
Inverses of Multivariate Polynomial Matrices using
Discrete Convolution

R. Lobo
Dept. of Elec. and Comp. Eng.
North Carolina State University

Raleigh, NC 27695

D. Bitzer
Dept. of Comp. Sci.

North Carolina State University
Raleigh, NC 27695

M. Vouk
Dept. of Comp. Sci.

North Carolina State University
Raleigh, NC 27695

Abstract— A new method for inversion of rectangular matrices
in a multivariate polynomial ring with coefficients in a field
is explained. This method requires that the polynomial matrix
satisfies the one-to-one mapping criteria defined in [1].

I. I NTRODUCTION

The problem of finding inverses of polynomial matrices
plays an important role in general theory of linear multi-
dimensional systems. For univariate polynomial matrices this
problem has been well studied (see [2] and its references).
Solutions to multivariate polynomial system of equations is
the subject of intensive research and has major applications in
the areas of systems and control theory and more recently in
the study of multidimensional (m-D) convolutional codes. Sig-
nificant differences arise in the multivariate case as compared
to its univariate counterpart due to the fact that a polynomial
ring in more than one variable with coefficients in a field is
not a principal ideal domain. Central to the role of finding
inverses of multivariate polynomial matrices is the concept
of matrix primeness. Form ≥ 2, new phenomenon arise
in the definitions of matrix primeness, and the notions of
zero primeness (ZP), minor primeness (MP) and left-factor
primeness (LFP) are no longer equivalent (see for example
[3]). From the perspective ofm-D convolutional codes the
primeness properties translate to the existence of parity check
matrix or kernel representation and bijective mapping [4], [5],
[6]. More specifically, MP⇔ Kernel Representation and ZP⇔
Invertibility. However,ZP ⇒ MP ⇒ LFP , so the solution
of finding an inverse guarantees existence of the primeness
hierarchy and will allow for a better understanding of the
system dynamics.

The duality between codes and systems is well established
[7]. Fornasini and Valcher [5] describe 2-D convolutional
codes with finite support using the ringR[z±1

1 , z±1
2 ], where

the code is defined as a submodule of the Laurent polynomial
ring Rn, and can be viewed as a set of sequences indexed
on the discrete planeZ × Z. Weiner [8], [4] defines am-D
convolutional code as a submodule of the ringR[z1, . . . , zm]
where the code is viewed as a set of sequences indexed on
the nonnegative integer latticeNm. In this paper we seek to
exploit the equivalence between polynomial multiplication and
discrete convolution to find the inverse of certain multivariate
polynomial matrices in the ringR[z1, . . . , zm] that satisfy

the one-to-one mapping criteria [1]. We will spend a rather
long time establishing notations and definitions in section
II so as to elucidate the problem formulation. Section III
revisits the one-to-one mapping concept first introduced in
[1] for 1-D codes and uses local invertibility to find the
inverse of univariate polynomial matrices. We then extend
this concept to multivariate polynomial matrices in section
IV. Whenever possible examples are provided to illustrate
concepts introduced and detailed examples are given in the
appendix.

II. N OTATION AND DEFINITIONS

A. G is a Linear Transformation

Let F = Fq be a finite field withq elements. LetR =
F[z1, . . . , zm] be the polynomial ring inm variables overF.
Let G ∈ Rk×n be ank× n; k < n matrix with elements in
R. The mapφ induces anR-module homomorphism given by
matrix multiplication and is defined by

φ : Rk −→ Rn

u 7−→ u.G

Theim(φ) is anR-submoduleC of theR-moduleRn, and can
be viewed asC = rowspace(G) = RkG. It is well known,
see for example [4], [7], that there exists anF-isomorphism
between the multivariate polynomial ringR and them-D finite
sequence spaceS. We explain for completeness.

S = {ω : Nm → F}

Where,ω has finite support and elements ofF are attached
to the coordinates(i1, . . . im) of the integer latticeNm. The
isomorphism is given by

ψ : S −→ R

ω 7−→
∑

(i1,...im)

ω(i1, . . . im) · zi11 · . . . · zimm

The coordinates of the latticeNm are are associated with
monomials ofR via the correspondence

(i1, . . . , im)←→ zi11 · . . . · zimm
The valuesi1, . . . , im form the axes of them-D sequence
spaceS and we consider the top left point(i1, . . . , im) of the
lattice as the(0, . . . , 0) coordinate.



Example 1:Consider a1-D finite sequenceu ∈ S2 with
elements fromF2.

S2 R2

11 01 10 ψ2

→
[
1 + z2

1

1 + z1

]
Consider a2-D finite sequenceu ∈ S4 with elements from

F2. The top left point of the lattice is(i1, i2) = (0, 0).

