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Abstract— A new approach for decoding multidimensional (m-
D) nonsystematic convolutional codes is described. The possibility
of coding at different rates along the dimensions of the sequence
space is explored and the notion of ordering of information
and encoded sequences based on coding rate is explained. Using
this technique, a class of fast-decodeable, locally invertiblem-D
convolutional codes based on the concept of one-to-one mapping
between information and encoded subsequences of equal size
is defined. Error syndrome generation using orthogonal parity-
check sums is described and methods for error correction using
error syndromes are suggested.

I. I NTRODUCTION

One dimensional convolutional codes have been widely
implemented and are well suited for error control applications.
By encoding data that is recorded geometrically in dimensions
higher than one, it is possible to make the encoding scheme
shift-invariant with respect to axis of the dimensions. This
would lead to a convolutional code represented as a polyno-
mial ring in several variables.

Fornasini and Valcher [1] describe 2-D convolutional codes
with finite support using the ringR[z±1

1 , z±1
2 ]. They define

the code as a submodule of the Laurent polynomial ring
Rn, where the code can be viewed as a set of sequences
indexed on the discrete planeZ × Z. Weiner [2], [3], [4]
defines am-D convolutional code as a submodule of the
ring R[z1, . . . , zm] and the code can be viewed as a set of
sequences indexed on the nonnegative integer latticeNm.
The framework for studyingm-D convolutional codes by the
above authors uses a module-theoretic approach and considers
polynomial encoders, equivalent generators, syndrome formers
and polynomial inverters. In this paper we introduce the notion
of ordering m-D sequences based on the coding rate and
describe a new class of nonsystematicm-D locally invertible
convolutional codesthat can be encoded by convolving data at
different rates along them-dimensions. The error syndromes
are generated using orthogonal parity vectors and decoding is
performed as a separate step after error correction.

II. N OTATION AND DEFINITIONS

Multidimensional information can be represented geomet-
rically as asequence spacein m-dimensions (m-D) or alge-
braically as a polynomial inm variants. LetF = Fq be a finite
field with q elements andR = F[z1, . . . , zm] be a polynomial
ring in m variants overF. Let theR-moduleRk, be them-D

information sequence space of length k overF. If we encode
elements ofRk into codewords contained inRn, n > k, then
decoding is possible only if the map fromRk −→ Rn is
injective.

Definition 1: [3], [2] Let G ∈ Rk×n be of rankk. If we
consider the codeC = C(G) as a row space overR of the
polynomial matrix G, then G is called theencoderor the
generator matrixand therate of C is k/n.

A. Code Rate andm-D Representation

It is interesting to note that whenm > 1, there is no
natural notion of causality between the code rate and rate
of convolution along the m-dimensions. For example, when
encoding a2-D sequence with a code rate of6/15, it is
not clear if the convolution proceeds at the rate of6 in the
horizontal (z1) or vertical (z2) direction. Furthermore it raises
the question of having different convolution rates along the
different dimensions. ie. rate2 along z1 and rate3 along z2

with an effective data rate of6.

Proposition 1: When specifying the code rateR, the nota-
tion

R = k/n = k1/n1 × k2/n2 × · · · × km/nm (1)

specifies the rate of convolution along the dimensions
z1, . . . , zm of the m-D sequence space, and the values
k1, . . . , km and n1, . . . , nm define the ordering of the data
and encoded sequence space.

When encodingm-D information, the sequence space and
algebraic representation depend on the code rate specified
by proposition 1. In a finite sequence spaceSk, elements
of F can be viewed as being attached to points of am-D
nonnegative integer latticeNm. Sk can be represented as a
polynomial vectoru ∈ Rk, by associating the points ofNm

with monomials inR via the correspondence(i1, . . . , im)←→
zi1
1 · . . . · zim

m and thejth element ofu, j = 1, . . . , k, is the
summation of all thejth terms of the sequence spaceSk.

Example 1:Consider a2-D code overF2. Finite informa-
tion u can be represented as follows alongz1 and z2 where
the top left point is(0, 0) ∈ N2.



• Using a rate2/6 = 2/6× 1/1 code,

u =

01 10
00 01
00 10
10 01

=
[

z1 + z1z
2
2 + z3

2

1 + z1z2 + z1z
3
2

]T

, (2)

where u is ordered usingk1 = 2 and k2 = 1 along z1

andz2.
• Using a rate2/6 = 1/1× 2/6 code,

u =
0 1 1 0
0 0 0 1
0 0 1 0
1 0 0 1

=
[
z1 + z2

1 + z2
1z2

z3
1 + z2 + z3

1z2

]T

, (3)

where u is ordered usingk1 = 1 and k2 = 2 along z1

andz2.

