1481831 1231672 1231334 0.999725576

1506457 1231672 1231301 0.999698783

1531082 1231268 1231268 1

 - 19 -

2 4 6 8 10 12 14 16

13

14

15

16

17

18

19

20

21

22

 Optimal Cost
 LP lower bound

X105

X105

C
os

t

Storage Limit, b

Figure 4. Sensitivity analysis and LP lower bound for view-7 instance

2 4 6 8 10 12 14 16

12

14

16

18

20

22

24

 Optimal Cost
 LP lower bound

X10
5

X105

C
os

t

Storage Limit, b

Figure 5. Sensitivity analysis and LP lower bound for view-13 instance

6. The Greedy Algorithm
Suppose we are given a lattice with space costs associated with each view. The
objective queries to be answered and the dependency relationship among the nodes of
view in the lattice are also given. The objective is to materialize a right set of views to
get the optimal or near-optimal cost to answer the given queries in reasonable time
and the total space to store these precomputed views should be within the storage
limit. The evaluation cost of a view in the lattice is taken to be equal to the number of
rows in the view.

 - 20 -

6.1 Algorithm outline
Let A(v) be the cost of view i. Let Q be the objective queries to be answered. Given a

set of materialized views S, let S denote the complementary view selection space.
Let C(S) be the cost to answer Q by utilizing the materialized views in S. Suppose
also that there is a limit b on the storage space, including the raw data, let b(S) be the
space left after set S is stored. Let B(v, S) the benefit of view v relative to S after
selecting some set S of views including the top view. B(v, S) is computed as the
difference between C({ v, S}) and C(S). At each step of the iteration, the view v* that
can maximize the positive benefit in the current step is selected if A(v*) is no more
than the remaining storage space. Let D be the search space of all qualified views.
Observe that for a given set of objective queries, the number of materialized views is
no more than the number of objective queries since each query is to be answered by
any one view in the lattice.

The iteration stops where there is no enough available space to hold any one more
view or the number of selected materialized view reaches the number of queries.

Now, we can define the Greedy Algorithm for the view-selection problem as follows.

Step 0: Initialization.

S = { raw data} ;

Step 1: Stopping.

If (){ } ()
v S

Min A v b S
∈

≤ and S Q< , go to step 2. Otherwise, stop.

Step 2: Local Optimization.

Choose view v such that

()

()
(), 0 ()

,
arg

v S A v b S

B v S
v Max

A v∈ < <

� �� �
= � �� �� � where (), 0B v S > .

Then update { },v S S→ and go to step 1.

6.2 Solve the three instances by greedy algorithm
Using the above greedy algorithm and code it into Matlab function , we can solve the
three instances with the same parameter and variable definition in section 4.1.
Set { }min ,b R W Rβ θ= + , where0 1, 1β θ≤ ≤ > .

We solve the three instances for .3, 3β θ= = in Table 11 by greedy algorithm

Table 11. Results of solving three instances by greedy algorithm

 - 21 -

View workload b Optimal Cost X Y
View_7 702709 1347820 x[i] [*] :=

 17 1
 88 1
112 1
127 1

y[i,j] :=
17 17 1
88 88 1
112 112 1
127 5 1
127 7 1
127 69 1
127 81 1

View_13 669194 1264190 x[i] [*] :=
 88 1
 112 1
 912 1
2050 1
6656 1
8191 1

y[i,j] :=
88 88 1
112 112 1
912 912 1

2050 2050 1
6656 6656 1
8191 593 1
8191 2368 1
8191 7936 1

View_15 737056 1522810 x[i] [*] :=
 224 1
 2848 1
 8194 1
26624 1
32767 1

y[i,j] :=
224 224 1
2848 2848 1
8194 8194 1
26624 26624 1
32767 152 1
32767 3201 1
32767 8832 1
32767 31232 1

Although the greedy algorithm gives the same results in the three instances as we get
by exact method solved by AMPL/CPLEX in section 4.1, there is no guarantee that it
is always the case. For a counterexample as shown in Table 12, We solve the view_7
instance for other value of b and find that the result given by the greedy algorithm is
not optimal. The ratio may depend on several factors including the lattice structure,
the query list and the value of b. We leave this direction of research for future work.

