Processes = Protocols + Policies *

A Methodology for Business Process Development

Nirmit Desai’ Ashok U. Mallya

Amit K. Chopra Munindar P. Singh

{nvdesai, aumallya, akchopra, singh}@ncsu.edu
Department of Computer Science
North Carolina State University
Raleigh, NC 27695-7535, USA

ABSTRACT

Business process modeling and enactment are notoriously com-

plex, especially in open settings where the participants are autonomous,

requirements must be continually finessed, and exceptions frequently
arise because of real-world or organizational problems. Traditional
approaches, which attempt to capture processes as monolithic flows,
have proved inadequate in addressing these challenges.

This paper describes a novel approach centered around the con-
cepts of protocols and policies. A (business) protocol is a modu-
lar, public specification of an interaction among different roles that
achieves a desired goal. A policy is a typically private description
of a participant’s business logic that controls how it participates in
a protocol. We conceptualize a business process be conceptualized
as a cohesive set of protocols, to be enacted by agents playing the
specified roles in the protocols. This approach presupposes a se-
mantics for protocols that supports reasoning about them and, espe-
cially, about enacting them in a flexible, context-sensitive manner.
We develop such a semantics based on commitments, which capture
the essence of the relationships among roles without unnecessarily
constraining their behaviors. This paper develops OWL-P, a lan-
guage for specifying protocols, and associated tools. OWL-P spec-
ifications of protocols compile into skeletons for each role. Each
skeleton corresponds to a set of rules with place-holders for poli-
cies. Developing an agent involves composing the skeletons for its
intended roles and supplying the necessary policies to flesh them
out.

The key benefits of this approach are (1) a separation of concerns
between protocols and policies in contrast to traditional monolithic
approaches; (2) reusability of protocol specifications based on de-
sign abstractions such as specialization and aggregation; and (3)
flexibility of enactment of processes in a manner that respects local
policies while adapting continually.

Categories and Subject Descriptors

[Service Computing & Applications]: e-Business; [Software en-
gineering techniques for service-based development]: Service
design principles; [Core service activities and technologies]:
Service composition; [Service & AI Computing]: Multi-agent
based service models

*This research was sponsored by NSF grant DST-0139037 and a
DARPA project.

TThe first three authors are full-time students.

Keywords

Business Process, Software Design, Multiagent Systems, Rule-based
Systems

1. INTRODUCTION

Unlike traditional business processes, processes in open, Web-
based settings typically involve complex interactions autonomous,
heterogeneous business partners. Conventionally, business pro-
cesses are modeled as centralized flows, which are horizontally
complete, specifying exact steps for each participant. Because of
the exceptions and opportunities that arise in open environments,
business relationships cannot be preconfigured to full detail. Thus,
flow-based models are difficult to develop and maintain in the face
of evolving requirements. Further, conventional models do not fa-
cilitate flexible actions by the participants.

This paper proposes an innovative approach for business pro-
cess modeling and enactment, which is based on a combination
of protocols and policies. The key idea is to capture meaningful
interactions reusably as protocols. Protocols can involve multi-
ple roles and address specific purposes such as ordering, payment,
shipping, and so on. Protocols are given a semantics in terms of
how their steps affect commitments among various roles: this se-
mantics supports modeling abstractions such as refinement and ag-
gregation as well as enactment abstractions such as delegation, as-
signment, and scoping into necessary contexts. In this manner, pro-
tocols go beyond the rigid two-party, request-response interactions
of today’s approaches, such as RosettaNet’s Partner Interface Pro-
cesses (PIPs) [14]. In order to maximize participants’ autonomy
and to be reusable, protocols should emphasize the essence of the
interactions and omit local details. Such details are supplied by
each participant’s policies. For example, when a protocol allows a
participant to choose from multiple actions, the participant’s policy
decides which one to perform. Policies help decide the contents of
the messages sent, and the processing of the messages received.

In other words, protocols are public, whereas policies are pri-
vate. The decentralized modeling and enactment of business pro-
cesses is the key feature of our approach. This paper seeks to de-
velop the main techniques needed to make this promising approach
practical. Our contributions include a language and ontology for
protocols called OWL-P, which is coded in the Web Ontology Lan-
guage (OWL) [12]. OWL-P describes concepts such as roles, the
messages exchanged between the roles, and declarative rules that
describe the effects of sending messages in terms of commitments.
OWL-P compiles into Jess rules [6] into which local policies can
be readily inserted in a principled manner.

From the software engineering point of view, the clear separa-
tion of protocols and policies offers certain advantages. Protocols
can be reused across business processes. Protocols may not only
be reused directly, they are also amenable to abstractions such as
refinement and aggregation [10].

1.1 Running Example

12.-ship-confirm#

7. auth req &{l

SHIPPER
14. status req
15. status resp
O
17. delivery I
-7 3
<
28 | g
(o]
® -
C g 2 I.__l
1. ship options i 7] M
U - = E
2. ship info
S R
T 5. pay options C
I\C/)l 6. pay info H
9. receipt A
E N
R T

aindeo g |

B
put
=]
=
Q
(ﬂ
[¢]
(]
=

iOK

PAYMENT GATEWAY

Figure 1: A purchasing process

As a running example, let’s consider a business process involv-
ing a small number of parties. Figure 1 depicts a purchase process
where items to be purchased have already been selected and the
price has been agreed upon. This process involves a Customer who
wants to buy items, a Merchant who sells items, a Shipper who is
a logistics provider, and a Payment Gateway who authorizes pay-
ments. The payment-related interactions are imported from the Se-
cure Electronic Transactions (SET) standard [15]. In Figure 1, each
participant is shown via a separate shaded region, the graph made
of dark edges denotes the flow of the given participant. Circular
nodes represent the participant’s internal business logic or policies,
e.g., to decide the parameters of an out-bound message. Rectangu-
lar nodes represent external interfaces through which a participant
receives messages. Thus, an ordering of dark arrows, circles, and
rectangles represents the local process of the participant. When
there are multiple out-edges from a node, all of them are taken con-
currently. The messages are labeled with numbers to indicate a
possible order in which they might occur. For example, messages
9-17 could occur in any order.