B. Multidimensional Encoding

In a linear system, the encoding operation involving poly-
nomial multiplication can be replaced by sequence space
operations involving convolution.

Example 2:Consider a 2-D convolutional code whose en-
coder is given by

G=


z2
1+z2+z2

1z2 1+z1+z2
1+z2

1+z2
1+z2+z1z2+z2

1z2 z1+z1z2+z2
1z2

z2
1+z2+z1z2+z2

1z2 z1+z1z2+z2
1z2

1+z1+z2+z2
1z2 z1+z2

1+z2+z1z2+z2
1z2

z2
1+z2+z2

1z2 1+z1+z2+z1z2+z2
1z2

1+z1+z1z2+z2
1z2 1+z1z2



T

(4)
Rank(G)=2, letC represent a rateR = 2/6 = 1/2×2/3 code.
The generator sequences[5] g

(j)
i ; i = 1 . . . k, j = 1 . . . n for

the code obtained from theG are

g
(1)
1 =

(
001
101

)
g
(1)
2 =

(
111
100

)
g
(2)
1 =

(
101
111

)
g
(2)
2 =

(
010
011

)
g
(3)
1 =

(
001
111

)
g
(3)
2 =

(
010
011

)
g
(4)
1 =

(
110
101

)
g
(4)
2 =

(
011
111

)
g
(5)
1 =

(
001
101

)
g
(5)
2 =

(
110
111

)
g
(6)
1 =

(
110
011

)
g
(6)
2 =

(
100
010

)
(5)

Using the ratesk1 = 1 and k2 = 2 along z1 and z2, the
composite generator sequence is represented as

g = {g(j); j = 1 . . . n}

=


001
111
101
100

 ,


101
010
111
011

 ,


001
010
111
011

 ,


110
011
101
111

 ,


001
110
101
111

 ,


110
100
011
010


(6)

Now consider the input data sequenceu from equation 3.
The output of the encoderG in the algebraic form is

v = u.G

=



z5
1 + z2 + z3

1z2 + z4
1z2 + z5

1z2 + z2
2 + z2

1z2
2 + z3

1z2
2

+z4
1z2

2

z1 + z2
1 + z3

1 + z2
1z2 + z5

1z2 + z1z
2
2 + z3

1z2
2 + z5

1z2
2

z3
1 + z5

1z2 + z2
1z2 + z3

1z2
2 + z5

1z2
2

z1 + z3
1 + z4

1 + z5
1 + z2

1z2 + z3
1z2 + z4

1z2 + z2
2 + z1z

2
2

+z3
1z2

2 + z5
1z2

2

z2 + z2
1z2 + z3

1z2 + z5
1z2 + z2

2 + z1z
2
2 + z3

1z2
2 + z5

1z2

z1 + z2 + z1z
2
2 + z3

1z2
2



T

(7)
The output can also be obtained by using the composite

generator sequences from equation 6

v(j) = u ∗ g(j); j = 1 . . . 6 (8)

v = (v(1), v(2), . . . , v(6)), (9)

where * denotes discrete 2-D convolution. The output of the
convolution results in the map

u v

0 1 1 0
0 0 0 1
0 0 1 0
1 0 0 1

u∗g−→

00 01 01 01 00 10
00 01 00 11 01 01
00 01 00 00 00 00
10 00 01 10 10 11
00 00 01 01 01 10
11 00 10 10 00 10
10 01 10 11 10 01
01 11 00 11 00 11
10 11 00 11 00 10

,

which is equivalent to the sequence space representation of
equation 7 ordered using the ratesn1 = 2 andn2 = 3 along
z1 andz2.

III. L OCALLY INVERTIBLE CODES

In order to make decoding possible the codewords have
to be the image of unique information sequences and the
encoder map should be injective. Such an encoder is called
globally invertible. Here we introduce a class of m-D encoders
which are invertible in thelocal sense. Locally Invertible 1-
D encoders were proposed by Bitzer, Vouk and Dholakia[6],
[7], [8], [9]. Here we extend the theory of local invertibility
to m-D convolutional codes.

