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Abstract

Network intruders usually launch their attacks through a
chain of intermediate stepping stone hosts in order to hide
their identities. Detecting such stepping stone attacks is dif-
ficult because packet encryption, timing perturbations, and
meaningless chaff packets can all be utilized by attackers to
evade from detection. In this paper, we propose a method
based on packet matching and timing-based active water-
marking that can successfully correlate interactive stepping
stone connections even if there are chaff packets and limited
timing perturbations. We provide several algorithms that
have different trade-offs among detection rate, false posi-
tive rate and computation cost. Our experimental evalua-
tion with both real world and synthetic data indicates that
by integrating packet matching and active watermarking,
our approach has overall better performance than existing
schemes.

1 Introduction

Network based intrusions grow rapidly in recent years,
despite the huge amount of resources that have been put into
network and information security. To hide their identities,
intruders have developed various countermeasures to elude
from being discovered. For example, they could spoof the
source IP addresses in their attacking flows to conceal the
hosts where the attacks are launched. Another popular and
effective method is to launch attacks through a sequence of
intermediate hosts, also known asstepping stones. Intrud-
ers can connect from one host to another using protocols
such as Telnet or SSH, and pass the malicious instructions
without disclosing the sources of attacks. Only on the last
host, they will issue the attack actions toward the real vic-
tims. In this scenario, even if the last host can be correctly
identified, it could be very difficult to trace back to the real
origin behind these stepping stones. Correlation methods
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are needed to link the connections between stepping stones
together.

Researchers have proposed many approaches to detect
attacks through stepping stone connections. Early work in-
cludes correlation methods based on comparing the packet
contents in suspicious network flows [7] [11]. Due to the
broad applications of secure protocols such as SSH and
IPsec, recent approaches focus on analyzing packet tim-
ing characteristics in interactive stepping stone connections
[14] [12] [10] [4] [1] [9] [13].

However, existing correlation schemes are still far from
being perfect. To defeat packet timing based approaches, at-
tackers could intentionally insert timing perturbations sim-
ply through delaying certain packets. It may severely de-
stroy the timing characteristics among corresponding flows.
Another countermeasure is to insert meaningless padding
packets, also calledchaff. Such chaff packets are very dif-
ficult to be differentiated from normal packets, especially
when they are transmitted through encrypted channels.

In this paper, we propose a practical solution that can
correlate stepping stone connections even if both timing
perturbations and chaff packets are introduced at the same
time. Inspired by [9] and [13], we first actively embed
timing-based watermarks into upstream flows. Then packet
matching is used to find all possible corresponding pack-
ets in suspicious flows. Correlation results are determined
by computing the watermarks closest to the original ones
from all packet combinations. We provide 4 algorithms
with different trade-offs among detection rate, false posi-
tive rate and computation cost. We experimentally compare
our algorithms with the best existing approaches that can
deal with timing perturbation or chaff. Our results indicate
that by integrating the ideas in [9] and [13] we can achieve
better performance.

The rest of this paper is organized as follows. Section 2
gives out the problem statement. Section 3 describes packet
matching process and watermark decoding algorithms. Sec-
tion 4 provides the experimental evaluations and compar-
isons. Section 5 reviews related work on stepping-stone
correlation. Section 6 concludes our paper and points out
further research directions.
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2 Problem Statement

We useh1 ↔ h2 to represent a bi-directional network
connectionbetween hosth1 and h2, and h1 → h2 as
a unidirectionalflow from h1 to h2. A flow is also de-
noted asf when hosts and directions are not concerned.
Given a series of hostsh1, h2, . . . , hn, when a person or
a program sequentially connects fromhi to hi+1, the se-
quence of connectionsh1 ↔ h2 ↔ . . . ↔ hn is called
a connection chain. The intermediate hosts in a connec-
tion chain are calledstepping stones. Assumingj > i,
we call flowhi → hi+1 an upstreamflow of hj → hj+1,
andhj → hj+1 a downstreamflow of hi → hi+1. Intu-
itively, information is propagated from an upstream flow to
its downstream flows. We useti to represent the timestamp
of packetpi. The sequence of packets in a flowf is repre-
sented as〈p1, p2, . . . , pn〉 (ti ≤ tj for 1 ≤ i < j ≤ n). We
define thetracing problem of a connection chain as given
an upstream flowf , to identify its downstream flows.

Solutions to the tracing problem are particularly useful
to pin down attackers who launch their attacks through step-
ping stones. Currently, the most promising approaches are
correlation methods based on timing analysis. To evade
timing analysis, attackers may introduce timing perturba-
tions by delaying some or all packets to change the tim-
ing characteristics of downstream flows. Another counter-
measure is to insert meaningless chaff packets into a down-
stream flow. For example, adding chaff packetsci into flow
〈p1, p2, . . . , pn〉may lead to〈p1, c1, p2, c2, c3, . . . , pn, cm〉.
Because it is very difficult to distinguish chaff from normal
packets when encryption is used, upstream and downstream
flows may look very differently.

We propose to investigate tracing techniques that can
deal with both timing perturbations and chaff packets. Sim-
ilar to previous work [4] [9] [1] [13], we focus on inter-
active connections and assume the maximum timing per-
turbation attackers can introduce is bounded. Delays may
also come from the networks or intermediate hosts that the
connection chain passes through. It is difficult to guaran-
tee the synchronization of the clocks of hosts where pack-
ets are captured; this prevents us from comparing packet
timestamps directly. To simplify the situation, we assume
the skews between different clocks are known so that we
can adjust the timestamps of packets from different hosts
for comparison. The timing errors from timestamp adjust-
ment, the maximum perturbations added by attackers, and
delays from other sources are collectively represented by a
singlemaximum delay∆. In summary, we have following
assumptions in our solution:

1. Every packet in an upstream flow will go to its down-
stream flow as a single packet.

2. The delay between a packet in an upstream flow and its

corresponding packet in a downstream flow is bounded
by [0, ∆]. We also call thistiming constraint.