1.1.1 Shortcomings of Traditional Approaches

The above process can be captured via a traditional flow-based
approach such as BPEL [2]. Such a representation would be func-

tionally correct, but still be inadequate from the perspective of service-

oriented computing (SOC). The following are the main limitations:

Lack of Semantics. Traditional approaches expose low-level in-
terfaces, e.g., via WSDL [21], but associate no semantics
with the participants’ actions. This lack precludes flexible
enactment (as needed to handle exceptions) as well as reli-
able compliance checking. For this reason, we cannot de-
termine if a deviation from a specific sequence of steps is
significant.

Lack of Reusable Components. The local processes of the part-
ners are not reusable even though the patterns of interaction
among the participants might be. Local processes are mono-
lithic in nature, and formed by ad hoc intertwining of internal
business logic and external interactions. Since business logic
is proprietary, local processes of one partner are not usable by
another. If a new customer were to participate in this SOC
environment, its local process would have to be developed
from scratch.

1.1.2 Contributions, Scope, and Significance

This paper develops an approach for designing processes that
recognizes the fundamental interactive nature of open environments
where the autonomy of the participants must be preserved. Proto-
cols can be readily reused and combined with different policies.
Commitments provide the basis for a semantics of the actions of
the participants, thereby enabling the detection of violations and
making the resultant protocols flexible. The significance of this
work derives from the importance of processes in modern business
practice. Over 100 limited business protocols have been defined
[14];this approach will enable the development and usage of an
ever-increasing set of protocols for critical business functions. We
demonstrate the practicality of our approach by embedding it in an
ontology and language for specifying protocols. Not only is this
approach conducive to reuse, refinement, and aggregation, it has
also been implemented in a prototype tool.

Organization

Section 2 introduces some key concepts and terminology. Sec-
tion 3 describes our protocol specification language and its seman-
tics. Section 4 discusses composite protocols and their construction
and shows by an exception handling scenario, how protocol com-
position can be leveraged for refining protocols. Section 5 shows
how augmenting policies with protocols can be used to develop
processes. It also presents our prototype framework. Section 6
evaluates our approach and shows how the problems identified in
Section 1.1.1 can be handled in our approach. It also compares our
work with current research efforts in the area and charts out direc-
tions for future work.

2. CONCEPTS AND TERMINOLOGY

Figure 2 shows our conceptual model for a treatment of business
processes based on protocols and policies. Boxed rectangles are
abstract entities (interfaces), which must be combined with busi-
ness policies to yield concrete entities that can be fielded in a run-
ning system (rounded rectangles). Abstract entities should be pub-
lished, shared, and reused among the process developers. They cor-
respond to service specifications in SOC terminology. We specify
a business protocol using rules termed protocol logic that specify
the interactions of the participating roles. Roles are abstract, and
are adopted by agents to enable concrete computations.

Whereas the protocol logic specifies the protocol from the global
perspective, a role skeleton specifies the protocol from the perspec-

1 | Business
| Process

1
[I:l] Abstract entity

aggregation
of D Concrete entity

'2+

consults Local
1 | Process |1

_ Implementation of
_3 v1 1
g Business t
@ Logic enacts
= ry 1 1
8 1 3
o 1 Composite
=
o stipulates Agent Skeleton
1+ 1
adopts 8
1+ .g
involves defines @
> | Role |« =3
2+ 1 S
1 @ o4 1 =}
L_,| |Business 5 Role [/ 1+
1+ | | Protocol § Skeleton
] 1 2+A
1,1 | Protocol | |1
specified by Logic derives

Figure 2: Conceptual model for business processes based on
protocols and policies

tive of one of the participant roles. Thus, each role skeleton defines
the behavior of the respective role in the given protocol.

An agent represents a real-world business partner with its lo-
cal business logic. An agent may participate in multiple business
protocols by playing a role in each of them. For example, a book-
store may play the role of a seller while interacting with customers
and the role of a buyer while interacting with publishers. When an
agent needs to participate in multiple protocols, a composite skele-
ton can be constructed by combining respective role skeletons ac-
cording to some composition constraints. For example, in a supply
chain process, a supplier would be a merchant when interacting
with a retailer in a trading protocol and would be an item-sender in
a shipping protocol for sending goods to the retailer. A composite
skeleton for such a supplier could be composed by combining role
skeletons for a trading merchant and a shipping item-sender. The
resultant composite skeleton could be published and then reused
for developing local processes of other suppliers.

An agent’s private policies or business logic are described via
rules. The local process of an agent is an executable realization of
a composite skeleton obtained by integration of the protocol logic
of the composite skeleton and the business logic of the agent. A
business process is the aggregation of the local processes of all the
agents participating in it. Conversely, a business process is an im-
plementation of the constituent business protocols.

2.1 Protocols and Commitments

To enable protocols to be enacted flexibly and yet in a manner
where the compliance of agents with specific protocols can be de-
termined requires that we provide protocols a semantics that is rig-
orous yet not rigid. The concept of commitments has been proposed
to capture a variety of contractual relationships, while allowing ma-
nipulations such as delegation and assignment, which are essential

for open systems [17]. For example, a customer’s agreement to pay
the price for the item after it is delivered is a commitment that the
customer has towards the merchant. Violations of commitments
can be detected; in some important circumstances, violators can be
penalized. Such enforceability of contracts is necessary in practical
settings where the participants are autonomous and heterogeneous
[19]. Since commitments might be unfamiliar to some readers, we
introduce them first.

DEFINITION 1. A commitment C(x,y, p) denotes that the agent
x is responsible to the agent y for bringing about the condition p.

Here z is called the debtor, y the creditor, and p the condition of the
commitment. The condition can be expressed in a suitable formal
language.

Commitments can also be conditional, denoted by CC(z, y, p, q),
meaning that x is committed to y to bring about ¢ if p holds where,
q is called the precondition of the commitment. For example, the
conditional commitment CC(c, b, goods(g), pay(p)) means that the
customer c is committed to pay the bookstore b an amount p if the
bookstore delivers the book g to the customer. When the bookstore
delivers the goods, i.e., when the goods(g) proposition holds, the
conditional commitment CC(c, b, goods(g), pay(p)) is automatically
converted into the base-level commitment C(c, b, pay(p)).

2.2 Commitment Operations

Commitments are created, satisfied, and transformed in certain
ways. The following are the conventional operations defined on
commitments [17].

1. CREATE(z,c) establishes the commitment ¢ in the system.
This can only be performed by ¢’s debtor x.

2. CANCEL(z,c) cancels the commitment c¢. This can only be
performed by c¢’s debtor x. Generally, cancellation is com-
pensated by making another commitment.