Table 12. Non-optimal results of view_7 instance by greedy algorithm (GA)

View workload b Optimal Cost Cost given by GA X(optimal) X(GA)

View_7 971307 1344186 1346642 x[i] [*] :=
 17 1
81 1
 88 1
112 1
127 1

x[i] [*] :=
 5 1
 17 1
 88 1
112 1
127 1

7. Comparison with UFL and k-Median problem
As we know, Uncapacited Facility Location problem (UFL) and k-Median problem
have been well developed in IP research area and there are a lot of efficient
algorithms related to these two problems. We review some basic idea about these two
problems as follows.

UFL Problem is defined as follows.

 - 22 -

Given:

n Potential facility locations

m Clients

jf Fixed cost of opening a facility at location j

ijc Cost of serving client i from facility j

jy Binary variable designating whether facility j is open

ijx Binary variable designating whether client i is assigned to facility j

The IP model for UFL problem is as follows.

Minimize
1 1 1

n m n

j j ij ij
j i j

z f y c x
= = =

= +
� ���

Subject to

1

1

 ,

, =0 or 1 ,

n

ij
j

ij j

ij j

x i

x y i j

x y i j

=

= ∀

≤ ∀

∀

�

The objective is to select a set of facility locations and assign each client to a facility
to minimize total cost. The first set of constraints defines that every client must be
assigned to some facility to satisfy its demand. The second set of constraints limits
that no clients can be assigned to this facility if it is not open. These two set of
constraints are also in the IP model for the view-selection problem in section 2. The
difference is that our model doesn’t count the fixed cost into the total cost of the
objective value and there is one more knapsack constraint to limit the total storage
space in our IP model. Moreover, the view-selection requires the existence of the raw
data that force 1 1x = as shown in section 2.

The view-selection problem is also similar to another famous IP problem: k-median
problem.

Given:

I : The set of n objects

J : The set of eligible medians (I and J are identical for most applications)

k : The desired number of clusters

ijd : Indicates the distance or dissimilarity between object I and object j

ijx : Binary variable designating whether object i is assigned to cluster median j

1jjx = indicates the occurrence of a cluster median at j

The homogeneous clustering problem can be formulated as follows:

 - 23 -

Minimize ij ij
I J

z d x= ���

Subject to

1

 ,

=0 or 1 ,

ij
J

jj
J

ij jj

ij

x i

x k

x x i j

x i j

= ∀

=

≤ ∀

∀

�
�

The objective is to select k median objects among the set of eligible ones in order to
minimize the total distance of all the objects to the median ones by assigning each
object to one cluster and there is one median object in each cluster. The set of median
objects is a subset of the set of all the objects. This scenario is similar to the view-
selection problem that the set of objective queries is also a subset of all the views in
the lattice. The first and the third set of constraints are also in our IP model. While the
second constraints in the k-median problem indicate that the total number of median
objects is taken to be equal to k, which is similar in our example in section 2.3. But in
general situation, the first constraint in our model is a knapsack constraint of storage
space limit and it is slightly different from the k-median constraint.

 - 24 -

Table 13. Comparison with UFL and k-Median problem

 View-selection problem UFL problem k-median problem

Mininmize

,
ij ij

i j

c y
∀

�

1 1 1

n m n

j j ij ij
j i j

z f y c x
= = =

= +
� ���

ij ij
I J

z d x= ���

Subject to

1

n

i i
i

a x b
=

≤
�

1

1
n

ij
i

y j
=

= ∀
�

 , where ij i ijy x i j c Inf≤ ∀ ≠

1 1x =

 = 0 or 1

0 ,
i

ij

x i

y i j

∀
≥ ∀

1

1

 ,

, =0 or 1 ,

n

ij
j

ij j

ij j

x i

x y i j

x y i j

=

= ∀

≤ ∀

∀

�

1

 ,

=0 or 1 ,

jj
J

ij
J

ij jj

ij

x k

x i

x x i j

x i j

=

= ∀

≤ ∀

∀

�
�

As shown in Table 13, Comparison our view-selection problem with the UFL and k-
median problem is important because there have been develop a lot of efficient
algorithms to solve these two popular IP problems such as Cut and Branch method
and Lagrangian Relaxation. Considering the similarity between there two problems
and our IP problems will help us to develop useful heuristics algorithm to solve large
scale view-selection problem where exact methods may not be applied.