3. The order of the packets in an upstream flow is kept
the same in a downstream flow. We also call thisorder
constraint.

3 Proposed Approaches

In our approaches, we adopt the inter-packet-delay (IPD)
based watermarking scheme [9], which was originally pro-
posed to defeat timing perturbations. The basic idea is to
first embed a unique timing-based watermark into an up-
stream flowf . If later we can detect the same watermark
in another flowf ′, it is very likely thatf ′ is a downstream
flow of f . By choosing different watermark parameters, the
detection rate and false positive rate are controllable. How-
ever, this watermark scheme cannot be directly used when
there are chaff packets. It is because watermark detection
requires that we know exactly which packets inf ′ should be
used to decode. When extra chaff packets are present, cur-
rent detection mechanism fails to find the correct packets. In
other words, suppose an upstream flowf = 〈p1, . . . , pn〉,
andf ′ = 〈p′1, c1, c2, . . . , p

′
n, cm〉 is the chaffed downstream

flow of f , the corresponding packets〈p′1, . . . , p′n〉 form a
subsequenceof f ′. Current scheme cannot dig out the cor-
rect subsequence from all possible subsequences withn
packets. In fact, due to the difficulty of distinguishing chaff
from normal packets, it is very unlikely, if possible, to iden-
tify the correct subsequence exclusively.

To defeat chaff, our idea is to find all possible subse-
quences off in f ′, and decode a watermark from each of
them. From all these watermarks, we choose the “best”
one, which is the closest to the original watermark in terms
of hamming distance. The rationale is that by using all
possible subsequences, it is guaranteed that the right sub-
sequence will be chosen sometime so that we can get the
desired watermark. So by using the “best” watermark, if a
downstream flow can be identified before chaff packets are
added, we can still identify that flow afterward. Actually,
it even enables us to detect certain flows missed by the ba-
sic watermark scheme. On the other hand, since the “best”
watermark may be obtained from another (incorrect) sub-
sequence, the false positive rate may also increase. This is
the trade-off between detection rate and false positive rate
in our approaches.

3.1 Inter-Packet-Delay Based Watermark
Scheme

Before discussing our approaches, we first briefly intro-
duce the IPD based watermarking scheme [9]. This scheme
was proposed to provide a robust correlation method under
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timing perturbations. The idea is to actively embed a water-
markw into an upstream flow by slightly delaying certain
packets. Such changes of timing will then propagate to all
of its downstream flows. Ifw is unique enough, we should
detectw in all the downstream flows, but nowhere else, with
a high probability.

Given a flow 〈p1, . . . , pn〉, to embed a single water-
mark bit, we first randomly choose2r distinct packets
〈pe1 , . . . , pe2r

〉, and construct2r packet pairs:〈pei
, pei+d〉,

where1 ≤ e1 < ... < e2r ≤ n − d. The packets chosen to
embed the watermark are calledembedding packets. Here
d ≥ 1 is a user-selected offset value. The IPD of packet pair
〈pei , pei+d〉 is defined as:

ipdei
= tei+d − tei

, (i = 1, . . . , 2r). (1)

We randomly divide these2r IPDs into 2 groups,ipd1 and
ipd2, with each group havingr IPDs. We useipd1

i andipd2
i

(i = 1, . . . , r) to denote the IPDs inipd1 andipd2, respec-
tively. Apparentlyipd1

i andipd2
i are identically distributed.

ThereforeE(ipd1
i ) = E(ipd2

i ). The average IPD difference
between the IPDs from group 1 and group 2 is defined as:

D =
1
2r

r∑

i=1

(ipd1
i − ipd2

i ) (2)

Then we should haveE(D) = 0. Herer is calledredun-
dancy number. The biggerr is, the more likelyD is equal
to 0.

Now if we increase or decreaseD by a valuea > 0, we
can skew the distribution ofD, and the probability thatD
will be positive or negative is increased. This observation
gives us a way to embed a single bit of watermark proba-
bilistically. To embed a watermark bit 0, we decreaseD by
a so that it is more likely to haveD < 0. To embed bit 1,
we increaseD by a so that it is more likely to haveD > 0.
The decrease ofD is achieved by decreasing everyipd1

i and
increasing everyipd2

i by a; the increase ofD is achieved by
increasing everyipd1

i and decreasing everyipd2
i by a. The

increase or decrease of a single IPD can be achieved by de-
laying the second or first packet in that IPD by the amount
of a, respectively. After the watermark bit is embedded, it
can be detected by checking if the adjustedD is less than 0
or not. Bit 0 (or 1, resp.) is decoded whenD ≤ 0 (or > 0,
resp.). There exists a slight probability that a watermark
bit cannot be correctly embedded. This probability can be
reduced by increasingr.

A l-bit watermarkw can be embedded by repeating the
above procedure of embedding one watermark bitl times.
Each time a different set of embedding packets should be
used. All these embedding packets form a subsequence of
f . In watermark detection, anotherl-bit watermarkw′ is de-
coded from a suspicious flow and compared withw. If the
hamming distanceh betweenw andw′ is less than or equal
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Figure 1. Determining matching packets

to a pre-defined threshold, we report a stepping-stone flow
is found. Because the packets used to embed the watermark
are kept secret from attackers, this watermark scheme is ro-
bust against random timing perturbations. However, extra
chaff packets will destroy the decoding mechanism. In this
paper, we use packet matching to find possible correspond-
ing packets and use the “best” watermark to determine the
correlation result.