A. One-to-one Mapping

When encoding data in m-D, in order to achieve local
invertibility, we have to establish a one-to-one correspondence
betweenequal m-D subsequencesof data and encoded bits.
Consider a rateR = k1/n1 × · · · × km/nm code C with
n1 > k1, . . . , nm > km. Let L = l1 × . . . × lm be the input
constraint lengths alongz1, . . . , zm. Now consider production
of encoded bits. The first L data bits producen encoded bits
with order n1, . . . , nm in the z1, . . . , zm dimensions. Each
additional shift ofki on the data bits alongzi will produce
n more encoded bits with the same ordering. If we find



the mapping length[6] as in the1-D case along each of the
dimensions we get

wi =
ni(li − ki)

ni − ki
; i = 1 . . .m (10)

We now have a one-to-one correspondence of equalm-D
subsequencesw = w(d) = w(e)

w = w1 × · · · × wm (11)

wherew(d) data bits map tow(e) encoded bits.
Example 3:Consider the 2-D code with rateR = 2/6 =

1/2×2/3 shown in example 2. From the composite generator
sequence representation we getl1 = 3 and l2 = 4. From
proposition 1 we havek1 = 1, k2 = 2, n1 = 2 and n2 = 3.
Equation 10 gives usw1 = 4, w2 = 6 andw = 4× 6. So we
have4× 6 data bits mapping to4× 6 encoded bits.

Now the set ofw = 24 tuple basisdata elements as shown
below, can be used to obtain the complete encoding map
between the data and encoded bits through exclusive-OR(⊗)
operations.

u1 v1 u24 v24

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∗g−→

11 00
11 00
11 00
00 00
00 00
00 00

, . . . ,

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

∗g−→

00 00
00 00
00 00
00 10
00 00
00 11

(12)
Note that the convolution∗g is carried out at the ratek1 = 1

alongz1 andk2 = 2 alongz2 and the map takes into account
only the bits corresponding to the 2-D subsequencew obtained
during the convolution.

The data sequenceu shown below can now be encoded
using⊗ operations as follows

u = u1 ⊗ u10 ⊗ u24 v = v1 ⊗ v10 ⊗ v24

1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 1

∗g−→

11 11
10 10
10 10
01 01
10 11
01 00

B. Reduced Encoding Matrix

Close examination of the basis map shown in equation 12
reveals interlaced generator sequences and can be used to
define thereduced encoding matrixG ′

w×w.

G ′
w×w =

[
v1 v2 · · · vw

]T
(13)

where each row ofG ′
w×w is the corresponding basis map from

equation 12 written as a1× w row vector.
Definition 2: RateR = k1/n1 × · · · × km/nm m-D con-

volutional encoders withn1 > k1, . . . , nm > km and input
constraint lengthL = l1× . . .× lm alongz1, . . . , zm that have
a invertible reduced encoding matrixG ′

w×w are calledlocally
invertible encoders.

The encoding and decoding equations can be represented as

v1×w = u1×w ·G ′
w×w (14)

û1×w = v̂1×w ·G ′ −1
w×w (15)

A sliding m-D subsequence of sizew = w1 × . . . × wm

can now be used to encode aw-bit data subsequence into
a w-bit encoded subsequence. When the received sequence
does not have errors, decoding is performed using equation
15. Note that a shift ofk1, . . . , km on the data sequence space
corresponds to a shift ofn1, . . . , nm on the encoded sequence
space along thez1, . . . , zm dimensions.

C. Error Detection

An important property of encoding using one-to-one map-
ping is that it produces overlapping bits between successivew-
bit subsequences[6]. When there are no errors in the received
subsequencêv, the corresponding overlapping bits will be the
sameon the data subsequencêu and this property can be
exploited to detect errors. It should be noted that inm-D
sequence space,m > 1, more than one overlap is possible.

Example 4:For the 2-D code with rateR = 2/6 = 1/2×
2/3 shown in example 2. A shift ofn1 = 2 and n2 = 3
generates an1×n2 bit overlap between twow1× w2 received
subsequences, which corresponds to ak1×k2 shift on the data
sequence space.

v̂ û
11 11
10 10
10 10
01 01 11
10 11 11
01 00 10

10 10
00 01
11 01

−→

1 0 0 0
0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0

0 1 0 0
0 0 0 0

If the received sequencêv had an error then the corresponding
overlapping bits of̂u would not be the same and thus indicate
an error.

1) Syndrome Former (g-mask):From example 4 it is clear
that an (n1× · · · × nm)-bit encoded subsequence with an
encoded bit in error affects at most(w1+k1)×· · ·×(wm+km)
data bits, and the decoding operation specified by equation 15
would yield corrupt data. Since(w1 +n1)×· · ·× (wm +nm)
encoded bits are needed to produce(w1+k1)×· · ·×(wm+km)
data bits, we need to correct all errors over a subsequence of
size (w1 + n1) × · · · × (wm + nm) encoded bits for correct
decoding.