3. RELEASE(y,c) releases ¢’s debtor x from commitment ¢ with-
out ¢ being fulfilled. This only can be performed by the cred-
itor y.

4. ASSIGN(y, z, ¢) replaces y with z as ¢’s creditor.
5. DELEGATE(z, 2, ¢) replaces x with z as the ¢’s debtor.

6. DISCHARGE(z, ¢) ¢’s debtor z fulfills the commitment.

A commitment is said to be active if it has been created, but not yet
discharged. The transformations of commitments are given as:

C(z,y,p) \p CC(=,y,p,0) \p
discharge(z,C(z,y,p))’ create(z,C(z,y,q))Adischarge(z,CC(z,y,p,q))’
CC(z,y,p,0)N\q
discharge(z,CC(x,y,p,q)) "

and

3. PROTOCOL SPECIFICATION

A business protocol is a specification of the allowed interactions
among two or more participant roles. The specification focuses on
the interactions and their semantics. What does it mean to send
a certain message to a business partner? What is expected of the
participants wishing to comply to a business protocol? How are
the protocols specified? These are the questions we address in this
section.

3.1 OWL-P: OWL for Protocols

OWL-P is an ontology based on OWL for specifying protocols; it
functions as a schema or language for protocols. The main compu-
tational aspects of protocols are specified using rules. We employ
the Semantic Web Rule Language (SWRL) [8] for defining rules.
SWRL allows us to specify implication rules over entities defined
as OWL-P instances. The availability of tools such as Protégé [13]
is a motivation for grounding OWL-P on OWL.

ExternalSlot NativeSlot
hasParameter hasSlot
modifies Slot
1 A N 1

) represents "

Commitment Message Proposition
1 1

1 1 L Rule 1 contains

hasSender
involvesMessage

hasCreditor hasRedeiver dictates | Knowledge Base

hasDebtor 1 1 1 I

consults
Role Protocol
hasRole

2. 1

Figure 3: Basic OWL-P ontology

The important OWL-P elements and their properties are shown
in Figure 3. An entity with a little rectangle represents the domain
of the corresponding property. Many of the properties are self-
explanatory and reflect the conceptual model introduced in Sec-
tion 2.

A Message has a sender and a receiver, and can have several Slots
as its parameters. We provide operational semantics for messages
in terms of their effects on the commitments among the roles. Mes-
sages can be thought of as operators over commitments. Slots are
analogous to data variables. A slot is said to be defined when it is
assigned a value and it said to be used when its value is assigned to
another slot. A slot in a protocol may be assigned a value produced
by another protocol and hence be represented as an External Slot.
An external slot is untyped until it is given the type of the external
value to which it is bound. By contrast, a Native Slot is typed and
produced by the protocol.

A Protocol dictates several rules and consults a Knowledge Base.
The rules are SWRL implication rule instances. A knowledge base
consists of a set of Propositions which can have several slots. Propo-
sitions are analogous to slotted facts in the conventional rule-based
systems. A proposition in a knowledge base may correspond to a
message that has been sent or received, since every message being
sent or received is recorded as a proposition in the knowledge base.
Propositions are also used to represent active commitments or other
domain specific propositions.

Figure 4 shows a protocol for ordering goods (along with others,
to which we refer later). For readability, a leading and trailing * is
placed around external slot names, as in *amount* and *itemID*.
The customer requests a quote for an item, to which the merchant
responds by providing a quote. Here, a commitment is created pro-
viding semantics for the message. The commitment means that
the merchant guarantees receipt of the item if the customer pays
the quoted price. The customer can either accept the quote or re-
ject it(not shown). Again, the semantics of acceptance is given by
the creation of another commitment from the customer to pay the
quoted price if it receives the requested item. Figure 5 shows the
rules for the Order protocol in the “antecedents = consequents”

notation.

contains(KB, startProp) =- send(C, reqForQuote(?itemID))

contains(KB, reqForQuoteProp(?itemID)) =
send(M, quote(?itemID, ?itemPrice)) A
createCommitment(M, CC(M, C, pay(?itemPrice), goods(?itemID)))

contains(KB, quoteProp(?itemID, ?itemPrice)) =
send(C, acceptQuote(?itemID, ?itemPrice)) A
createCommitment(C, CC(C, M, goods(?itemID), pay(?itemPrice)))

Figure 5: Rules for the Order protocol

reqForQuote, quote, and acceptQuote are OWL-P message
instances (individuals in OWL terminology). Corresponding propo-
sition instances are reqForQuoteProp, quoteProp, and accep-
tQuoteProp. pay and goods are other propositions while itemID
and itemPrice are native slots. Note that a name ?x represents the
slot ?x across the entire rule-base. Readers may notice that the
itemID variable in the first rule is not assigned any value by the an-
tecedents. It means that the rule is abstract and not executable, and
as we will see in later sections, it can be augmented with business
logic that produces such values. OWL-P implicitly dictates that
the rules having undefined native slots must be augmented with the
business logic that produces such values. How do these rules define
the protocol? The next section describes the operational seman-
tics of the protocol rules. The OWL-P ontology and protocol in-
stance examples in their RDF/XML serialization, and correspond-

ing Protégé projects are available at http://www4.ncsu.edu/~nvdesai/owl/.

3.2 Operational Semantics

Protocols are specified from the global perspective with an as-
sumption of an abstract global knowledge base. In later sections,
we will show how the abstraction of a global knowledge base maps
to the perspectives of the participants having their local knowledge
bases. Rules are assumed to be forward-chained. OWL-P defines
several property predicates with operational semantics.

Table 1 lists the semantics for such property predicates of OWL-
P. A proposition cannot be retracted from a knowledge base. A
discharge commitment operation is automatic as stated in the Sec-
tion 2.2 and hence not mentioned here. In the forthcoming ex-
amples, we may omit the OWL-P properties, e.g., contains, send,
createCommitment when the meaning is clear.

4. COMPOSITE PROTOCOLS

The previous section describes how to specity individual proto-
cols. However, real-world business process would typically involve
multiple protocols and multiple roles. Now we show how protocols
can be composed.