S4 R4

0110 1001
0000 0101
0010 1000

ψ4

→


z1 + z1z

2
2

1 + z1z2
1 + z2

2

z1 + z1z2


B. Operations in the transform domainS

Discrete convolution in the sequence space domain can
be used to compute the coefficients of the product of two
polynomials. ie. multiplying two polynomials together, is the
same as convolving their coefficients. LetG ∈ Rk×n, with
elementsg(y)

x (z) = g
(y)
x (z1, . . . , zm) ∈ R.

G =


g
(1)
1 (z), . . . , g

(n)
1 (z)

...

g
(1)
k (z), . . . , g

(n)
k (z)


The sequence space representation ofG defined byψ−1 is

g
(1)
1 , . . . , g

(n)
1

...

g
(1)
k , . . . , g

(n)
k


The elementsg(y)

x ∈ S are calledgenerator sequences[9].
LetKzi

be the maximum degree alongzi of the polynomial
entries inG, that is

Kzi
= max

1≤x≤k
1≤y≤n

[deg g(y)
x (zi)]

Equivalently,Kzi = Ki − 1, whereKi is the length of the
longest generator sequence along theith axis of them-D
sequence spaceS.

Ki = max
1≤x≤k
1≤y≤n

[len g(y)
x ]

For a finite sequenceu ∈ Sk discretem-D convolution
(denoted by∗) is defined as

v = u ∗ g (1)

v(1) = u(1) ∗ g(1)
1 + · · ·+ u(k) ∗ g(1)

k

...

v(n) = u(1) ∗ g(n)
1 + · · ·+ u(k) ∗ g(n)

k

The convolution operationu(x) ∗ g(y)
x implies that for all

(i1, . . . , im) ≥ 0,

v
(y)
(i1,...,im) =

Km−1∑
lm=0

. . .

K1−1∑
l1=0

u
(x)
((i1−l1),...,(im−lm))

.g
(y)
x(l1,...,lm) (2)

whereu(x)
((i1−l1),...,(im−lm)) , 0 for all ir < lr. Addition and

multiplication are carried out in modulo-q.
The mapϕ induces a homomorphism given by discrete

convolution and is defined as

ϕ : Sk −→ Sn

u 7−→ u ∗ g

For the isomorphismψ : S −→ R, since the notation is
discrete convolution in the domainS and polynomial mul-
tiplication in the rangeR, the law of composition translates
to

ψ(ω1 ∗ ω2) = ψ(ω1).ψ(ω2)

Example 2:We clarify the above mapping with an example.
Let R = F2[z1]. Let G ∈ R2×3 be given by

G =
[
1 + z1 z1 1 + z1
z1 1 1

]
For this univariate polynomial matrix, we haveKz1 = 1. The
sequence space representation ofG is(

11 01 11
01 10 10

)
,

with K1 = 2. For the sequenceu = 11 01 10
ψ2

→ [1+z2
1 1+

z1], the product

v = u.G = [1 + z3
1 1 + z3

1 z2
1 + z3

1 ]

In the transform domain the equations can be written asv =
u ∗ g. Sincem = 1, equation (2) reduces to

v
(y)
(i1)

=
1∑

l1=0

u
(x)
(i1−l1).g

(y)
x(l1)

v(1) = u(1) ∗ g(1)
1 + u(2) ∗ g(1)

2

= (101 ∗ 11) + (110 ∗ 01) = 1001

v(2) = u(1) ∗ g(2)
1 + u(2) ∗ g(2)

2

= (101 ∗ 01) + (110 ∗ 10) = 1001

v(3) = u(1) ∗ g(3)
1 + u(2) ∗ g(3)

2

= (101 ∗ 11) + (110 ∗ 10) = 0011

The input sequenceu ∈ S2 and the output of the convolution
v ∈ S3. The sequence space representation ofv is obtained
by multiplexingv(1), v(2) andv(3)

v = 110 000 001 111 ψ3

→
[
1 + z3

1 1 + z3
1 z2

1 + z3
1

]



Example 3:Consider a polynomial vectoru(z1, z2) ∈
R2, R = F2[z1, z2].