3.2 Determining Matching Packets

Suppose the upstream flow isf = 〈p1, p2, . . . , pn〉,
which has been embedded with watermarkw, and the suspi-
cious downstream flow isf ′ = 〈p′1, p′2, . . . , p′m〉 (m ≥ n).
Before we can form all possible subsequences off ′, for
every packet inf , we first determine which packet(s) in
f ′ could be its corresponding packet. According to our as-
sumption that every packet in the upstream flow will go into
the downstream flow, iff andf ′ are actually in the same
connection chain, we must be able to find the correspond-
ing packets for all packets inf . Because of the difficulty
to distinguish normal packets from chaff, we may only ob-
tain some possible corresponding packets through certain
packet matching criteria. We call these possible correspond-
ing packetsmatching packets, or simplymatches. If for any
packet no matching packets can be found, we directly return
thatf andf ′ are not in the same connection chain.

We use the timing constraint in our assumptions to de-
termine the matching packets. Since the timing constraint
requires that the delays between corresponding packets is
bounded by[0,∆], any matching packetp′j of packetpi

must satisfy:0 ≤ t′j − ti ≤ ∆. All matching packets of
pi will form a set, which is defined by:

M(pi) = {p′j |0 ≤ t′j − ti ≤ ∆} (3)

We callM(pi) thematching setof packetpi in flow f ′. This
procedure is illustrated in figure 1.

To compute all the matching sets,f andf ′ only need to
be scanned once. First, we scanf ′ from the beginning to
determineM(p1) using equation 3. Packets in a match-
ing set is sorted so that the first packet has the smallest
timestamp and the last one has the largest timestamp. Sup-
pose inM(p1), the first and last matching packet arep′i and
p′k respectively (i < k). To computeM(p2), we do not
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need to re-scanf ′ from the beginning. Becauset1 < t2, the
first packet to be checked isp′i, and no packets before this
packet can satisfy the timing constraint.

Based on the timestamps ofp1 andp2, heuristics can be
used to further reduce the number of packets to be scanned
for M(p2). Suppose the first matching packet inM(p2)
is p′j . To determinep′j , if t2 − t1 ≤ ∆

2 , we should scan
forward fromp′i because it is more likely thatp′j is close to
p′i thanp′k. After p′j is found, all packets fromp′j top′k fulfill
equation 3. They are directly added toM(p2). If ∆

2 < t2 −
t1 ≤ ∆, we scan backward fromp′k to determine the first
half of M(p2), then scan forward fromp′k+1 to determine
the second half ofM(p2). If t2 − t1 > ∆, we start directly
from p′k+1 sinceM(p1) andM(p2) will not share common
packets. Similarly, we can determine the matching sets for
the rest of packets inf . Using such heuristics, each packet
in f ′ will be checked at most twice in the worse case.

It is desirable to further reduce the size of matching sets
to improve the correlation performance. Besides the timing
constraint, it is possible to use packet size as a constraint in
packet matching. For example, in Telnet connections, the
sizes of corresponding packets are usually kept the same.
Even when SSH protocol is used, block ciphers normally
only pad a packet to 8-byte or 16-byte boundary. In such
case, we may usequantizedpacket size, such as multiple
of 16 bytes. However, if attackers can actively add inner-
packet paddings, using packet size constraint is inappro-
priate because the correlation may be completely removed.
Nevertheless, keeping packet size constraint as an option
will at least increase the inconvenience of attackers.

3.3 Computing the “Best” Watermark

After the matching sets of all packets in flowf have been
determined, we will find the “best” watermark from all pos-
sible subsequences inf ′. In the following, we discuss sev-
eral algorithms with different emphases on detection rate,
false positive rate or computation cost. We are trying to
achieve the best trade-off among these three aspects.

3.3.1 Algorithm 1: Brute Force Algorithm

The simplest algorithm is to directly form all subsequences
by brute-forcely trying all combinations of matching pack-
ets. Because we need to maintain the order constraint, not
all combinations can form a legitimate sequence. Differ-
ent matching sets are likely to share common packets, es-
pecially when the maximum delay∆ is large. We need
to guarantee that chosen matching packets will not incur
conflict with the order constraint. If packetp′j ∈ M(pi)
and packetp′k ∈ M(pi+1), p′j andp′k can be selected in
the same subsequence only ifj < k. For example, if
M(p1) = {p′1, p′2} and M(p2) = {p′1, p′2, p′3}, the only
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legitimate subsequences are〈p′1, p′2〉, 〈p′1, p′3〉, and〈p′2, p′3〉.
After all subsequences are created, we can decode every
watermark then obtain the “best” one.

This Brute Force algorithm obviously suffers from its
high computation cost. If the number of packets in each
matching sets is represents as|M(pi)|, the computation
cost of the brute force algorithm can be approximated by:
cost ≈ ∏n

i |M(pi)|, which is unacceptable when∆ or the
number of chaff packets added is large. In the following,
we propose several algorithms with better computation effi-
ciency.

3.3.2 Algorithm 2: Greedy Algorithm

Since only the “best” watermark is wanted, we propose a
very fast Greedy algorithm that always uses the most “ap-
propriate” packets to decode. This algorithm guarantees to
return a watermark whose hamming distance is no bigger
than that computed from the Brute Force algorithm.

Instead of trying all possible subsequences, the Greedy
algorithm only selects those matching packets that are most
likely to generate the “best” watermark. In the IPD water-
mark scheme, supposeipdi = ti+d−ti is used to embed the
watermark. To decode watermark bit 1, it is desirable that
the IPDs in the first group (ipd1) is bigger, and the IPDs in
the second group (ipd2) is smaller. In this case, we want all
IPDs in the first group is the largest, and all IPDs in the sec-
ond group is the smallest. Similarly, to decode watermark
bit 0, we want all IPDs in the first group to be the small-
est, and all IPDs in the second group to be the largest. If
the largest IPD is wanted, we should use the first matching
packet of packetpi, and the last matching packet of packet
pi+d. If the smallest IPD is wanted, we would choose the
last match ofpi and the first match ofpi+d to get the small-
est IPD. The largest and smallest IPDs are shown in figure
2.