8. Conclusion
In this project, we analyze the view-selection problem that is a research direction in
database. Given a lattice, the objective query list and the storage space limit, we
develop an integer programming model to get the appropriate set of views to
materialize. By storing the set of materialized views on disk, we can improve the
query performance and decrease the total evaluation cost.

We develop Matlab code that can transform the dataset from the database system into
the data input file and plug in with the model file into AMPL/CPLEX to solve the
integer programming problem. Given three instances of different workload from
realistic world, we solve these problems and do the sensitivity analysis on the storage
space limit. More instances with variations in the query list are solved to verify the
efficiency of the model and to analyze the structure of the problems. Moreover, linear
programming relaxation provides good lower bound in all the instances and the ratio

 - 25 -

of the lower bound to the optimum is ninety-nine percent for most of the cases. Since
LP can solve larger scale problem than IP, the LP relaxation of our problem presents
close estimate if the problem is too big to be solved in IP by exact method.

This is the first time for the view-selection problem to be investigated in integer
programming area. By formulating the problem in IP in the mathematical way, we
can claim that our integer programming model for the view-selection problem can
solve large instance up to some point. Based on the work so far, we can dig further in
this direction as follows.

1) Analyze the greedy algorithm in empirical way by doing more experiments.

2) Measure the cost of evaluating a query by counting the storage space in bytes
instead of in tuples or rows.

3) Develop new efficient heuristics based on the similarity between the view-
selection problem and the UFL and k-median problems.

References
��� �������	��
���������	����� ��� ��������� � �"! ��#$��%	�&�('	�)� %	����*+*-,.��%0/$1 �32�2�45�
6�� �������	��78� �	�9�.:;
 � 78����:	,"� � �=<5> #?,.*-, @���#?,.���+,.� <�> �&����#?,"�A���B78�����&������C/$1 �32�2�DA�
E�� �������	�F'9�������&�78����:9,.� � �"G ,���������#H� <�> #?,"*-, @��	#?,.���0/I1 �J2�4	45�
K5� L � C��;M � MN�	�.O �&�9PAQ+���R�.���S' �RT �)� UV:��&� � �=T �.���R#I�&�	�;�	�9�����&,W� ���;�X� >�> �Y,.���9#?,.���Z�?[(
��%	������%B,.���

78���"� \��	#?,.� �0/$1)M]�����A%9�&*S�&�9#A^	�&,"���	���&1�_	��� �)6�` 1bac� � KVd � > � � 1 �J2AD�2&e 1 E�692�fHE�K�g�
`5� ���)@��	�.��� h���O�,���C�1�QS�����A�S'B,.��� �	� ��� �F�W%	���&,i#$C�*S��[����(#$C��5Mj�	�i#=, f 78�������������Xh����	�&���	�i, @��&:(�k�)�R,�%9�	*l����#

'9����m��.��*n/$1)M]���	� %9�&*S�&�9#A^	�&,"���	���&1�_	��� �)E�D 1)aV� � oZd L ��� � 1 �J2�2��Ie 1 o�2�`�f?DA�?E��
oB� p �qGV�qr �.�A�R#H���&,"� � � p C�� >sf MN�&:	,"���S'9�b��m��.��*t[��� T �.���&#H���X�	���"�A�R,������ T ��* > �����	#?,"O � p ���b#uv�R,.�A%w#IC��

Mx, \�#H�����MN��:����q� >�> ��� ����Cy/I1)M]���	�A%��&*l����#z^9�&,.�&�	�)�&1�_5��� �qE5� 1)aV� ���5d L ��� � 1 �J2�4 ` e 1 4�K	f{2|`5�
D�� M]���b��C��9�i��
 �&} ,���C��&�RPB'	����:��&� >+r �&:	,.� � �=<5> #?,.*l�9�R^����.�	#?,W���Z�?[(^	��# T � O��&�&,.��%�~�'9����#?,i#?,.����,.��%'9����m��.��*S��uv�R,.��% G ���	��QV�&���&,��R#?,.�)� /$1)M]���	��%��&*S�&��# ^	�&,"���	�)�&1A_���� �)E9o 1)aZ� � oZd L ��� ���J2�2�g e 1 o�D|K�f{o�4�45�
45� _��&�	�|��QS���&,.�	�����������	1q�;�	���	:;7X�J�&������*����	1 L �i[$[���&� GV� us�i�W*l��� ���"! * > �.�&*+�&�	#?,.��% G �9#I� T �	m ����|[=[�,.�R,.�&��#?���y/ �
2B� } ��#I�s��[����#?,"1�7X��:�� T C	,"��� ��O ��1�^9CA�9�.�Vh�� > #H��1|���	: T C����R�����B
��[z#?,�� � �"G ���&,W%	��,.��%c�A�	:�uv�R,.��%+_y,.�&UZ�

p � ! * > ��� O��k'9�&�.[�����*����������?[0�8%�%	����%��9#H�(�(���&�&,"���;/ d ^	� > # �R2 1 69g5g	K�e��
�Jg�� QS��U�����: r ���&�.�?[$[1)Mx,i�"�&�	�kM�,.C��9,i� ���H< �V#HC�� T ��* > �.�3\�,Y#H�F�?[�#HC��X_y,.�&U f ^����.�&��#?,.���w'9����m����&*n/ �
�)��� G ��O�,.:F^ � L ��C�������� � � � p C��������R#?,.�&,.���� �(hnh��9,.:��X#H��#HCA�0�y\ > �&�&,.*l�&��#$�	�q�;�	�9�����&,W���=[0����%����&,i#HC�*S��/ �
��6�� '9������������78����1&^ � ^�����C���:��R,.1&^ � ^���:����b��C����	1&^�,.:�:�C�����C;��C���m � ��� �|[=[�,.�R,.�&��#�����:;�\�#H�����R,im��.�

����%	���R,i#HC�*S��[|����M]�	�"#?, �(���&��� <�> #?,"*-, @��	#?,.���0/ �
��E�� �;*-,i#A^�C������.��1z'9�����)�&:8M �qG ����C > ���	:��&1 L �i[H[��b�&� }�� ac���A%�C9#I��� � � M]��#H�&�R,.�	�i, @|�&:S_y,.��U�^9�����&�R#?,.� �[����

M]�9�i#?,.:9,.*l�&�A�R,.���	�9� G ��#H�����R#I��/ �

 - 26 -

Appendix

1. AMPL file for the small example
prod1.mod
set N;
set M;

param b;
param c{i in N,j in M};

var x{i in N} binary;
var y{i in N, j in M} >=0;

minimize cost: sum{i in N} sum{j in M} c[i,j] *y[i,j] ;

subject to constraint1{i in N, j in M}: y[i,j] <= x[i] ;
subject to constraint2{j in M}: sum{i in N} y[i,j] =1;
subject to constraint3: sum{i in N} x[i] =b;
subject to constraint4: x[1] =1;

prod1.dat
set N := 1,2,3,4,5,6,7,8;
set M := 1,2,3,4,5,6,7,8;

param b = 4;

param c: 1 2 3 4 5 6 7 8:=
1 100 100 100 100 100 100 100 100
2 500 50 500 50 50 500 50 50
3 500 500 75 500 75 75 75 75
4 500 500 500 20 500 500 20 500
5 500 500 500 500 30 500 30 30
6 500 500 500 500 500 40 500 40
7 500 500 500 500 500 500 1 500
8 500 500 500 500 500 500 500 10;

prod1_sol.out
cost = 420

x [*] :=
1 1
2 1
3 0
4 1
5 0
6 1
7 0
8 0
;

y [* ,*]
: 1 2 3 4 5 6 7 8 :=
1 1 0 1 0 0 0 0 0
2 0 1 0 0 1 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 1 0 0 1 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 1 0 1
7 0 0 0 0 0 0 0 0

 - 27 -

8 0 0 0 0 0 0 0 0
;