u =
[
1 + z1z2 z2

2

]
Let G ∈ R2×6 be given by

G =
[
z2
1z2 0 z2 z2

1 1 0
0 1 + z2

1z2 0 z1z2 z1 1 + z2
1 + z2

]
The productv = u.G give us the transformationv(z1, z2) ∈
R6

v =


z2
1z2 + z3

1z
2
2

z2
2 + z2

1z
3
2

z2 + z1z
2
2

z2
1 + z3

1z2 + z1z
3
2

1 + z1z2 + z1z
2
2

z2
2 + z2

1z
2
2 + z3

2



T

For the input sequenceu ∈ R2 we have

R2 S2

[
1 + z1z2 z2

2

] ψ−1

→
10 00
00 10
01 00

u(1) =
10
01
00

u(2) =
00
00
10

The sequence space representation ofG is 000 000 000 001 100 000
001 000 100 000 000 000
000 100 000 000 010 101
000 001 000 010 000 100

 ,

with K1 = 3 and K2 = 2. In the transform domain the
equations can be written asv = u ∗ g. Sincem = 2, equation
(2) reduces to

v
(y)
(i1,i2)

=
1∑

l2=0

2∑
l1=0

u
(x)
((i1−l1),(i2−l2)).g

(y)
x(l1,l2)

S2 S6

10 00
00 10
01 00

∗ g→

000010 000000 000100 000000
001000 000010 100000 000100
010001 001010 000001 100000
000001 000100 010000 000000

As per the isomorphismψ the polynomial representation of
the above sequencev is the same as the productv = u.G

C. Problem Formulation

The transformation from the ringR to them-D sequence
spaceS can be visualized with the following commutative
diagram

Rk
φ

.G
// Rn

ψn−1

��
Sk

ψk

OO

Sn
ϕ−1

∗g−1
oo

Our aim is to find the inverse of the polynomial matrix
Gk×n, k < n. G can be viewed as a linear transformation
from Rk → Rn. Throughout section II we have used the iso-
morphismψ−1 to convertG to its equivalent sequence space
representationg. So far we have usedg as a transformation
from Sk → Sn but we do not know the inverse mapping.
A solution for g−1 in the sequence spaceS would give us
G−1 in the ringR. We do this by findingg−1 using discrete
convolution based on the concept oflocal invertibility and then
switch back to the ringR using the isomorphismψ to give us
G−1 the n× k inverse polynomial matrix.

III. L OCAL INVERTIBILITY

A. One-to-one Mapping

In [1], [10], [11] Bitzer, Vouk, Dholakia and Koorapaty
define a class of1-D codes known asLocally Invertible
Convolutional Codesbased on the concept ofone-to-one
mapping. From example (2) we see that forG ∈ Rk×n the
convolution operationv = u ∗ g producesn output symbols
for every k input symbols. The rater = k/n is called
the rate of convolution. The one-to-one mapping technique
finds a relationship between the input and output sequence
which involves the same number of symbols. We start by
explaining this concept for the1-D case and later extend
it to m-dimensions. Whenk > 1, the generator sequences
are represented in a composite form, where, for a fixedy

eachg(y)
x ;x = 1 to k is multiplexed into a single sequence,

k symbols at a time. Thecomposite generator sequenceis
represented as

g =
{
g(1), . . . , g(n)

}
,

where eachg(y) ∈ Sk. If K1 is the length of the longest
generator sequenceg(y)

x , then the length of each composite
generator sequenceg(y) is then simply

L1 = k.K1 (3)

When the generator sequences are expressed in the composite
form the convolutionv = u ∗ g from equation (1) for the1-D
case is now represented as

v(1) = u ∗ g(1)

...

v(n) = u ∗ g(n)

The convolutionu ∗ g(y) implies that for all(i1) ≥ 0,

v
(y)
(i1)

=
L1∑
l1=1

u(i1−l1+k).ḡ
(y)
(L1−l1) (4)

whereu(i1−l1+k) , 0 for all i1 < l1 andḡ(y) is the composite
generator sequence reversedk symbols at a time.

Example 4:For the polynomial matrixG ∈ R2×3 in
example (2) with sequence space representation(

11 01 11
01 10 10

)
,



we haveK1 = 2. The composite generator sequence is
obtained by multiplexingk = 2 symbols at a time such that
L1 = k.K1 = 4.

g =
{

10 11 01 10 11 10
}

g is reversedk = 2 symbols at a time to give us

ḡ =
{

11 10 10 01 10 11
}

Sincem = 1, equation (4) reduces to

v
(y)
(i1)

=
4∑

l1=1

u(i1−l1+2)ḡ
(y)
(4−l1)

v(1) = u ∗ g(1) = 11 01 10 ∗ 10 11 = 1001
v(2) = u ∗ g(2) = 11 01 10 ∗ 01 10 = 1001
v(2) = u ∗ g(3) = 11 01 10 ∗ 11 10 = 0011

The sequence space representation ofv is obtained by multi-
plexing v(1), v(2) andv(3)

v = 110 000 001 111
Consider the production of output symbols during the convo-
lution operation.