Based on this idea, we label the embedding packets with
a triple according to how they are used to embed the wa-
termark. The first element (0 or 1) indicates which water-
mark bit is embedded. The second element (1 or 2) indicates
whether this packet is used in the first or second IPD group.
The last element (1 or 2) indicates whether this packet is
the first or the second packet in the IPD. From the previ-
ous discussion, it is easy to see that for packets labeled with

4



(0, 1, 2), (0, 2, 1), (1, 1, 1), and(1, 2, 2), we should choose
the first packets in the matching sets. For packets labeled
with (0, 1, 1), (0, 2, 2), (1, 1, 2), and (1, 2, 1), we should
choose the last packet.

According to these labels, the Greedy algorithm then se-
lects the first or the last matching packets to form one sub-
sequence, and computes the watermark. Unlike the Brute
Force algorithm, the order constraint is not enforced here.
The major advantage of this algorithm is its extreme low
computation cost, because it only needs to form a single
subsequence. This algorithm also has very good detection
rate. Since the watermark it computes will not have larger
hamming distance than that computed by the brute force al-
gorithm, it can identify every flow that can be identified by
the Brute Force algorithm. However, the false positive rate
of this algorithm is high, because the packets selected may
not satisfy the order constraint.

3.3.3 Algorithm 3: Greedy+ Algorithm

Although the Greedy algorithm can provide very good de-
tection rate and is very efficient in computation, the poten-
tial high false positive rate makes it not so desirable, espe-
cially when the number of chaff packets is large. However,
the idea to always choose the most desired matching packets
is very useful to compute the “best” watermark quickly. In
this algorithm, we decrease the false positive rate by utiliz-
ing the order constraint, while still keeping the high detec-
tion rate and low computation cost. The Greedy algorithm
is revised so that not one but multiple subsequences will be
created. We make sure that every subsequence satisfies the
order constraint. We call this algorithmGreedy+. Unlike
the Brute Force algorithm, Greedy+ only forms a very small
portion of all possible subsequences, so that the watermark
can still be computed very efficiently. We also ensure the
embedding packets that can potentially give us a better wa-
termark will always be checked first. Although only a small
portion of all subsequences is formed, the watermark ob-
tained should be very close to the one obtained by the Brute
Force algorithm. Compared with Greedy, Greedy+ reduces
the false positive rate at the cost of slightly decreased detec-
tion rate.

Greedy+ algorithm has five phases. First, the matching
sets obtained from equation 3 is further simplified to im-
prove performance. We have observed that although certain
packets are included in a matching set, they may never be
used in any subsequence because doing so will invalidate
the order constraint. For example, ifM(p1) = {p′1, p′2} and
M(p2) = {p′1, p′2, p′3}, the only legitimate subsequences
of 〈p1, p2〉 are {〈p′1, p′2〉, 〈p′1, p′3〉, 〈p′2, p′3〉}. Although
p′1 ∈ M(p2), it cannot be selected as a matching packet of
p2, becausep′1 is also the first match inM(p1). Similarly,
suppose nowM(p1) = {p′1, p′2, p′3}. p′3 cannot be used for

p1 either, because it is the last match inM(p2). We can
remove all such packets to get smaller matching sets. For
the above example, the matching sets will be changed to
M(p1) = {p′1, p′2} andM(p2) = {p′2, p′3}. The elimina-
tion of extra matching packets can be combined with the
packet matching process to reduce extra overhead. To re-
move duplicated first packets, instead of starting from the
first matching packetp′j of pi, we begin withp′j+1. To re-
move duplicated last packets, we only need one extra com-
parison between the last packets inM(pi+1) andM(pi).

Second, we use the Greedy algorithm to compute a wa-
termarkwg. If the hamming distance betweenwg and the
original watermarkw is larger than the threshold, we quit
immediately and return that it is not in the same chain of
stepping-stone connections. Fromwg, it is also known
which watermark bits will never match no matter how we
choose the matching packets. Such watermark bits will be
omitted from later computation. We only focus on the wa-
termark bits that match withw.

Third, we check whether the matching packets chosen
by the Greedy algorithm incur any conflict with the or-
der constraint. For example, ifM(p1) = {p′1, p′2} and
M(p2) = {p′2, p′3}, the Greedy algorithm may choosep′2
as the matching packet for bothp1 andp2. If a matching
packet does not have conflict with other matching packets,
then it is safe to stick to this selection, and we do not need
to worry about this packet later. Otherwise, we will have to
adjust the existing selection to satisfy the order constraint.
Supposep′k is the matching packets ofpi selected by the
Greedy algorithm, andI(pi) = k is a function returning the
index of matching packets. Obviously, for two consecutive
embedding packetspi andpj (i < j), if I(pi) ≥ I(pj),
there will be conflict with the order constraint. Even if
I(pi) < I(pj), there may still exist conflict because the
non-embedding packets betweenpi andpj also need to have
exclusive matches. If there arex non-embedding packets in
between, it is required thatI(pi) < I(pj) − x to ensure
every non-embedding packet has at least one match.