Conceptually, each component protocol achieves a business goal.
Thus, several such protocols composed together would achieve the
goals of the larger business process. Another motivation is to be
able to refine or amend protocols with additional rules. Observe
that the set of additional rules is a protocol itself and hence the
problem boils down to the problem of combining the original pro-
tocol with the amendments. Also, the ability to compose proto-
cols would allow significant reuse of published protocols. How
can we construct such composite protocols? How do they facili-
tate reusability? How do they allow refinements of protocols? This
section answers the above questions.

4.1 Construction of Composite Protocols

PAYMENT PROTOCOL

Payer Payee

paymentInfo(cardNO, expDate)

CC(payer, payee, authNOKProp(cardNO,
expDate, ffamount*), pay(fineAmount))

authOK(cardNO, expDate, amount, tokenNO)

CC(gateway, payee, captureReqPro
(lokegnN O),ycegl{lredPrgp(amul?nt)) P

receipt(amount)

captureReq(token)

captured(amount)

SHIPPING PROTOCOL
Sender

Receiver

shipInfo(shipAddress)

reqForShipOptions(shipAddress, *itemID*)

shipperOptionQuote(shipOption, shipperQuote)

seriderOptionQuote(shipOption, senderQuote) shipmentProp(itemI

CC(se, r, payToSenderProp |
(senderQuote), shipmentProp(itemID))

¢hooseOption(shipOption, senderQuote)

CC(r, se, shipmeump(itemIDg, shipOrder(itemID, shipOption, shipAddress, pickAddress)

payToSenderProp(senderQuote

)

CC(se, sh, shipmentProp(itemID),
payToShipperProp(shipperQuote))

shipment(itemID)

Gateway

authReq(cardNO, expDate, amount)

hipper

CC(sh, se, payToSh}gg;)erProp(shipperQuole),

ORDER PROTOCOL

Customer Merchant

reqForQuote(itemID)

quote(itemID, itemPrice)

CC(m, c, pay(itemPrice),
goods(itemID))

acceptQuote(itemID, itemPrice)

CC(c, m, goods(itemID),
pay(itemPrice))

COMPOSITION AXIOMS

: roleDefinition(define:Purchase.customer, unify:Order.customer,

—_

unify:Shipping.receiver, unify:Payment.payer)

[ov]

: roleDefinition(define:Purchase.merchant, unify:Order.merchant,
unify:Shipping.sender, unify:Payment.payee)

w2

: dataFlow(definition:Order.itemID, usage:Shipping.itemID)

&

dataFlow(definition:Order.itemPrice, usage:Payment.amount)

w

: implication(antecedent: Shipping.shipmentProp,
consequent:Order.goods)

[=2)

: implication(antecedent:Payment.authOKProp,
consequent:Order.pay)

~

: eventOrder(earlier:Payment.authOKProp,
later:Shipping.shipOrderProp)

Figure 4: Example: Order, Shipping, and Payment protocols and their composition

composedOf

Protocol CompositionProfile CompositeProtocol
. combines definedBy
2. 11 4
Implication stipulates RoleDefinition
body ; hehd - - § 4 unify |
CompositionAxiom define L
1
Proposition ; Role
1 1
usage later
DataFlow EventOrder
s
1 1 1 1
definition
earlier
ExternalSlot Slot Message

Figure 6: OWL-P composition classes and properties

Figure 6 describes the OWL-P classes and properties that deal
with the problem of protocol composition. A Composite Protocol is
an aggregation of component protocols and is defined by a Compo-
sition Profile. A composition profile describes the combination of
two or more protocols by stipulating several Composition Axioms.

Composition axioms define relationships among the protocols be-
ing combined. The operational semantics of an axiom specifies the
way in which the relationships affect the composite protocol. Fig-
ure 4 depicts an Order protocol, a Shipping protocol, a Payment
protocol, and a set of composition axiom instances stating the rela-
tionships among them.

A Role Definition axiom states which of the roles in the compo-
nent protocols are played by the same agent, and defines the name
of the unified (coalesced) role in the composite protocol. In the ex-
ample, the first axiom states that the roles of a customer in Order,
a payer in Payment, and a receiver in Shipping protocol are played
by an agent who will play the role of a customer in the Purchase
protocol. Similarly, the second axiom defines the merchant role in
the Purchase protocol. The ununified roles must be played by dif-
ferent agents in the composite protocol. The instances of the roles
being unified are discarded from the composite OWL-P and an in-
stance is added for the newly defined role. When the cardinality of
the unify property is one, the role being unified is just renamed as
the defined role in the composite protocol.

A Data Flow axiom states a data-flow dependency among the
protocols. A component protocol might be using a slot defined by
another component protocol, possibly with a different name. A
native slot cannot use a value defined by another protocol as it is
always defined in the protocol in which it is used and a slot can be
defined only once. Hence, the range of the usage property must be
an external slot. In the example, the fourth axiom states that the slot

[Predicate Domain Range Context Meaning |

contains KnowledgeBase Proposition Body Proposition € KnowledgeBase ?

assert Proposition KnowledgeBase Head KnowledgeBase < KnowledgeBase U Proposition

send Role Message Head Asynchronous send to the receiver
assert(KnowledgeBase, MessageProp)

receive Role Message Head Asynchronous receive from the sender
assert(KnowledgeBase, MessageProp)

createCommitment Role Commitment Head assert(Knowledgebase, CommitmentProp)

Table 1: Operational semantics of protocol rules

amount in the Payment protocol gets its value from the slot item-
Price in the Order protocol. Such a dependency exerts an ordering
among the rule defining the slot and all the rules using it. None
of the the rules using the slot can fire before the slot is assigned a
value by the defining rule. Thus, the operational semantics of the
axiom is given as:

def :reqForQuoteProp(?itemID) = quote(?itemID,?itemPrice) A
CC(M,C,pay(?itemPrice),goods(?itemID))

use(:startProp = paymentInfo(?cardNO,?expDate) A
CC(Pr,Pe,authNOKProp(- - -),pay(?fineAmount))

usei

usen :captureReqProp(?token) = captured(?amount)

axiom:dataFlow(definition:Order.itemPrice, usage:Payment.amount)

use0 :startProp A quoteProp(?itemID,?itemPrice) =
paymentInfo(?cardNO,?expDate) A
CC(Pr,Pe,authNOKProp(- - -),pay(?fineAmount))

usei .

usen :captureReqProp(?token) A quoteProp(?itemID,?itemPrice) =
captured(?itemPrice)

The order in which the rules using the slot fire, cannot be deter-
mined. Also, the dependencies among the rules using the slot may
change, thus changing the order of their firing. Hence, making all
rules that use a slot dependent on the rule that defines the slot is
safer. Also, the usage slot takes the name of the defining slot and
the definition of external slot is discarded from composite OWL-P.