Iteration Input Output
1 L1 n
2 L1 + k 2n
3 L1 + 2k 3n

· · ·
i L1 + (i− 1)k i.n

In equation (4),u(i1−l1+k) , 0 for all i1 < l1 implies that
the input sequenceu ∈ Sk is padded with zeros. The firstL1

input symbols producen output symbols. In the next iteration
k additional input symbols producen more output symbols.
If we require the number of input and output symbols to be
equal we get

L1 + (i− 1)k = i.n

i =
L1 − k
n− k

The one-to-one mapping size is then

w = i.n =
n(L1 − k)
n− k

(5)

If the parametersL1, n, andk are chosen such thatw is an
positive integer, then, we have a sequence space relationship
of w input symbols mapping tow output symbols.

Example 5:For the matrixG = [1 + z1 1 + z1 + z2
1 ]

ψ−1

→
(110 111), we havek = 1, n = 2, K1 = 3 andL1 = k.K1 =
3.

g = {110 111}

Substituting these values in equation (5) we get the one-to-one
mapping size

w =
2(3− 1)
2− 1

= 4

For the matrixG ∈ R2×3 from example (2) we have

g =
{

10 11 01 10 11 10
}

Herek = 2, n = 3, andL1 = 4. Substituting these values in
equation (5) we get the one-to-one mapping size

w =
3(4− 2)
3− 2

= 6

B. Reduced Encoding Matrix

Now consider the map generated by a setE containing
w standard basisvectors. Let the setE = {e1, . . . , ew} be
defined by

e1 = 100 . . . 0
e2 = 010 . . . 0

· · ·
ew = 000 . . . 1

where eacher ∈ Sk is of size1×w. The convolution operation

ĝr = er ∗ g(y); y = 1 to n (6)

gives us an output map, wherêgr ∈ Sn is of size1×w. The
w× w square matrixĜ = [ĝ1, . . . , ĝw]T , is formed by using
eachĝr; r = 1 to w, as a row vector.

Ĝw×w=



g
(1)
L−1 · · · g

(n)
L−1

...
...

g
(1)
L−1−k · · · g

(n)
L−1−k g

(1)
L−1 · · · g

(n)
L−1

...
...

...
...

...g(1)
L−1 · · · g

(n)
L−1

g
(1)
0 · · · g

(n)
0

...
...

...
...

g
(1)
0 · · · g(n)

0

...
...

... g(1)
0 · · · g(n)

0


Notice that the firstn columns of the reduced encoding matrix
are the composite generator sequences reversedk bits at a
time. The nextn columns are formed by shifting down the
composite generator sequences byk rows and so on. This
is due to the fact that̂G is a w× w subsection of the semi-
infinite generator matrix [9]. SôG can be formed by inspection
without actually performing the convolution operation defined
in equation (6).

Since Ĝ is constructed from the standard basis input
sequence, for anyu ∈ Sk, discrete convolution can now
be represented by matrix multiplication as shown below by
considering1×w sized subsequenceŝu and shifting over the
input sequenceu, k-symbols at a time.

v̂ = û.Ĝ (7)

If the matrix Ĝ (called thereduced encoding matrixin [1])
is invertible thenG is calledLocally Invertible [10] and the
inverse mapping is given by

û = v̂.Ĝ−1 (8)



The sequenceu is obtained by considering1 × w sized
subsequenceŝv and shifting over the sequencev, n-symbols
at a time.

Example 6:For the polynomial matrixG = [1 + z1 1 +
z1 + z2

1 ] from example (5) we haveg = {110 111} and one-
to-one mapping sizew = 4. Now equation (6) gives us the
transformation

e1 ĝ1 e2 ĝ2
1000 ∗g→ 01 00 0100 ∗g→ 11 01
e3 ĝ3 e4 ĝ4

0010 ∗g→ 11 11 0001 ∗g→ 00 11

The reduced encoding matrix̂G is formed by using eacĥgr
as a row vector

Ĝ =


ĝ1
ĝ2
ĝ3
ĝ4

 =


0 1 0 0
1 1 0 1
1 1 1 1
0 0 1 1


For û = 1011 ∈ S1 equations (7) and (8) give us

v̂ = û.Ĝ = 1011.


0 1 0 0
1 1 0 1
1 1 1 1
0 0 1 1

 = 10 00

û = v̂.Ĝ−1 = 10 00.