Fourth, we form the basic subsequence by adjusting
the matches selected by the Greedy algorithm to main-
tain the order constraint. We make sure that when there
are conflicts, we always allow a packet to choose its first
match, and adjust those using their last matches. This
process starts from the last embedding packet, for which
we can alway stick to the current selection. If the match-
ing packet of embedding packetpi has no conflict or is the
first one in the matching set, we stick to it. Otherwise,
for a embedding packet with conflict or a non-embedding
packet, we choose the last match that will not incur any
conflict with packets later than it. For example, suppose
M(p1) = {p′1, p′2, p′3, p′4}, M(p2) = {p′3, p′4, p′5}, and
M(p3) = {p′4, p′5, p′6}. p1 andp3 are embedding packets
and they both choosep′4 as the match. We begin withp3,
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and it can select its best matchp′4. p2 is non-embedding
packet, so it selects the last non-conflict packetp′3. Thenp1

has to select the last non-conflict packetp′2. From the basic
subsequence, we decode a watermarkwb. If it has a ham-
ming distance less than the threshold, we can immediately
quit and return that this is a stepping-stone flow. Otherwise,
we adjust the selections of matching packets for a better
match of the watermark.

To speed up later computation, we record all the IPD dif-
ferencesD when we computewb. Recall that watermark bit
is decoded as 1 ifD > 0, and 0 ifD ≤ 0. We divideD in
two groupsD+ andD− based on whether their correspond-
ing watermark bits match the original watermark bit. If the
ith watermark bit ofwb is the same as that ofw, we put
the corresponding IPD differenceDi in groupD+. Other-
wise, we putDi in groupD−. We then sort allDi ∈ D− in
the ascending order according to their absolute value|Di|1.
Apparently, we can get a better watermark by choosing dif-
ferent matching packets to make someDi ∈ D− fall into
D+. Among allDi ∈ D−, the one with the smallest ab-
solute value is most likely to be changed by using different
matching packets.

In the final phase, we focus on those embedding pack-
ets ofDi ∈ D−, whose most desirable matching packets
haven’t been chosen in the basic subsequence. For these
packets, the current choice of their matching packets are not
optimized. This process starts from theD with the smallest
absolute value. Suppose it isDj . To adjustDj , we begin
with its last embedding packet,pk, because adjusting it will
not force other embedding packets ofDj to change their
selection of matching packets.

1. For packetpk, if the matching packet currently used is
already the most desirable one, we stick to this selec-
tion, and continue for the previous embedding packet.

2. Otherwise, we select the next matching packet ofpk,
if any. Since it also affects other packets, we have to
re-select their matching packets too. Then we compute
the newDj to see if it moves closer to 0. We also make
sure such a change will not make anyDi previously in
D+ fall into D−. If both conditions hold, it means
choosing the new matching packet will improve the
watermark we can get. So we make this change per-
manent and updateDj . Since we have recorded all the
IPD differences and labeled each packet with a triple,
the computation of newDj can be executed quickly.

3. Repeat step 2 for packetpk until 1) Dj falls into D+,
2) there is no more matching packets, or 3) making
changes will not necessarily improve the watermark.
If Dj falls intoD+, that means we have found a better

1WhetherDi is positive or negative is not related with the group it
belongs to.

watermark. We then adjust the next smallestD ∈ D−.
Otherwise, we will repeat this procedure for the pre-
vious embedding packet ofDj . Whenever we obtain
a watermark whose hamming distance is less than the
threshold, we can terminate and report a stepping stone
flow is found.

In the final phase, each time we determine the best option
of one embedding packet without considering the possible
change of other packets. In other words, we fix the selection
of other packets, and check what is the best selection of the
current packet. Unlike the Brute Force algorithm, there will
be no backtracking. Because we use the heuristics to always
adjust those packets that are most likely to generate a better
result, usually we should get a watermark very close to the
“best” one.

3.3.4 Algorithm 4: Greedy∗

In case a user wants to find the actual “best” watermark, and
the computation cost is not much a concern, we provide an-
other algorithmGreedy∗. The only difference between this
algorithm and the Greedy+ algorithm is in the last phase.
In Greedy∗, after we determine which embedding packets
are non-optimized in the basic subsequence, we enumerate
all the possible combinations of these embedding packets to
find the “best” watermark. Whenever a watermark that has
a hamming distance less than the threshold is obtained, this
algorithm will terminate.

The last phase of Greedy∗ is similar to the Brute Force
algorithm. However, after the previous several phases, usu-
ally we can reduce the size of searching space significantly.
For example, suppose the watermark has 24 bits, the redun-
dancy numberr is 4, the threshold is 5, the hamming dis-
tancehg for watermarkwg is 4, and the hamming distance
hb for the watermarkwb is 7. Half of the embedding pack-
ets use their first matching packets and will be omitted. So
the number of embedding packets we need to check will be
at most(hb−hg)×r×2 = 24. Compared with the number
of packets we need to check in the Brute Force algorithm,
24× r × 4 = 384, this is a huge improvement.

To bound the worst case execution time, this algorithm
also allows users to set up a maximum bound of compu-
tation cost. If it cannot finish within the specific cost, it
returns the best watermark obtained so far.

3.4 Complexity Analysis

Due to the possible large number of chaff packets added
and suspicious flows to be correlated, computation com-
plexity is a big concern in our solution. In this section, we
investigate the time complexity of different algorithms. Ob-
viously, the complexity of all algorithms are affected by the
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Table 1. Experiment Parameters
∆ 0, 1, 2, 3, 4, 5, 6, 7, 8 (second)
λc 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5

Watermark 24 bits
Redundancy 4

WM threshold 7
WM delay 600ms

S-IV threshold 3 seconds

number of packets in the flow pairs, the number of chaff
packets added, and the maximum delay∆.

Considering an upstream flowf and a possible down-
stream flowf ′. In the packet matching process, each packet
in f ′ will be checked at most twice in the worse case. Thus,
the worst case complexity isO(m), wherem is the number
of packets inf ′. If f ′ is actually in the same connection
chain asf , m is equal to the sum of the number of packets
n in f and the number of chaff packetsc. So the complexity
is alsoO(n + c). The average number of matching packets
in each matching set can be approximated by the product of
the average packet arrival rateλf ′ in f ′, and the maximum
delay∆: λf ′ ·∆. Whenf ′ is actually a chaffed flow off ,
λf ′ is equal to the average packet arrival rate off plus the
average arrival rate of chaff packets:λf ′ = λf + λc.