2. AMPL model file
view_7.run (omit view_13.run and view_15.run)
reset;
model prod3.mod;
data prod3_7.dat;
solve;
display cost, sum{i in N} a[i] *x[i] , b, {i in N: x[i] >0} x[i] , {i in N, j in M: y[i,j] >0} y[i,j] > sol_7.out;

prod3.mod (for IP problem)
set N;
 # number of views in the search space given the lattice
set M;
 # number of queries to be answered

param b;
 # storage space limit
param end_row integer;
 # index of the raw data
param end_column integer;
 # index of the first one in the query list;
param a{i in N};
 # number of rows in each view
param c{i in N,j in M};
 # cost to answer query j by using view i

var x{i in N} binary;
 # equals to one if we materialize view i
var y{i in N, j in M} >=0;
 # nonzero if we answer query j by using view i

minimize cost: sum{i in N} sum{j in M} c[i,j] *y[i,j] ;
 # cost to answer all the objective queries

subject to constraint1{i in N, j in M}: if c[i,j] <= c[end_row,end_column] then y[i,j] <= x[i] ;
 # no queries can be answered by view i if it is not materialized
subject to constraint2{j in M}: sum{i in N} y[i,j] =1;
 # each query must be answer by any one view
subject to constraint3: sum{i in N} a[i] *x[i] <=b;
 # storage space constraint
subject to constraint4: x[end_row] =1;
 # existance of the raw data

prod2.mod (for LP problem)
set N;
 # number of views in the search space given the lattice
set M;
 # number of queries to be answered

param b;
 # storage space limit
param end_row integer;
 # index of the raw data
param end_column integer;
 # index of the first one in the query list;
param a{i in N};

 - 28 -

 # number of rows in each view
param c{i in N,j in M};
 # cost to answer query j by using view i

var x{i in N} >=0 <=1;
 # LP relaxation;
var y{i in N, j in M} >=0;
 # nonzero if we answer query j by using view i

minimize cost: sum{i in N} sum{j in M} c[i,j] *y[i,j] ;
 # cost to answer all the objective queries

subject to constraint1{i in N, j in M}: if c[i,j] <= c[end_row,end_column] then y[i,j] <= x[i] ;
 # no queries can be answered by view i if it is not materialized
subject to constraint2{j in M}: sum{i in N} y[i,j] =1;
 # each query must be answer by any one view
subject to constraint3: sum{i in N} a[i] *x[i] <=b;
 # storage space constraint
subject to constraint4: x[end_row] =1;
 # existance of the raw data

3. Matlab file to generate AMPL data file
getBin.m
function viewBin = getBin(attrNum)

% get the binary matrix given the number of attributes
% attrNum: number of attributes
% return: M*N binary matrix where M is view number

len = 2^attrNum-1;
viewNum = 0:len;
viewNum = viewNum';
viewBin = zeros(len,attrNum);
for i = 1:len+1
 tmp = dec2bin(viewNum(i,1));
 tmp = sprintf('%0*s',attrNum,tmp);
 str = strrep(tmp,'1','A');
 tmpBin = isletter(str);
 viewBin(i,:)=tmpBin;
end

getMatrix.m
function C = getMatrix(T,A,J)
% get the cost matrix C

width = size(T,2);
len = length(T);
tmpA = A(A~=0);
tmpRow = length(tmpA);
tmpColumn = length(J);
C = zeros(tmpRow,tmpColumn);

Idx = 0:len-1;
paramA = [Idx' A] ;
paramA(A==0,:)=[] ;
tmpIdx = paramA(:,1);

for j = 1:tmpColumn
 C(:,j) = tmpA;

 - 29 -

 for i = 1:tmpRow
 for k=1:width
 if T(tmpIdx(i)+1,k) < T(J(j)+1,k)
 C(i,j) = Inf;
 break;
 end
 end
 end
end
C(C==Inf)=C(end,end)*5;% exchange the infinity with 10 times the cost of the root

getData_7.m (omit getData_13.m and getData_15.m)
% write the data file for the input of AMPL
clear;
attrNum = 7;% number of attributes in the database tables
storeRatio = .3; % ratio of maximum b to the total number of rows in the queries
storeTimes = 3; % maximal b no larger than how many times the raw data;

len = 2^attrNum;
Idx = 0:len-1;