1 0 1 1
1 0 0 0
0 1 1 0
0 1 1 1

 = 1011

The sequencêv = û.G = 10 00 forms only a part of the
output sequencev = u ∗ g = 11 11 10 00 10 01. The
complete output sequence can be obtained by paddingû with
zeros and multiplying1 × w sized subsequences witĥG by
shifting k symbols at a time as followŝu = 1011 ' 00101100

u v
0010
0101
1011
0110
1100

.Ĝ−→

1111
1110

1000
0010

1001

00101100 −→11 11 10 00 10 01

Discrete convolution carried out using the operationû.Ĝ leads
to aw − n symbol overlap in the output sequencev. This is
becausew− k symbols ofu are reconsidered with every shift
of k over the input sequenceu.

The inverse mapping is obtained by considering1×w sized
subsequences ofv and multiplying with Ĝ−1 by shifting n

symbols at a time.

v u
1111

1110
1000

0010
1001

.Ĝ−1

−→

0010
0101
1011
0110
1100

11 11 10 00 10 01−→ 00101100

Thew−k symbol overlap in the sequenceu is due to the fact
thatw − n symbols ofv are reconsidered with every shift of
n during the operation̂u = v̂.Ĝ−1

C. Extracting the Inverse

The commutative diagram shown in section (II-C) can now
be viewed using the reduced encoding matrixĜ as follows

Rk
.G // Rn

ψ−1

��
Sk

ψ

OO

Sn
.Ĝ−1

oo

Notice that the transformation fromSn → Sk is now carried
out usingĜ−1 instead ofg−1. By virtue of the mapϕ each
row of Ĝ is a finite sequence∈ Sn. SinceĜ.Ĝ−1 = I, each
column ĝ−1

r of Ĝ−1 =
[
ĝ−1
1 . . . ĝ−1

w

]
is a finite sequence

∈ Sn. From the definition of discrete convolution we see that
one of the sequences is reversed. Notice that each row ofĜ
has elements ofg in the reverse order (see example (6)). So the
columns ofĜ−1 will also be finite sequence∈ Sn in reverse
order. During the operation̂u = v̂.Ĝ−1, observe from the
overlapping symbols in the previous example that firstw − k
columnsĝ−1

1 , . . . , ĝ−1
w−k of Ĝ−1 produce forward shifts along

the ith axis in Sk and correspond to multiplication withzi11
in the ringRk. Only the lastk columns ofĜ−1 yield new
symbols and therefore represent the inverse generator sequence
g−1. Thesek columnsĝ−1

w−k+1, . . . , ĝ
−1
w , correspond to the

elementsek, . . . , e1 of the standard basisE. Since Ĝ−1 is
a linear transformation fromSn → Sk and sinceψ is an
isomorphism fromS → R, the polynomial representation of
these columns of̂G−1 should give usG−1. ie. the inverse of
the polynomial matrixG.

Example 7:From example (6) the row-reduced inverse of
the reduced encoding matrix̂G is

Ĝ−1 =


1 0 1 1
1 0 0 0
0 1 1 0
0 1 1 1


Each column ofĜ−1 is a reversed sequence∈ S2. Sincek =
1, the columnĝ−1

4 corresponds toe1.

ĝ−1
4 = 1001



Reversingn = 2 symbols at a time give us inverse composite
generator sequenceg−1

g−1 = {01 10} ψ2

−→
[
z1
1

]
= G−1

[
1 + z1 1 + z1 + z2

1

]
.

[
z1
1

]
=
[
1
]

As mentioned above the firstw− k columns ofĜ−1 produce
forward shifts along theith axis in S1 and correspond to
multiplication with zi11 in the ringR1.

ĝ−1
4 = 1011

Reversingn = 2 symbols at a time

{11 10} ψ2

−→
[
1 + z1

1

]
[
1 + z1 1 + z1 + z2

1

]
.

[
1 + z1

1

]
=
[
z1
]

ĝ−1
4 = 0011

Reversingn = 2 symbols at a time

{11 00} ψ2

−→
[
1
1

]
[
1 + z1 1 + z1 + z2

1

]
.

[
1
1

]
=
[
z2
1

]
ĝ−1
4 = 1100

Reversingn = 2 symbols at a time

{00 11} ψ2

−→
[
z1
z1

]
[
1 + z1 1 + z1 + z2

1

]
.

[
z1
z1

]
=
[
z3
1

]
For the matrixG ∈ R2×3 from example (2) we havew = 6
and the row-reduced inverse of the reduced encoding matrix
Ĝ is

Ĝ−1 =


0 1 0 0 0 0
0 1 1 1 0 1
1 0 1 1 0 1
1 1 0 1 0 0
1 1 0 1 1 1
1 1 0 1 1 0


The columnŝg−1

5 and ĝ−1
6 corresponding toe2 ande1.