An Implication axiom states that an assertion of proposition X
in a component protocol implies an assertion of proposition Y in
another component protocol. For example, the sixth axiom states
that an assertion of authOKProp in the Payment protocol means an
assertion of pay in the Order protocol. This can be easily achieved
by adding an implication rule to the composite rulebase. Hence,
the operational semantics of the axiom is:

axiom:implication(body:Payment.authOKProp, head:Order.pay)

rule :authOKProp(?cardNO,?expDate,?amount,?tokenNO) =-
pay(?itemPrice)

Unlike the DataFlow axiom, an EventOrder axiom explicitly spec-
ifies an ordering among the messages of the component protocols.
For example, the seventh axiom states that an authOK message
from the payment gateway must be received before a shipOrder
message is sent to the shipper. This can be achieved by making
the rule for the later event depend on the rule for the earlier event.
Hence, the operational semantics of the axiom is:

earlier :authReqProp(?cardNO,- - -) =

authOK(?cardNO,?expDate,?amount,?tokenNQO) A
CC(G,Pe,- - +)

later :chooseOptionProp(?shipOption,?senderQuote) =
shipOrder(?itemID, ?shipOption, ?shipAddress, ?pick Address) A
CC(Se,Sh,- - +)

axiom :eventOrder(earlier:Payment.authOK, later:Shipping.shipOrder)

later :chooseOptionProp(?shipOption,?senderQuote) A

authOKProp(?cardNO,?expDate,?amount,?tokenNO)=-
shipOrder(?itemID, ?shipOption, ?shipAddress, ?pick Address) A
CC(Se,Sh,- - -)

Composition axioms have to be specified by a designer. There
might be several ways of composing the component protocols yield-
ing different composite protocols. As a special case, if the compo-
nent protocols are completely independent of each other, no axioms
need be specified and their OWL-P specifications can be simply ag-
gregated yielding the OWL-P specification of the composite proto-
col. If deemed necessary, more subclasses of composition axiom
can be defined as long as their properties and operational semantics
are defined. A composite protocol exposes its compositionProfile
and possesses all the properties of the component protocols. Hence,
a composite protocol itself can be a component protocol in some
other composition profile instance.

How can we determine whether additional component protocols
are needed? To answer this question, we define closed and open
protocols.

DEFINITION 2. A protocol is closed if none of the slots of the
protocol are external slots, and all of the conditions of the com-
mitments either created or transformed by the protocol can be dis-
charged by propositions asserted in the protocol.

DEFINITION 3. A protocol is open if it is not closed.

A designer’s goal is to obtain a closed protocol by repeated ap-
plications of composition. Observe that in Figure 4, the Order pro-
tocol is open as its rules do not assert propositions pay and goods.
The Payment protocol is open as its rules do not assert the proposi-
tion pay(fineAmount) and amount is an external slot. The Ship-
ping protocol is open as its rules do not assert payToSenderProp
and payToShipperProp, and itemID is an external slot. The com-
posite Purchase protocol is also open as its rules do not assert the
propositions pay(fineAmount), payToSenderProp, and payTo-
ShipperProp. A designer would choose protocols that assert these
missing propositions and combine them with the Purchase protocol
to obtain a closed composite protocol.

4.2 Refinement by Composition

Business protocols evolve continually as new requirements and
new features routinely arise. Therefore, the ability to systemati-

RULES ADJUSTMENT PROTOCOL
C(d,c,cond) =>
send(exception(?reason)) Dehior Creditor
. C(d, c, ¢ond)
exceptionProp(?reason) => exception(reason)
send(OK())
cancel(c, C(d,c,cond)) OK

create(c, C(d,c,newCond)) cancel(c, C(d, ¢, cond))

create(c, C(d, ¢, newCond))

Figure 7: Handling exceptions by composition

cally refine protocols is valuable. In the composite Purchase pro-
tocol, consider a situation in which the customer has already paid
the merchant for the goods and hence the commitment C(m, c,
goods(itemlID) is active. However, while trying to order the ship-
ment, if a fire destroys the merchant’s warehouse, the merchant
will not be able to honor its commitment to ship the item. How
can such exceptions be handled? The protocol could detect the vi-
olation due to an unfulfilled commitment, and the merchant could
be held legally responsible. A more flexible solution would be to
allow the merchant to refund money and release it from the com-
mitment, provided the customer agrees to it. We can achieve this
flexibility by combining the purchase protocol with the adjustment
protocol shown in the Figure 7 using the following composition ax-
ioms:

1: roleDefinition(define:New.customer, unify:Purchase.customer,
unify: Adjustment.creditor)

2: roleDefinition(define:New.merchant, unify:Purchase.merchant,
unify:Adjustment.debtor)

3: Implication(body:Purchase.C(m,c,goods(itemID)),
head:Cancel.C(d,c,cond))

4 : Implication(body:Cancel.C(d,c,newCond),
head:Purchase.C(d,c,refund))

The Adjustment protocol allows cancellation of the merchant’s
commitment if the customer deems it reasonable. The semantics
of OK message specifies the creation of a new commitment for re-
funding the money. The proposition refund is an external slot in
the New composite protocol, and must be composed with a pro-
tocol that can make a refund, to yield a closed protocol. The rule
sending the exception message should be augmented with the mer-
chant’s business logic such that this rule is enabled only when the
exception arises. Similarly, the rule for sending OK should be aug-
mented with the customer’s business logic such that it enables the
rule only when it deems the reason valid.

Similar protocols for assigning, delegating, and releasing com-
mitments can be defined. Adding new functionalities would in-
volve composition of a set of rules for the new requirements with
the original protocol.

5. PROCESSES

As described in Section 2, a process is an aggregation of the local
processes of participating agents. However, an OWL-P specifica-
tion of a protocol is a model of the interaction from a global per-
spective. To construct the local process of a participant, we need to
derive the participant’s view of the protocol, called its role skele-
ton. Section 5.1 describes the generation of role skeletons from an
OWL-P specification.