The error detection in one-to-one mapped locally invertible
convolutional codes is based on the concept of orthogonal
parity-check sums and is achieved using theg-maskh. A
g-mask can be viewed as a finitem-D subsequence of size
(w1 + n1)× · · · × (wm + nm) ∈ C⊥, where the moduleC⊥ is
the orthogonal code ofC.

Proposition 2: Let C be a Locally Invertiblem-D con-
volutional code with rateR = k/n = k1/n1 × k2/n2 ×
· · · × km/nm. If the one-to-one mappingm-D subsequence
is w = w1 × · · · × wm. Then the maximum number of



linearly independent g-masks that detect errors over an en-
coded sequence of size(w1 + n1)× · · · × (wm + nm) bits is
((w1+n1)×· · ·×(wm+nm))−((w1+k1)×· · ·×(wm+km)).

Proof: To producev = ((w1 + n1)× · · · × (wm + nm))
encoded bits we needu = ((w1 + k1) × · · · × (wm + km))
data bits. Since the Locally Invertible map is injective, theu
codewords of sizev, generated from the ordered standard basis
of data bits of sizeu, will be form a basis for the encoded
space and hence be linearly independent.

Let A be au× v matrix where each of theu codewords of
sizev form a row ofA. Since a g-maskh lies in the null space
of A, solving forAX = 0 gives us the number of g-masks]h

]h = Nullity(A) = v − rank(A) = v − u

= ((w1 + n1)× · · · × (wm + nm))−
((w1 + k1)× · · · × (wm + km)). (16)

Example 5:Consider the code shown in example 3. We
havew = 4 × 6 with w1 = 4 and w2 = 6. From equation
16 we get

]h = ((4 + 2)× (6 + 3))− ((4 + 1)× (6 + 2)) = 14.

The14 g-masks are obtained by taking the((4+1)× (6+2))
linearly independent code words of size((4 + 2) × (6 + 3))
generated from the((4+1)× (6+2)) standard data basis and
solving for the null space.

2) Error Syndrome:Data independent finite syndromess =
{s(1), . . . , s(]h)} that depend only on the error pattern can be
used to detect and correct errors in the encoded stream. Each
of the m-D syndrome subsequences is calculated as follows

s(j) = v̂ ∗ h(j); j = 1 . . . ]h (17)

v̂ ∈ C if s = 0. Note that since we are working on the encoded
sequence space, the discrete convolution∗ is carried out at the
ratesn1, . . . , nm alongz1, . . . , zm respectively.

Since each g-maskh(j) is of fixed size(w1 + n1)× · · · ×
(wm +nm), the size of eachs(j) defined in 17 depends on the
size of the encoded subsequencev̂. While the minimum size
of v̂ is (w1 +n1)×· · ·× (wm +nm), syndrome-extensioncan
be achieved by increasing the length ofv̂. See for example
the Table Based Decodingapproach discussed in [6], [7], [8],
[9].

IV. CONCLUSION

In current literature, typical suggestions for the use ofm-
D convolutional codes have been to encodem-D information
such as images, holograms, animated pictures etc. It has been
shown in [3] that arbitrarily large distances can be achieved for
m > 2 codes that are row spaces of1×1 polynomial matrices.
The recursive data processing inherent inm-D, m > 1
convolution provides the decoder with several different views
of the received sequence. This seems to suggest that good error
correction can be achieved by reordering1-D information into
m-dimensions and encoding it with am-D convolutional code.
When encodingm-D information, it is desirable to be able

to choose the coding rate and generator matrix independent
of the ordering of them-D information (see for example
observation 3 in [10]). In this paper we have introduced
a method for ordering information and encoded sequences
based on the coding rate and using this concept, described a
simple method for decodingm-D convolutional codes. Locally
Invertible codes have to satisfy certain criteria. In order to have
a one-to-one mapping between data and encoded subsequences
the code rate has to expressible as a factor of rates along the
m-dimensions, withn1 > k1, . . . , nm > km and the input
constraint lengthsL = l1 × . . . × lm have to be chosen such
that the dimensions of the one-to-one mapping subsequencew
defined in equation 10 are positive integers. Work on several
aspects of Locally Invertiblem-D codes including distance
properties remains to be studied.
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