ĝ−1
5 = 000011
ĝ−1
6 = 011010

Reversingn = 3 symbols at a time give us the inverse
composite generator sequenceg−1

g−1 =
{

011 000
010 011

}
ψ3

−→

0 0
1 1 + z1
1 z1

 = G−1

[
1 + z1 z1 1 + z1
z1 1 1

]0 0
1 1 + z1
1 z1

 =
[
1 0
0 1

]
IV. L OCAL INVERTIBILITY IN m-DIMENSIONS

A. Reordering them-D Sequence Space

The one-to-one mapping sizew is a relation between
the input and output sequences involving equal number of
symbols. For the univariate polynomial ringR[z1] or the1-D
sequence space this size implicitly translates to a measure of
length. Let us examine the parameters involved in computing
w as defined in equation (5).

w =
n(L1 − k)
n− k

Here, L1 represents the length of the composite generator
sequence andk and n represent the number of input and
output symbols generated during each step of the convolution
operation. The symbols in the sequence are ordered alongi1
since this is the only possible axis in a1-D space and therefore
k andn signify units of length. When extending the concept
of one-to-one mapping tom-dimensions or a multivariate
polynomial ringR[z1, . . . , zm], it is desirable to maintain this
relation along the axis of each dimension. Notice that if we
form the composite generator sequence by interleaving, say
k symbols along thei1 axis, then for the termL, we have
the lengthsL1 = k.K1 andL2 = K2,. . . , Lm = Km along
each of them dimensions. But the termsk andn no longer
explicitly translate to units of length. The rater = k/n for
m-D convolution means thatn output symbols are generated
for every k input symbols without specifying their order in
the m-D space.S is simply defined as a sequence having
finite support with elements (symbols) ofF attached to the
coordinates(i1, . . . im) of the integer latticeNm. In current
literature [8], [4], [12], say for a2-D sequence space, a
sequenceSk is always ordered usingk symbols alongi1 and
1 symbol alongi2.

Since S is a linear shift invariant system and operations
on S are symbol-wise linearly independent, reordering of
symbols attached to each point of the lattice will not change
the structure of the sequence as long as the order is maintained
during computation.

Proposition 1: When specifying them-D convolution rate
r, the notation

r = k/n = k1/n1 × k2/n2 × · · · × km/nm (9)

specifies the rate of convolution along the dimensions
i1, . . . , im of the m-D sequence space, and the values
k1, . . . , km and n1, . . . , nm define the ordering of the input
and output sequence spaces.

When k > 1, the m-D composite generator sequence
is now formed from the sequence space representation of
G(z1,. . . , zm) by interleavingki symbols at a time along the
ith axis. The composite generator sequence is represented as

g =
{
g(1), . . . , g(n)

}
,



where eachg(y) ∈ Sk. Now, If Ki is the length of the longest
generator sequenceg(y)

x , then the length of each composite
generator sequenceg(y) is

Li = ki.Ki (10)

For them-D convolution v = u ∗ g, the operationu ∗ g(y)

implies that for all(i1,. . . , im) ≥ 0

v
(y)
(i1,...,im) =

Lm∑
lm=1

. . .

L1∑
l1=1

u((i1−l1+k1),...,(im−lm+km))

.ḡ
(y)
((L1−l1),...,(Lm−lm) (11)

where u((i1−l1+k1),...,(im−lm+km)) , 0 for all ir < lr and
ḡy is the composite generator sequence reversedk1,. . . , km
symbols at a time alongi1,. . . , im respectively.

Example 8:For the polynomial matrixG ∈ R2×6 from
example (3) the sequence space representation ofG is 000 000 000 001 100 000

001 000 100 000 000 000
000 100 000 000 010 101
000 001 000 010 000 100


If we specify the rate of convolution asr = 2/6 = 1/2× 2/3
as defined in proposition (1), then, the composite generator
sequence ofG is formed by interleavingk1 = 1 symbols along
the i1 andk2 = 2 symbols along thei2 axes respectively.

g =


000 000 000 001 100 000
000 100 000 000 010 101
001 000 100 000 000 000
000 001 000 010 000 100


g is reversedk1 = 1 andk2 = 2 symbols at a time alongi1
and i2 to form

ḡ =


100 000 001 000 000 000
000 100 000 010 000 001
000 000 000 100 001 000
000 001 000 000 010 101


The lengths of the composite generator sequence areL1 =
3 and L2 = 4. The rater = 1/2× 2/3 imposes an order
k1× k2 = 1× 2 on the input sequenceu ∈ S2

