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Abstract— A new approach for decoding multidimensional (n- information sequence space of length k offedf we encode

D) nonsystematic convolutional codes is described. The possibility elements ofR* into codewords contained iR",n > k, then
of coding at different rates along the dimensions of the sequence decoding is possible only if the map frof* — R" is
space is explored and the notion of ordering of information . . .

and encoded sequences based on coding rate is explained. UsianeCt'Ve'

this technique, a class of fast-decodeable, locally invertible:-D Definition 1: [3], [2] Let G € R¥*™ be of rankk. If we

convolutional codes based on the concept of one-to-one mappingconsider the cod€ = C(G) as a row space oveR of the

between information and encoded subsequences of equal sizg,q\ynomial matrix G, then G is called theencoderor the
is defined. Error syndrome generation using orthogonal parity- ¢ trixand therate of C is &
check sums is described and methods for error correction using generator matrixan erate of C is k/n.

error syndromes are suggested.

|. INTRODUCTION A. Code Rate andi-D Representation

One dimensional convolutional codes have been widely
implemented and are well suited for error control applications. It is interesting to note that whem > 1, there is no
By encoding data that is recorded geometrically in dimensioRgtural notion of causality between the code rate and rate
higher than one, it is possible to make the encoding scheffeconvolution along the m-dimensions. For example, when
shift-invariant with respect to axis of the dimensions. Thighcoding a2-D sequence with a code rate 615, it is
would lead to a convolutional code represented as a polyrf#ft clear if the convolution proceeds at the rateGoin the
mial ring in several variables. horizontal ¢;) or vertical ¢2) direction. Furthermore it raises

Fornasini and Valcher [1] describe 2-D convolutional codd§€ question of having different convolution rates along the
with finite support using the ring'%[zlil,zfl]. They define different dimensions. ie. rat along z; and rate3 along z
the code as a submodule of the Laurent polynomial rirtjth an effective data rate df.
R™, where the code can be viewed as a set of sequenceBroposition 1: When specifying the code ratg, the nota-
indexed on the discrete plar® x Z. Weiner [2], [3], [4] tion
defines am-D convolutional code as a submodule of the
rng R[z,...,zy) and the code can be viewed as a set of R=k/n=ki/ni X ky/ng X -+ X kp /N (1)
sequences indexed on the nonnegative integer laftite
The framework for studyingn-D convolutional codes by the e . . .
above authors uses a module-theoretic approach and consiag%cmes the rate of convolution along the dimensions

: ) Z1..--,2m Of the m-D sequence space, and the values

polynomial encoders, equivalent generators, syndrome formzi's

and polynomial inverters. In this paper we introduce the notio ok andny, ..., ny, define the ordering of the data
and encoded sequence space.

of ordering m-D sequences based on the coding rate and ) ] ]
describe a new class of nonsystematieD locally invertible ~ YWhen encodingn-D information, the sequence space and
ntation depend on the code rate specified

convolutional codethat can be encoded by convolving data gi/9€braic represe d A
different rates along the:-dimensions. The error syndromed?Y Proposition 1. In a finite sequence spaSe, elements

are generated using orthogonal parity vectors and decodinisf can be viewed as bej:g %ttached to points ofneD
performed as a separate step after error correction. honnegative integer lattice™. S* can be represented as a
polynomial vectoru € R¥, by associating the points &f™

Il. NOTATION AND DEFINITIONS with monomials inR via the correspondence,, . . . , i, ) «—
Multidimensional information can be represented geomets' - - - - - z7 and thej*" element ofu, j = 1,...,k, is the

rically as asequence spade m-dimensions :-D) or alge- Summation of all thej’" terms of the sequence spasé.
braically as a polynomial inn variants. Let = I, be a finite Example 1:Consider a2-D code overF,. Finite informa-
field with ¢ elements and? = F|zy,.. ., z,,] be a polynomial tion u can be represented as follows alopgand z; where
ring in m variants oveiF. Let the R-module R*, be them-D the top left point is(0,0) € N2.



» Using arate2/6 =2/6 x 1/1 code,

Now consider the input data sequencdrom equation 3.
The output of the encodeF in the algebraic form is

01 10
_ 0001 _ [z +2125 + 25 @ v=uG
00 10 1+zlzg+zlz§ ’ .
10 01 (29 + 20 + 2320 + 2520 + 2020 + 22 + 2222 + 2322 ]
. . 4,2
where u is ordered using; = 2 andk; = 1 along z; s 3 o . s ao Jrerz22
and z,. 21+ 27 + 27 + 2722 + 2722 + 2125 + 2725 + 2723
« Using a rate2/6 = 1/1 x 2/6 code, _ A et At 202 + 202
z1+ zi)’ + z‘f + z% + z%zz + Z%Zz + z‘fzz + z% + zlzg
0001 _[s+24222]" +aiaf + 223
z1 z AR S)
v= 0010::L3+£+¢@J ®) 22+ 2z + 2o + 222 + 25+ 2125 + 225 + 2z
1001 ! ! 21+ 2o + 2125 + 2322
] @)

where u is ordered using; = 1 and ky = 2 along z;

and zs.