% construct the cost vector
A = zeros(len,1);
infile = fopen('vw_sizes_fact.txt','r');
i = 1;
tmp = fscanf(infile,'%d');
for i = 1:len
 A(i,1) = tmp(2* i-1);
end
fclose(infile);

J = [5 7 17 69 81 88 112] ; % the objective query
queryNum = length(J);

T = getBin(attrNum);% construct the data table
C = getMatrix(T,A,J); % get the cost matrix

paramA = [Idx' A] ;
paramA(A==0,:)=[] ;
Idx = paramA(:,1);

tmp_b = min(A(end)+sum(A(J+1))*storeRatio,A(end)*storeTimes);
b = floor(tmp_b); % the storage space limit

fid = fopen('prod3_7.dat','w');
tmpString = sprintf('set N := ');
for i = 1:len
 if A(i,1)~=0
 tmpString = sprintf('%s %i',tmpString,i-1);
 end
end
fprintf(fid,'%s ;\n',tmpString);

tmpString = sprintf('set M := ');
for i = 1:queryNum
 tmpString = sprintf('%s %i',tmpString,J(i));
end
fprintf(fid,'%s ;\n',tmpString);

fprintf(fid,'\nparam b := %i;\n', b);
fprintf(fid,'\nparam end_row := %i;\n',len-1);

 - 30 -

fprintf(fid,'\nparam end_column := %i;\n',J(end));

fprintf(fid,'\nparam a := \n');
fprintf(fid,'%i %i\n', paramA');
fprintf(fid,';\n');

tmpString = sprintf('\nparam c: ');
for i = 1:length(J)
 tmpString = sprintf('%s %i',tmpString,J(i));
end
fprintf(fid,'%s := \n',tmpString);
for i = 1:length(C)
 for j = 0:length(J)
 if j == 0
 fprintf(fid,'%i ',Idx(i));
 else
 fprintf(fid,'%i ',C(i,j));
 end
 if j == length(J)
 fprintf(fid,'\n');
 end
 end
end
fprintf(fid,';\n');

fclose(fid);

4. Matlab file for greedy algorithm
greedyAlg.m
function [cost, X, Y] = greedyAlg(A,J,C,b)
% solve the view-selection problem by greedy algorithm

len = length(A);
Idx = find(A~=0)-1;
tmpA = A(A~=0);
tmpRow = length(tmpA);
tmpColumn = length(J);

X = zeros(tmpRow,1);
X(end) = 1;
Y = zeros(tmpRow,tmpColumn);
Y(end,:) = 1;
M = C(end,end); % the number of rows in raw data
bBar = b - sum(tmpA.*X);
t = 0;
while bBar >= 0
 t = t+1;
 if t > tmpColumn;
 break;
 end
 curCost = sum(sum(C.*Y)); % cost to answer the query list J if only with the raw data
 curBen = zeros(tmpRow,1);
 for i = 1:tmpRow
 if (min(C(i,:)) >= M)
 continue;
 end
 if X(i) == 1
 curBen(i) = 0;
 continue;

 - 31 -

 end
 tmpY = Y;
 tmpY_Row = (C(i,:) <= M);
 for k = 1:tmpColumn
 if tmpY_Row(k) == 1
 tmpY(:,k) = 0;
 end
 end
 tmpY_Row = (C(i,:) <= M);
 tmpY(i,:) = tmpY_Row;
 tmpBen = curCost - sum(sum(C.* tmpY));
 curBen(i) = tmpBen;
 end
 [stBen stIdx] = sort(-curBen./tmpA); % sort in descending order
 for j = 1:tmpRow
 if tmpA(stIdx(j)) <= bBar
 curIdx = stIdx(j);
 X(curIdx) = 1;
 break;
 end
 end
 tmpY = Y;
 tmpY_Row = (C(curIdx,:) <= M);
 for k = 1:tmpColumn
 if tmpY_Row(k) == 1
 tmpY(:,k) = 0;
 end
 end
 tmpY_Row = (C(curIdx,:) <= M);
 tmpY(curIdx,:) = tmpY_Row;
 Y = tmpY;
 bBar = b - sum(tmpA.*X);
end

cost = sum(sum(C.*Y));
X = [Idx X] ;
Y = [Idx Y] ;