R2 S2 S2

[
1 + z1z2 z2

2

] ψ−1

→
10 00
00 10
01 00

→

1 0
0 0
0 1
0 0
0 0
1 0

2-D convolutionv = u∗g gives us the transformationv ∈ S6,
wherev is order as an1× n2 = 2× 3 sequence as defined by
the rater = 1/2× 2/3. Sincem = 2, equation (11) reduces
to

v
(y)
(i1,i2)

=
3∑

l2=0

2∑
l1=0

u((i1−l1+1),(i2−l2+2))ḡ
(y)
((3−l1),(4−l2))

S2 S6

1 0
0 0
0 1
0 0
0 0
1 0

∗ g→

00 00 00 00
00 00 01 00
10 00 00 00
00 00 10 00
10 00 00 01
00 10 00 00
01 00 00 10
00 10 00 00
01 10 01 00
00 00 01 00
00 01 00 00
01 00 00 00

As per the isomorphismψ the polynomial representation of
the above sequencev is the same as the productv = u.G

B. Reduced Encoding Matrix

The ordering of sequences as per proposition (1) gives us a
simple way to extend the one-to-one mapping concept tom-D
spaces using

wi =
ni(Li − ki)
ni − ki

; i = 1 . . .m (12)

w = w1 × · · · × wm (13)

w is them-D one-to-one mapping size, withw1×· · ·× wm
input symbols mapping tow1×· · ·×wm output symbols in the
m-D space. For example we havew1×w2 sized rectangles in
2-D, w1× w2× w3 sized cubes in3-D, w1× . . .× wm sized
hypercubes inm-D. As before, eachwi needs to be a positive
integer and therefore the rater = k/n = k1/n1×· · ·×km/nm
has to be factored such thatni > ki in each dimension.

Let E represent the set ofw, m-D standard basis vectors.

E = {e1, . . . , ew}

where,er ∈ Sk is a m-D sequence of sizew1×· · ·× wm.
Discretem-D convolution as defined in equation (11) gives
us the output map

ĝr = er ∗ g(y) (14)

where,ĝr ∈ Sn is am-D sequence of sizew1×· · ·× wm. If
this multidimensional map is injective, then, the polynomial
matrixG is locally invertible. The reduced encoding matrix̂G
is constructed by taking eacĥgr and rearranging it as a1×w,
1-D row vector to form a row ofĜ.

Ĝ = [ĝ1, . . . , ĝw]T

If the w×w matrix Ĝ is nonsingular, then, its inversêG−1 can
be found by row-reduction. Since the order of the sequence is
preserved during the convolution and row-reduction operations
the structure of the sequence is preserved.

For anyu ∈ Sk and v ∈ Sn the transformations can now
be represented by matrix multiplication as

v̂1×w = û1×w.Ĝw×w (15)

û1×w = v̂1×w.Ĝ
−1
w×w (16)

where û and v̂ are m-D sequence of sizew1 × · · · × wm
represented as1-D vectors of size1× w.

Example 9:For the matrixG ∈ R2×6 from example (8)
with rate of convolutionr = 2/6 = 1/2× 2/3 we havek1 =



1, k2 = 2 andn1 = 1, n2 = 3. The lengths of the composite
generator sequence areL1 = 3 and L2 = 4. Equation (12)
gives us

w1 =
2(3− 1)
2− 1

= 4

w2 =
3(4− 2)
3− 2

= 6

We now have4× 6 input symbols mapping to4× 6 output
symbols and the one-to-one mapping size from equation (13)
is w = 24.

The setE = {e1, . . . , e24} of 24 standard basis vectors each
of size4× 6 give us the output map

e1 ĝ1 e2 ĝ2
1000
0000
0000
0000
0000
0000

∗g→

10 00
00 00
00 00
00 00
00 00
00 00

0100
0000
0000
0000
0000
0000

∗g→

00 10
00 00
00 00
00 00
00 00
00 00

e5 ĝ5 e24 ĝ24
0000
1000
0000
0000
0000
0000

∗g→

01 00
00 00
00 00
00 00
00 00
00 00

0000
0000
0000
0000
0000
0001

∗g→

00 00
00 00
00 00
00 01
00 00
00 01

Each ĝr of size 4× 6 is represented as a1× 24, 1-D row
vector and forms a row of the24×24 reduced encoding matrix
Ĝ = [ĝ1, . . . , ĝ24]T (see Appendix (17)). IfĜ is nonsingular
then the polynomial matrixG(z1, z2) is locally invertible.