B. Multidimensional Encoding

In a linear system, the encoding operation involving poly-
nomial multiplication can be replaced by sequence space

operations involving convolution.
Example 2:Consider a 2-D convolutional code whose eNsonvolution results in the map

coder is given by

zf—l—zz—}—z%z'g
1+Z%+22+2122+Z%22
Z%+22+2122+Z%22
1+21 —&—22—1—2%22
Z%+Z2+Z%Z2
142142120 +2229

Rank(x)=2, letC represent a rat& = 2/6 = 1/2 x 2/3 code.

1421 +2% 420
21 +2122+z%22
21 —1—2122—1—2%22

21 —i—z%—i—zz—l—zlzg—&—z%@
142 —‘rZz—f—Zl,Zg—‘rZ%ZQ

1+2’122

T

(4)

The generator sequencisg gﬁj);z‘ =1...k,j=1...n for

the code obtained from th@ are
1y _ (001 1 (111
91 = \101) 92 = {100
(2) _ (101 2 _ (010
91 111) 92 = \o11
3) _ (001 3y _ (010
9= \111) 92 = o1l
4y _ (110 (4) _ (011
91 = \101) 92 7 11
)y _ (001 5y _ (110
91 = \101) 92 = {111

®)

The output can also be obtained by using the composite
generator sequences from equation 6

o)

8
9)

where * denotes discrete 2-D convolution. The output of the

u*g(j);jzl...(i

v o= (M, 0@, 00,

u v
00 01 01 01 00 10
00 01 00 11 01 01
0110 00 01 00 00 00 00
0001 g 100001101011
“%00 00 01 01 01 10
9989 11 00 10 10 00 10
10 01 10 11 10 01
01 11 00 11 00 11
10 11 00 11 00 10

which is equivalent to the sequence space representation of
equation 7 ordered using the rates = 2 andny = 3 along
z1 and zs.

[1l. LOCALLY INVERTIBLE CODES

In order to make decoding possible the codewords have
to be theimage of unique information sequences and the
encoder map should be injective. Such an encoder is called
globally invertible Here we introduce a class of m-D encoders
which are invertible in thdocal sense. Locally Invertible 1-

D encoders were proposed by Bitzer, Vouk and Dholakia[6],
[7], [8], [9]. Here we extend the theory of local invertibility
to m-D convolutional codes.

A. One-to-one Mapping
When encoding data in m-D, in order to achieve local

invertibility, we have to establish a one-to-one correspondence
betweenequal m-D subsequencesf data and encoded bits.

Using the ratess; = 1 and k; = 2 along z; and z,, the
composite generator sequence is represented as

g={g";i=1...n}

Consider a rateR = ky/ny x -+ X ky/n, codeC with
ny > ki,...,nym > ky. Let L =10, x ... x [, be the input

001 101 001 110 001 110 constraint lengths along, . . ., z,,. Now consider production

111 010 010 011 110 100 of encoded bits. The first L data bits produeceencoded bits
~ 1101 11111111 ] 101 1011011 with order nq,...,n,, in the z1,..., 2, dimensions. Each

100 011 011 111 111 010 additional shift ofk; on the data bits along; will produce

(6)

n more encoded bits with the same ordering. If we find



the mapping lengtf6] as in thel-D case along each of the The encoding and decoding equations can be represented as
dimensions we get ,
Vixw = Ulxw " G'wxu) (14)
n(l; — kz) .

t=1...m (10) Uixw = Dixw Goxw (15)

w; = )
n; — k‘i
A sliding m-D subsequence of size = w; X ... X w,,
can now be used to encodewabit data subsequence into
a w-bit encoded subsequence. When the received sequence

1) does not have errors, decoding is performed using equation

We now have a one-to-one correspondence of egud
subsequences = w(® = w(©)

W=wWy X+ X W

15. Note that a shift ok, . .., k,, on the data sequence space
wherew(® data bits map tas(¢) encoded bits. corresponds to a shift ofy, . . ., n,, on the encoded sequence
Example 3:Consider the 2-D code with ratg = 2/6 — Space along the;, ..., z, dimensions.

1/2 x 2/3 shown in example 2. From the composite generat%r Error Detection
sequence representation we dget= 3 and > = 4. From '

proposition 1 we havé:; = 1,ks = 2,n, = 2 andn, = 3. An important property of encoding using one-to-one map-
Equation 10 gives us; = 4,w, = 6 andw = 4 x 6. So we Ping is that it produces overlapping bits between successive
have4 x 6 data bits mapping td x 6 encoded bits. bit subsequences[6]. When there are no errors in the received