5.1 Role Skeletons

Algorithm 1: deriveSkeleton(P, p): Generate the skele-
ton for a role

1 getPertinentRules (P,p) ;

2 foreach rule r in p.rules do

3 foreach proposition p in r.body do

4 if p is of the form CONTAINS(P.kb, atom) then
5 | Replace atom with replace (atom, p, P);
6 Procedure getPertinentRules(P, p): Get all rules in

which p sends or receives m

7 p.rules — {};

8 foreach rule r in P.rules do

9 foreach proposition p in r.head do

10 if p is of the form SEND(p’, p, m) then
11 Replace p with RECEIVE(p’, p, m);
12 L p.Rules «— p.rules Ur;

13 if p is of the form SEND(p, p’, m) then
14 | p-Rules — p.rules Ur;

15 Procedure replace(P, p, atom): If atom isn’t asserted in
p.rules replace it by something that is

16 repl — {};

17 if atom is asserted by a rule 7 in p.rules then

18 repl < repl U atom ;

19 return repl,

20 if atom is asserted by a rule 4 in P.rules then

21 foreach proposition p in r4.body do

22 if p is of the form CONTAINS(P.kb, a) then
L L repl — replU replace(q, p, P);

24 return rep/

A role skeleton is one role’s view of the protocol. Here, we
present an algorithm for generating role skeletons from an OWL-P
protocol specification.

OWL-P describes the protocol from a global perspective where
the propositions are added to a global state and there are no dis-
tributed sites. The role skeletons describe the protocol from the
perspective of the corresponding role. As in all distributed sys-
tems, the state of a protocol as seen by a role is changed only when
a message is sent or received by that role. This observation forms
the basis of our role skeleton-generation algorithm presented in Al-
gorithm 1.

The algorithm invokes the procedure getPertinentRules(P, p)
in line 1, which gathers all rules from the OWL-P specification for
protocol P that have, the role p receiving or sending a message.
The propositions asserted by this set of rules are the only propo-
sitions that p will see. We denote this set of rules by p.rules and
the set of propositions by Prop. This procedure is defined from
line 6 to line 14. Next, the algorithm invokes the procedure re-
place(P, p, atom), defined from line 15 to line 24. If a propo-
sition atom € Prop triggers a rule » € p.rules but atom is not
asserted by any rules in p.rules, it means that atom was not seen
by p. This procedure replaces atom with the last proposition that p
did see, i.e., the proposition atom’ that was asserted in p.rules and
leads to the atom being asserted in the OWL-P specification.

In the following, we show a rule in the Shipping protocol in Fig-
ure 4, and the same rule in the generated skeleton of the receiver. As
the receiver would not be aware of the previous exchanges between
the sender and the shipper, the antecedent of the rule for receiving
senderOptionQuote should be adjusted as shown below.

P :shipperOptionQuoteProp(?shipOption, ?shipperQuote) =
senderOptionQuote(?shipOption,?senderQuote) A
CC(Se,Re,payToSenderProp(?senderQuote),shipmentProp(?itemID))

Re : shipInfoProp(?shipAddress) =
receive(senderOptionQuote(?shipOption, ?senderQuote)) A
CC(Se,Re,payToSenderProp(?senderQuote),shipmentProp(?itemID))

We observe that the composition axioms defined in Section 4 are
also applicable for combining role skeletons to construct a compos-
ite skeleton.

5.2 Policies

Generation of a role skeleton may not be enough to obtain a lo-
cal process of a participant. As we mentioned earlier, some of the
rules of the protocols may be abstract, meaning that values of some
of the native slots in the rule must be produced by the role’s busi-
ness logic. Hence, a role skeleton must be augmented with business
logic to obtain a local process. How can we determine whether an
augmented role skeleton is a local process? To answer this ques-
tion, we first define concrete and abstract role skeletons, and a lo-
cal process. A role skeleton is concrete if all of its native slots are
defined. A role skeleton is abstract if it is not concrete.

DEFINITION 4. A local process is a role skeleton that is con-
crete and derived from a closed protocol.

contains(KB, startProp) = receive(C, reqForQuote(?itemID))

contains(KB,reqForQuoteProp(?itemID)) A quotePolicy(?itemPrice) =
send(M, quote(?itemID, ?itemPrice)) A
createCommitment(M, CC(M, C, pay(?itemPrice), goods(?itemID)))

contains(KB, quoteProp(?itemID, ?itemPrice)) =
receive(C, acceptQuote(?itemID, ?itemPrice)) A
createCommitment(C, CC(C, M, goods(?itemID), pay(?itemPrice)))

contains(KB, reqForQuoteProp(?itemID)) =
call(policyDecider, quotePolicy(?itemID))

Figure 8: Augmented role skeleton for the merchant role in the
Order protocol

‘We propose that the business logic be specified in terms of the local
policy rules of the agents. Figure 8 shows the skeleton of the mer-
chant role in the Order protocol augmented with the policy rules of
the merchant agent. The last rule is the policy rule which calls a
business logic operation to decide how much to quote. The opera-
tion would assert the quotePolicy proposition and that would acti-
vate the second protocol rule. Observe that this pattern of augment-
ing policy rules is general and will be applied to the rules where the
agent has to make a decision and respond. It would also assign a
value to native slots that are not defined.

Figure 9 shows the interplay between the protocol rules and the
policy rules of an agent. The business logic could involve pro-
cessing such as looking up a legacy database or waiting for human
input. When a message is received by the messaging interface, it is
checked against the protocol rules to see whether it can be accepted,
according to the protocol, at this state. For example, the merchant
will not receive the acceptQuote message unless it knows that a
quote was sent before as shown in the third rule in Figure 8.

5.3 Usage

Figure 10 summarizes our methodology with a scenario involv-
ing a customer interested in purchasing goods online. Software

(2)(8)proposition /
commitment
Rule 3ase

Knowledge Base

Protocol Rules (6)activate

Policy
Rules

(3)activate (S)policy

Business Logic

(4)invoke (Human Inputs)

abessaw(])
obessaw(/

Messaging Interface

To and from

. Local domain
other participants

Messages Public domain

Figure 9: Agent architecture: protocol and policy interplay

designers design protocols and register them with protocol reposi-
tories. They may also construct composite protocols and reuse the
existing component protocols from the repository. A merchant that
wishes to sell goods online looks up the repository for a suitable
Purchase protocol. It generates the skeleton for the merchant role,
augments it with its local policies, and deploys the result as a ser-
vice. The service profile for this service would contain an OWL-P
description of the Purchase protocol. The service can be registered
with the a UDDI registry. If a customer wishes to buy goods on-
line, it searches the UDDI registry, finds the merchant, and acquires
the OWL-P skeleton for the customer role from the merchant. The
customer enacts its local process by augmenting the skeletons with
its local policies and starts interacting with the merchant.