Since the Greedy algorithm only needs to check every
embedding packet once, its computation complexity is
O(n). For the Greedy+ algorithm, the most time
consuming part is the last phase where every match-
ing packet for any non-optimized embedding packet will
be re-scanned. Suppose the non-optimized embedding
packets arepe1 , . . . , pek

. It requires to check at most∑k
i=1 |M(pei)| packets. Using the average number of pack-

ets of matching sets, it is bounded byO(n·λf ′ ·∆). The last
phase of Greedy∗ algorithm needs to check

∏k
i=1 |M(pei)|

packets. However, both Greedy+ and Greedy∗ algorithm
normally have much better performance than their worst
case scenarios.

4 Experiments

In this section, we evaluate the performance of our al-
gorithms usingdetection rate, false positive rateandcom-
putation cost. Both real world and synthetic network flows
are used in our experiments. We compare our algorithms
with the basic watermarking scheme proposed in [9] and
scheme S-IV in [13], because they are the best existing ac-
tive and passive schemes, respectively. Only timing con-
straint is used in packet matching process. We expect that
false positive rate and computation cost decrease dramati-
cally if quantized packet size constraint is also used.

4.1 Real World Data Set

We first evaluate our algorithms using 91 real
SSH/Telnet traces derived from Bell Labs-1 Traces of
NLANR [5]. All real traces have more than 1,000 packets.
For each trace, we first embed a randomly generated water-
mark2, then introduce 9 different kinds of timing perturba-
tions, which is uniformly distributed with a maximum delay
from 0 (i.e., no perturbation) to 8 seconds. The increment of
maximum delay is 1 second. For each timing perturbation,
we add 11 different kinds of Poisson distributed chaff pack-
ets. The arrival rate of chaff packetsλc is from 0 (i.e., no
chaff) to 5, and the increment is 0.5. The maximum delay
∆ in our algorithms is set the same as maximum delay of
timing perturbation. For each setting of∆ andλ, we com-
pute the detection rate, false positive rate, and computation
cost. The threshold of hamming distance in the watermark
scheme is 7. Watermark length is 24, redundancy number
is 4, and the delaya is 600 milliseconds. The threshold for
schemeS-IVis set to be 3 seconds. The parameters is shown
in table 1. In Greedy∗ algorithm, we also set the maximum
cost to 1,000,000 to bound its execution time. The meaning
of computation cost is explained in section 4.1.

Detection Rate.To evaluate the detection rate, for each
setting of parameter∆ andλc, we calculate the correlation
between each original flow and its perturbed and chaffed
flows. For a specific∆ andλc, there are 91 flow pairs to be
correlated. We then compute the average detection rate for
every setting of∆ andλc.

Figure 3 shows the detection rate changing withλc when
∆ = 7 seconds for real flows. The detection rate of the
basic watermark scheme falls near 0 when chaff packets
are added, which shows chaff destroys watermark detec-
tion mechanism completely. The Greedy algorithm can al-
ways achieve 100% detection rate. For other algorithms,
the detection rates increase rapidly with the number of chaff
packets. They will have around 100% detection rate when
λc ≥ 2. If there is no chaff added, Greedy+ and Greedy∗

can detect more than 40% of stepping stone connections,
while scheme S-IV can only detect less than 10%. Although
theoretically Greedy∗ should have better detection rate than
Greedy+, under the bound of computation cost, Greedy+

outperforms Greedy∗.
Figure 4 shows the detection rate changing with∆ when

λc = 3. In this case, all algorithms except the basic water-
mark approach have very high detection rate. However, S-
IV has significant lower detection rate than our algorithms
when there is no chaff, and fails to reach 100% for other
cases.

Because we are trying to use the “best” watermark, the
increase of chaff packets helps the detection rate. However,

2No watermark is embedded when the fast solution of scheme S-IV is
evaluated.
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Figure 3. Detection rate changing with λc, ∆ =
7s
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Figure 4. Detection rate changing with ∆, λc =
3

the increase of chaff will also increase the false positive rate,
which is shown in the following.

False Positive Rate.To evaluate the false positive rate,
for each setting of parameter∆ andλc, we calculate the
correlation between each original flow and the perturbed
and chaffed flows of other 90 flows. Totally there are 8,190
unrelated flow pairs to be correlated. We then compute the
average false positive rate for each setting of∆ andλc. Fig-
ure 5 shows the false positive rate changing withλc when
∆ = 7 seconds. Figure 6 shows the false positive rate
changing with∆ whenλc = 3.

Unsurprisingly, Greedy algorithm shows the worst per-
formance in terms of false positive rate. Its false positive
rate reaches about 50% very quickly afterλc ≥ 2 for both
synthetic and real flows. Except for the basic watermark al-
gorithm, the false positive rates of other algorithms increase
with λc and∆. Both Greedy+ and Greedy∗ show better
performance than scheme S-IV. The false positive rates of
Greedy+ and Greedy∗ are up to about 40% lower than that
of S-IV, as shown in figure 6.
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Figure 5. False positive rate changing with λc,
∆ = 7s
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Figure 6. False positive rate changing with ∆,
λc = 3

Computation Costs. Now let’s compare the computa-
tion costs of these algorithms. We also include the cost of
packet matching process since it is a critical and time con-
suming step both in our approach and scheme S-IV. To elim-
inate the bias of different implementation details, we define
thecomputation costas the number of packets in both flows
that have to be checked to compute the “best” watermark
or the smallest deviation for scheme S-IV. We distinguish
the computation costs between correlated and uncorrelated
flow pairs. For each algorithm, we compute the average
computation cost for each setting ofλc and∆.