Now the set ofw = 24 tuple basisdata elements as shownsubsequence, the corresponding overlapping bits will be the
below, can be used to obtain the complete encoding mé@meon the data subsequenceand this property can be
between the data and encoded bits through exclusivezpREXPloited to detect errors. It should be noted thatnirD

operations. seguence space; > 1, more than one overlap is possible.
Example 4:For the 2-D code with ratd = 2/6 = 1/2 x
u1 VU1 U24 V24 2/3 shown in example 2. A shift oh; = 2 andny = 3
(1) 8 8 8 11 00 8 8 8 8 00 00  generates a; x n bit overlap between tway, x w, received
0000 =+ H 88 0000 =+ 88 88 subsequences, which corresponds tq & k- shift on the data
0000 " gooo’ -2 0000 7 00 10 sequence space.
g8 W gpge BN : i
\ o (12) 1010 5000
ote that the convolutiorg is carried out at the rate, = 1 10 10 0100 0
alongz; andk; = 2 alongz, and the map takes into account 01 01 11 0000 0
only the bits corresponding to the 2-D subsequenacétained O8I = 0000 0
during the convolution. 10 10 00010
The data sequence shown below can now be encoded 00 01 01 00
using® operations as follows . 11 01 N 0000 .
If the received sequendehad an error then the corresponding
U=1u ® Urp ® Usyg V=1 ® Vg ® Vo overlapping bits ofi would not be the same and thus indicate
1000 11 11 an error.
0000 10 10 1) Syndrome Former (g-maskErom example 4 it is clear
8 (% 8 8 29, (1)(1) (1)(1) that an (ny x --- x n,,)-bit encoded subsequence with an
0000 10 11 encoded bit in error affects at mdst; +%1) X - - - X (wy, + ki)
0001 01 00 data bits, and the decoding operation specified by equation 15
would yield corrupt data. Sincuv; +mn1) X « -+ X (W, + M)
B. Reduced Encoding Matrix encoded bits are needed to prod(ag+k; ) x - - - X (W, +kum)

Close examination of the basis map shown in equation glata bits, we need to correct all errors over a subsequence of
reveals interlaced generator sequences and can be use84®(wi +n1) X -+ x (wm + nm) encoded bits for correct

define thereduced encoding matri&, ..., decoding. o _ _
The error detection in one-to-one mapped locally invertible
Glw = [v1 Vg e Uw]T (13) convolutional codes is based on the concept of orthogonal

parity-check sums and is achieved using thenaskh. A
where each row of7, ., is the corresponding basis map fromg-mask can be viewed as a finite-D subsequence of size
equation 12 written as & x w row vector. (wy 4+n1) X -+ X (W, +nyn) € CL, where the modul€+ is

Definition 2: Rate R = ky/ny x -+ X ky,/n,, m-D con- the orthogonal code af.
volutional encoders witlhhy > kq,...,n,, > k, and input Proposition 2: Let C be a Locally Invertiblem-D con-
constraint length, = 13 x ... xl,, alongzy,..., z,, that have volutional code with rateR = k/n = ki/ni X ka/ng x
ainvertible reduced encoding matri&’’ are calledocally --- x k,,/n,,. If the one-to-one mapping:-D subsequence

wXw

invertible encoders IS w = w; X -+ X w,y,. Then the maximum number of



linearly independent g-masks that detect errors over an
coded sequence of siZe; +n1) X -+ X (Wi, + Nyyp) bItS IS
((wr4n1) X X (W +Nm)) — (W1 k1) X+ - X (W +Em))-
Proof: To producev = ((w1 +mn1) X -+ X (W + N ))
encoded bits we need = ((wy + k1) X -+ X (wm + km))

e@n-choose the coding rate and generator matrix independent
of the ordering of them-D information (see for example
observation 3 in [10]). In this paper we have introduced
a method for ordering information and encoded sequences
based on the coding rate and using this concept, described a

data bits. Since the Locally Invertible map is injective, the simple method for decoding.-D convolutional codes. Locally
codewords of size, generated from the ordered standard badisvertible codes have to satisfy certain criteria. In order to have
of data bits of sizeu, will be form a basis for the encodeda one-to-one mapping between data and encoded subsequences
space and hence be linearly independent. the code rate has to expressible as a factor of rates along the
Let A be au x v matrix where each of the codewords of m-dimensions, withn,; > ky,...,n,, > k, and the input
sizev form a row of A. Since a g-mask lies in the null space constraint lengthd, = [; x ... x l,,, have to be chosen such
of A, solving for AX = 0 gives us the number of g-masks that the dimensions of the one-to-one mapping subsequence
. defined in equation 10 are positive integers. Work on several
th Nullity (4) = v —rank(4) = v —u aspects of Locally Invertiblen-D codes including distance
(w1 +mn1) X+ X (Wi +nn)) — properties remains to be studied.
((w1 + kl) X oo X (wm + k‘m))

(16)
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IV. CONCLUSION

In current literature, typical suggestions for the userof
D convolutional codes have been to encede information
such as images, holograms, animated pictures etc. It has been
shown in [3] that arbitrarily large distances can be achieved for
m > 2 codes that are row spaceslot 1 polynomial matrices.
The recursive data processing inherentrinD, m > 1
convolution provides the decoder with several different views
of the received sequence. This seems to suggest that good error
correction can be achieved by reorderin® information into
m-dimensions and encoding it withva-D convolutional code.
When encodingn-D information, it is desirable to be able