5.4 Prototype Framework

Figure 9 shows a prototype enactment framework for an agent.
We employ JADE (Java Agent Development Framework) [9] as the
messaging interface and Jess [6] as our rule system for both the
protocol rules and the policy rules. Jess offers seamless interoper-
ability with Java objects. Jess rules can be fired from Java and Java
objects can be accessed from Jess. Also, Jess knowledge base can
be accessed from Java. These features enable us to easily augment
the protocol rules with the policy rules. The rules in OWL-P can
be automatically translated into Jess rules and Java classes. The
policy rules can either be directly specified in Jess and augmented
with the protocol rules, or they can also be specified in SWRL and
then translated into Jess rules.

6. DISCUSSION

Developing business processes for open systems poses signifi-
cant challenges because of the complexity of the interactions and
the autonomy of the partners. Traditional technologies such as
workflow systems lack the flexibility and agility that modern busi-
ness processes need. It is natural that Semantic Web technologies
be applied in business process management to improve flexibility
and exception handling. Our work fits into this emerging direction.

Interactions between services are more naturally organized as
protocols than as procedural scripts, such as those based on WSDL
[21] operations. Protocols specify the what of an interaction, and
leave the how to the individual partners, thus supporting their au-
tonomy. This yields flexibility in implementation, particularly in

Software Designer
3 MERCHANT

Merchant
Skeleton | 4 Local
OWL-P Policy|
I 6

Merchant
Local
Process

Axioms

Purchase
OWL-P

P register
Protocol 5
Repository

7

register

lookup

10
Customer \

Local Skeleton e Purchase.Customer Skeleton
Polic: OWL-P 5

Merchant Port

A

11

uDDI
Customer Local p——ym— » Repository
Process / earch Merchant

IMZTOoOHncCco

©

Figure 10: Usage scenario

dealing with exceptions. The following outlines our main contribu-
tions and contrasts them with the literature.

Figure 11: Trip Panning

Composition. Composition can take place at two levels. At one
level, a designer can compose published business protocols to cre-
ate a new service. For example, in designing an auction service,
a designer may compose the specifications of a bidding protocol
with a payment protocol such as SET (Secure Electronic Transac-
tion) [15]. Thus protocol specifications can be reused saving the
designer considerable effort. At another level, existing deployed
services can be composed to obtain a new service composition. The
trip planning scenario of Figure 11 shows service composition. The
user wants to book a flight to some city, reserve a hotel room there,
and also rent a car. To do so, the user interacts with the composed
service (CS) which in turn interacts with the airline service (AS),
the hotel service HS, and the car rental service RS, thus simplifying
the user’s interface.

Our approach supports both protocol composition and service
composition. Protocols may not only be composed, they may also
be systematically refined as shown in Section 4.1. Service compo-
sition is achieved by way of protocol composition; by composing
the protocol specifications of the partner services.

BPEL [2] is a process language designed to specify the static
composition of Web services. However, it mixes protocols and
policies, which makes specifications unsuitable for reuse. The Se-
mantic Web Services Initiative has produced OWL-S [4], which in-
cludes a process model for Web services. The model is constructed
using procedural constructs such as sequence, choice, and so on.
An important feature of OWL-S is the use of semantic annotations
to facilitate dynamic composition. A composed service is produced
at runtime based on the user’s constraints. While dynamic service
composition has some advantages, it assumes a perfect markup of
the services being composed. Dynamic composition in OWL-S in-

volves ontological matching between inputs and outputs. Such a
matching might be difficult to obtain automatically given the het-
erogeneity of the web. For this reason, we do not emphasize dy-
namic service composition. Our goal is to provide a human de-
signer with tools to facilitate service composition. Unlike BPEL,
which specifies the internal orchestration of services, WSCI [20]
specifies the conversational behavior of a service using control flow
constructs. However, these specifications lack a semantics, which
makes them difficult to compose and reuse.

Several other approaches aim to solve the service composition
problem by emphasizing formal specifications to achieve verifia-
bility. Solanki et al.[18] employ interval temporal logic to specify
and verify ongoing behavior of a composed service. Their use of
“assumption” and “commitment” (different meaning than here) as-
sertions allows better compositionality. Gerede et al.[3] treat ser-
vices as activity-based finite automata to study the decidability of
composability and existence of a lookahead delegator given a set of
existing services. However, these approaches consider neither the
autonomy of the partners, nor the flexibility of composition.

Software Engineering. The preceding sections presented a method-
ology for designing business processes. We start with protocol
specifications, extract role skeletons from them, and augment role
skeletons with business policies to come up with a business pro-
cess. The protocols and policies are separate rule-bases. However,
there is a clean, uniform interface between the two; they are tied
together through the use of policy variables in the protocol rules.
This greatly enhances the modularity of the software. New policies
can be plugged in with only local changes.

In addition, our methodology advocates and enables reuse of
protocols as building blocks of business processes. Protocols can
not only be composed, they can also be systematically refined to
yield more robust protocols. Mallya and Singh [10] treat these con-
cepts formally. The MIT Process Handbook [11], in a similar vein,
catalogues different kinds of business processes in a hierarchy. For
example, sell is a generic business process. It can be qualified by
sell what, sell to who, and so on. Our notion of a protocol hier-
archy bears similarity with the Handbook. Our effort is focused
on providing formal semantics to the hierarchy. RosettaNet [14]
bears similarity to our approach in that it centers around publish-
ing protocols and designing the business processes around them.
However, it is currently limited to two-party request-response in-
teractions called Partner Interface Processes (PIPs) and more im-
portantly, PIPs lacks a formal semantics.

Exception-handling is critical to building robust business pro-
cesses. Commitments play an important role in exception-handling.
The violation of a commitment represents an exception. Giving
protocols a commitment-based semantics helps a designer antici-
pate such exceptions and handle them in a context-sensitive man-
ner. This usually leads to refinements in the protocol, yielding more
robust protocols.