Figure 7 shows the relation between computation cost
andλc for correlated flows when∆ = 7s. Figure 8 shows
the relation between computation cost and∆ for correlated
flows, whenλc = 3. Among all algorithms, Greedy al-
gorithm has the smallest computation cost, which is also
independent ofλc and∆. Greedy∗ has bumps in its curve
especially when there are small number of chaff packets.
It is because when more chaff packets are added, matching
sets grow bigger. The number of packets that need to be
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Figure 7. Computation Costs changing with
λc, ∆ = 7s, correlated flow pairs
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Figure 8. Computation Costs changing with
∆, λc = 3, correlated flow pairs

checked increase rapidly. However, when there are enough
chaff packets added, our optimization techniques can give
out the results quickly so that the computation cost begin
to decrease. Greedy+ also shows smaller bumps in figure 7
for the same reason. There are certain cases that Greedy∗

cannot finish within its bound of computation cost, which
explains why sometimes it has lower detection rate than
Greedy+. Both Greedy+ and Greedy∗ have up to about 40
times lower costs than S-IV.

Figure 9 shows the relation between computation cost
andλc for uncorrelated flows, when∆ = 7s. Figure 10
shows the relation between computation cost and∆ for un-
correlated flows, whenλc = 3. It is worth noticing that
some algorithms will have 0 cost3. It is because these algo-
rithms depends on packet matching procedure. If the match-
ing process fails to find any matching packet, we immedi-
ately have negative correlation result. The computation cost

3In order to draw the figures in logarithm scale, we change 0 to 1.
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Figure 9. Computation Costs changing with
λc, ∆ = 7s, uncorrelated flow pairs
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Figure 10. Computation Costs changing with
∆, λc = 3, uncorrelated flow pairs

of Greedy∗ will reach its bound rapidly when chaff or delay
is big. Greedy+ is still up to about 2 times faster than S-IV.

4.2 Synthetic Data Set

We have also evaluated our algorithms using 100 syn-
thetic tcplib traces [3]. Each synthetic trace has 800 pack-
ets. We repeat the above experiments using the same water-
marking parameters as in section 4.1.

The results for detection rate are shown in figures 11 and
12. They are similar to those for real flows, except that
scheme S-IV has a little improvement. The results for false
positive rate are shown in figures 13 and 14. Unlike the real
flows, the false positive rates increase more quickly when
∆ andλc is large. It is because the synthetic flows all have
the same number of packets, while the lengths of real flows
vary substantially. Both Greedy+ and Greedy∗ still have up
to about 5% and 10% lower false positive rate than that of
S-IV, as shown in figure 12.
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Figure 11. Detection rate changing with λc,
∆ = 7s
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Figure 12. Detection rate changing with ∆,
λc = 3

The result of computation costs for synthetic flows are
shown in figures 15, 16, 17 and 18. In these figures, we can
see similar trends to the results of real flows. Greedy+ has
shown much better computation efficiency than both S-IV
and Greedy∗.

4.3 Overall Performance

From all the experiment results, algorithm Greedy+ has
shown overall the best trade-off among detection rate, false
positive rate and computation cost. The optimization tech-
niques successfully improve the efficiency while keeping
the effectiveness. Greedy∗ suffers from its high com-
putation cost, especially when it cannot find correlation.
Scheme S-IV only shows better detection rate in a small
interval ofλc for synthetic traffic, and has worse false pos-
itive rate than both Greedy+ and Greedy∗. It also has
higher computation cost than Greedy+. The packet match-
ing process shows reasonable computation cost so that the
entire correlation procedure can finish in a reasonable time.
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Figure 13. False positive rate changing with
λc, ∆ = 7s
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Figure 14. False positive rate changing with
∆, λc = 3

5 Related Work

The problem of detecting interactive stepping stones was
first formulated by Staniford and Heberlein [7]. They pro-
posed a content-based approach by creating thumbprints
from the payload of packets, and comparing them to find ex-
tremely good matches. Another content-based scheme was
Sleepy Watermark Tracing technique [11], which correlates
stepping stone connections by injecting non-displayable
contents. Such methods required the contents of pack-
ets could not change significantly between different flows,
which made them unusable for encrypted traffic such as
SSH connections.

More recent schemes focused on timing characteristic of
stepping stone connections. Zhang and Paxson [14] pro-
posed the first timing-based approach that can correlate en-
crypted traffic. They observed that in an interactive con-
nection, there existed alternate ON and OFF periods. The
stepping stone connections could be detected by calculat-
ing if their OFF periods coincide. Yoda and Etoh [12] pro-
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Figure 15. Computation Costs changing with
λc, ∆ = 7s, correlated flow pairs
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Figure 16. Computation Costs changing with
∆, λc = 3, correlated flow pairs

posed a deviation-based scheme to detect stepping stone
connections. This scheme calculated deviation between a
known attacking flow and all other flows appeared around
the same time. They observed that unrelated flows would
usually have deviations large enough to be distinguished
from those in the same stepping stone connections. Wang
et al. [10] proposed a correlation scheme based on inter-
packet delays (IPDs). They showed that timing character-
istic of IPDs of corresponding packet pairs were preserved
across multiple stepping stones, and could be used for corre-
lation. Although these schemes can be utilized to correlated
encrypted connections, they are all vulnerable to timing per-
turbations intentionally added by attackers.