Baina et al. [1] advocate a model-driven Web service develop-
ment approach to ensure compliance between a service’s imple-
mentation and its external protocol specifications. This is a valu-
able approach, which can be extended for protocol implementations
as well.

Enactment Flexibility. Our work with commitments draws from
work in multiagent systems. A commitment exists in some partic-
ular context [16]. The definition of commitment given in Section
2.1 represents a simplification wherein the context is omitted. A
context represents a social institution that governs some aspects of
handling of the commitment, particularly those related to excep-

tion handling. For example, commitments in a Purchase protocol
are created in the context of an institution (fictional here) such as
the Federal Trading Commission. The commission stipulates that it
is necessary for a merchant to refund a customer in case of a failure
to deliver goods. It also states the cases when a merchant can dele-
gate the delivery of goods to another merchant or when a party can
cancel its commitments. Though these norms are public, they are
more in the nature of policies than protocols. These norms have the
potential to change the interaction specified by the protocol. How-
ever, encoding them into the Purchase protocol makes the protocol
unwieldy and unsuitable for reuse in other contexts. Plus, agents
can be imagined as entering and leaving contexts at runtime, and
thereby adopting and dropping the associated norms, and changing
the interaction dynamically.

When an agent moves into a particular context, we say it is
scoped into the context. More importantly for us, its protocol is
scoped into the context. Scoping enables a protocol and context to
be specified independently of each other, yet it dynamically changes
the interaction, making the interaction more robust. Although agents
in a business process will generally be static, that is, they will not
change their contexts dynamically, scoping has relevance to busi-
ness processes. A designer can use a tool that scopes a protocol
into a context which captures the characteristics of the environment
into which the service will be deployed, and produce a new proto-
col with better exception-handling characteristics. We are currently
working on the formal development of such techniques.

The representation of business contracts is an interesting area of
research. Grosof and Poon [7] represent agent contracts in OWL
and RuleML. They develop an ontology for processes and con-
tracts. Davulcu et al. [5] develop a logic for specifying contracts
in Web services. Commitment-based protocols inherently specify
part of the contractual arrangements. Commitments are, in princi-
ple, enforceable and partners can be held responsible for violation
of commitments. It is reasonable to expect that not all parts of a
complicated contract will be reflected in a protocol. A contract is
more like the context in which the protocol is executed. Our work
with scoping will help in dealing with contracts.

7.
(1]

REFERENCES

K. Baina, B. Benatallah, F. Casati, and F. Toumani.
Model-driven web service development. In Proceedings of
Advanced Information Systems Engineering: 16th
International Conference, CAiSE, June, 2004.

BPEL. Business process execution language for web
services, version 1.1, May 2003. www-
106.ibm.com/developerworks/webservices/library/ws-bpel.
Cagdas Evren Gerede, R. Hull, O. Ibarra, and J. Su.
Automated composition of e-services: Lookaheads. In
Proceedings of the International Conference on Service
Oriented Computing, 2004.

DAML-S. DAML-S: Web service description for the
semantic Web. In Proceedings of the 1st International
Semantic Web Conference (ISWC), July 2002. Authored by
the DAML Services Coalition, which consists of
(alphabetically) Anupriya Ankolekar, Mark Burstein, Jerry
R. Hobbs, Ora Lassila, David L. Martin, Drew McDermott,
Sheila A. Mcllraith, Srini Narayanan, Massimo Paolucci,
Terry R. Payne and Katia Sycara.

H. Davulcu, M. Kifer, and I. Ramakrishnan. CTR-S: A logic
for specifying contracts in semantic web services. In
Proceedings of the 13th International World Wide Web
Conference, May 2004.

(2]

(3]

(4]

(3]

10

(6]

(7]

[8

—

[9

—

(10]

(11]

[12]
[13]

(14]
[15]

(16]

(17]

(18]

(19]

[20]

[21]

E. J. Friedman-Hill. Jess, the Java expert system shell, 1997.
herzberg.ca.sandia.gov/jess.

B. N. Grosof and T. C. Poon. SweetDeal: Representing agent
contracts with exceptions using XML rules, ontologies, and
process descriptions. In Proceedings 12th International
Conference on the World Wide Web, 2003.

I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,

B. Grosof, and M. Dean. SWRL: A semantic web rule
language combining OWL and RuleML, May, 2004 (W3C
Submission). http://www.w3.org/Submission/2004/SUBM-
SWRL-20040521/.

JADE. Java agent development framework, 2004.
http://jade.tilab.com/.

A. U. Mallya and M. P. Singh. A semantic approach for
designing commitment protocols. In Proceedings of the
AAMAS-04 Workshop on Agent Communication, July 2004.
To appear.

T. W. Malone, K. Crowston, and G. A. Herman, editors.
Organizing Business Knowledge: The MIT Process
Handbook. MIT Press, Cambridge, MA, 2003.

OWL. Web ontology language, Feb 2004.
http://www.w3.0rg/TR/2004/REC-owl-features-20040210/.
Protégé. The protégé ontology editor and knowledge
acquisition system, 2004. http://protege.stanford.edu/.
RosettaNet. Home page, 1998. www.rosettanet.org.

SET. Secure electronic transactions (SET) specifications,
2003. http://www.setco.org/ set specifications.html.

M. P. Singh. Multiagent systems as spheres of commitment.
In Proceedings of the International Conference on
Multiagent Systems (ICMAS) Workshop on Norms,
Obligations, and Conventions, Dec. 1996.

M. P. Singh. An ontology for commitments in multiagent
systems: Toward a unification of normative concepts.
Artificial Intelligence and Law, 7:97-113, 1999.

M. Solanki, A. Cau, and H. Zedan. Augmenting semantic
web service descriptions with compositional specification. In
Proceedings of the International World Wide Web
Conference, pages 544-552, 2004.

M. Venkatraman and M. P. Singh. Verifying compliance with
commitment protocols: Enabling open Web-based
multiagent systems. Autonomous Agents and Multi-Agent
Systems, 2(3):217-236, Sept. 1999.

WSCI. Web service choreography interface 1.0, July 2002.
wwws.sun.com/ software/ xml/ developers/ wsci/
wsci-spec-10.pdf.

WSDL. Web Services Description Language, 2002.
http://www.w3.org/TR/wsdl.