Donoho et al. [4] investigated the theoretical limits of
the attackers’ ability to disguise their traffic through timing
perturbations and extra chaff packets. Using wavelet and
multiscale analysis, they demonstrated that stepping stone
correlation is still possible by observing long term behav-
ior. However, they did not discuss the false positive rate of
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Figure 17. Computation Costs changing with
λc, ∆ = 7s, uncorrelated flow pairs
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Figure 18. Computation Costs changing with
∆, λc = 3, uncorrelated flow pairs

their method, and provided no practical scheme to defeat
chaff packets. Wang and Reeves [8] proposed an active wa-
termarking scheme that was robust to random timing per-
turbations. They first identified the quantitative tradeoffs
between the correlation effectiveness (in term of true posi-
tive & false positive), maximum timing perturbations added
by the adversary, the defining characteristics of the inter-
packet timing of flows and the number of packets needed.
Their work is also the first one that identify provable bound
on the number of packets needed to achieve desired cor-
relation effectiveness. Wang et al. also proposed another
watermarking scheme [9] that guaranteed even timing ad-
justments and had better true positive rates.

Blum et al. [1] proposed to correlate stepping stone con-
nections by counting the packet number differences in cer-
tain time intervals. They achieved provable upper bounds
on the number of packets needed to guarantee desired false
positive rate, under the assumption that packets arrive ac-
cording to a Poisson distribution. They also provided an al-
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gorithm which can deal with small number of chaff packets.
However, they did not show any experimental evaluation of
their algorithms.

Zhang et al. [13] proposed several algorithms to de-
tect stepping stone connections when timing perturbation
or/and chaff packets may be present. Their algorithms were
also based on finding possible corresponding packets. They
have shown that when deviation was chosen as the correla-
tion criteria, a fast solution could be used to reduce com-
putation time while still maintaining the same correlation
results. Unlike active schemes, their passive scheme does
not require traffic manipulation, thus is less noticeable to
attackers. However, using active watermarking scheme, our
algorithms can achieve better performance with less com-
putation costs.

Researchers have also focused on building anonymous
systems that can hide the identities of communication par-
ticipants [2] [6]. Mixes have been used to provide anony-
mous connections that are resistant to eavesdropping and
traffic analysis. A Mix accepts fix-length messages from
various sources, performs cryptographic transformations,
and forwards them to the next destination in a random or-
der. Random packet delay and traffic padding are also used
to improve the privacy.

6 Conclusions

Tracing attacks through stepping stones is a difficult
problem. Encryption, timing perturbation and chaff pack-
ets can all be employed by intruders to hide their identities.
To defeat these countermeasures, in this paper, we introduce
our correlation scheme based on packet matching and active
timing-based watermark scheme. We have developed a se-
ries of algorithms to compute the “best” watermark. These
algorithms have different emphases on detection rate, false
positive rate or computation cost. Through experiments, we
have demonstrated the effectiveness and efficiency of our
algorithms. We have also compared our algorithms with
existing best schemes, and shown that overall Greedy+ al-
gorithm has better performance.

Our algorithms (and several previous approaches) re-
ply on the assumption that packets should not be lost or
combined together after passing through a stepping stone.
However, packet loss or re-packetization are common when
packets arrive too closely or system load is high. In this
case, our scheme may not always return the desired result.
In the future work, we will focus on correlation methods
that will work under packet loss and re-packetization.

Acknowledgment. We would like to thank Dr. Yong
Guan for providing a draft of his work [13].

References

[1] A. Blum, D. Song, and S. Venkataraman. Detection of in-
teractive stepping stones with maximum delay bound: algo-
rithms and confidence bounds. InProceedings of RAID’04,
2004.

[2] D. Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Communications of the ACM,
24(2):84–88, 1981.

[3] P. B. Danzig and S. Jamin. Tcplib: A library of TCP/IP traf-
fic characteristics.USC Networking and Distributed Systems
Laboratory TR CS-SYS-91-01, 1991.

[4] D. Donoho, A. Flesia, U. Shankar, V. Paxson, J. Coit, and
S. Staniford. Multiscale stepping-stone detection: detecting
pairs of jittered interactive streams by exploiting maximum
tolerable delay. InProceedings of RAID’02, 2002.

[5] NLANR trace archive. http://pma.nlanr.net/traces/long/.
[6] Onion routing. http://www.onion-router.net.
[7] S. Staniford-Chen and L. T. Heberlein. Holding intruders

accountable on the Internet. InProceedings of IEEE S&P
95, pages 39–49, Oakland, CA, 1995.

[8] X. Wang and D. S. Reeves. Robust correlation of encrypted
attack traffic through stepping stones by manipulation of
inter-packet delays. InProceedings of CCS’03, pages 20–
29, 2003.

[9] X. Wang, D. S. Reeves, P. Ning, and F. Feng. Robust
network-based attack attribution through probabilistic wa-
termarking of packet flows. Technical Report TR-2005-
10, Department of Computer Science, NC State University,
2005.

[10] X. Wang, D. S. Reeves, and S. F. Wu. Inter-packet delay
based correlation for tracing encrypted connections through
stepping stones. InD. Gollmann, G. Karjoth and M. Waid-
ner, editors, 7th European Symposium on Research in Com-
puter Security - ESORICS 2002, 2002.

[11] X. Wang, D. S. Reeves, S. F. Wu, and J. Yuill. Sleepy water-
mark tracing: An active network-based intrusion response
framework. InProceedings of 16th International Confer-
ence on Information Security (IFIP/Sec’01), 2001.

[12] K. Yoda and H. Etoh. Finding a connection chain for tracing
intruders. InF. Guppens, Y. Deswarte, D. Gollmann and M.
Waidners, editors, 6th European Symposium on Research in
Computer Security - ESORICS 2000, 2000.

[13] L. Zhang, A. Persaud, A. Johnson, and Y. Guan. Step-
ping stone attack attribution in non-cooperative IP networks.
Technical Report 2005-02-1, Department of Electrical and
Computer Engineering, Iowa State University, 2005.

[14] Y. Zhang and V. Paxson. Detecting stepping stones. InPro-
ceedings of 9th USENIX Security Symposium, pages 171–
184, 2000.

12