C. Extracting the Inverse

The output map from equation (14) generatesm-D se-
quences (shown above) of sizew1 × · · · × wm ordered as
n1×· · ·× nm as defined in proposition (1). The matrix̂G
is constructed by rearranging thesem-D sequences as row
vectors. Just as in the1-D case each column of̂G−1 is a
reversedm-D sequence∈ Sn of sizew1×· · ·×wm with order
n1×· · ·× nm. The transformations defined in equations (15)
and (16) lead to am-D sequence overlap. Note that in the1-D
case due to the implicit ordering of the input sequence along
i1, only the lastk columns ofĜ−1 yield the inverse. But, for
a multivariate polynomial matrix with convolution ratek/n,
the orderk1/n1×· · ·× km/nm; ki < ni is not unique. For
example the composite generator sequences of a rate2/6 2-D
polynomial matrix could be ordered as1/2×2/3 or 2/3×1/2
which in turn would impose an order of1× 2 or 2× 1 on the
input sequence respectively. Therefore the columns ofĜ−1

that represent the inverse generator sequenceg−1 depends on
the numbering of thew1×· · ·× wm sized standard basisE.
For our2-D example we have chosen to number the standard
basis in a row wise incrementing order

e1 e2 e3 e4
e5 e6 e7 e8
e9 e10 e11 e12
e13 e14 e15 e16
e17 e18 e19 e20
e21 e22 e23 e24

The columns ofĜ−1 corresponding to the elements of the
standard basis that match the orderk1×· · ·×km will yield the
polynomial inverse.

Example 10:Each column ofĜ−1
24×24 (appendix (18)) is a

reversed sequence∈ S6 ordered as an1×n2 = 2× 3, column
vector. The elementse1 ande5 match the orderk1×k2 = 1×2.
The columns ofĜ−1

24×24 that correspond toe5 ande1 are

ĝ−1
20 = 000000010110011000100010
ĝ−1
24 = 000000001000000110000000

Rearranging as a4× 6, 2-D sequence gives us

0000
0001
0110
0110
0010
0010

0000
0000
1000
0001
1000
0000

Reversingn1 = 2 andn2 = 3 bits alongi1 and i2

0000
0001
0110
0110
0010
0010

→

00 00
01 00
10 01
10 01
10 00
10 00

→

10 01
10 00
10 00
00 00
01 00
10 01

ψ6

→


1
z1
1
z2

1 + z2
z1z2


0000
0000
1000
0001
1000
0000

→

00 00
00 00
00 10
01 00
00 10
00 00

→

01 00
00 10
00 00
00 00
00 00
00 10

ψ6

→


0
1
z1
0

z1z2
0



G−1 =


1 0
z1 1
1 z1
z2 0

1 + z2 z1z2
z1z2 0


D. Diversity ofm-D Sequence Ordering

The matrixGk×n; k < n is rectangular, so unlike the case
of a nonsingular matrix, which has a single unique inverse,
G may not have an inverse or it may have a multiplicity of
generalized inverses[13], [14]. From proposition (1) we know
that the orderk1/n1×· · ·× km/nm; ki < ni is not unique,
so it is natural to question the choice of the convolution rate
r = 2/6 = 1/2× 2/3 in the above example. It is interesting
to note what happens if the rater = 2/6 = 2/3× 1/2 is
chosen while ordering the composite generator sequence. The
sequence space representation ofG is 000 000 000 001 100 000

001 000 100 000 000 000
000 100 000 000 010 101
000 001 000 010 000 100


If we specify the rate of convolution asr = 2/6 = 2/3×
1/2, then, the composite generator sequence ofg is formed



by interleavingk1 = 2 symbols along thei1 and k2 = 1
symbols along thei2 axes respectively.{

00 00 00 01 00 00 00 00 00 00 00 10 10 01 00 01 00 01
00 00 10 00 00 01 10 00 00 00 01 00 00 00 00 01 00 00

}
The lengths of the composite generator sequence areL1 = 6
andL2 = 2. Equation (12) gives usw1 = 12, w2 = 2 and
w = w1×w2 = 24. The reduced encoding matrix̂G24×24 (see
appendix (19)) is constructed from the2-D standard basisE
with eachei of size 12× 2. Notice that rows9 and 11 of
Ĝ are all-zero rows and hence make it singular. Therefore the
polynomial inverseG−1 cannot be be found using this method
for the rater = 2/6 = 2/3× 1/2. However, for someG, the
reduced encoding matrix̂G is nonsingular when factored using
different rates (appendix B) and the polynomial inverseG−1

obtained for each rate need not be unique.



APPENDIX

A. Rater = 2/6 = 1/2× 2/3
The reduced encoding matrix̂G = [ĝ1, . . . , ĝ24]T con-

structed from the2-D standard basisE is

Ĝ24×24 =



100000000000000000000000
001000000000000000000000
000010000000000000000000
000000100000000000000000
010000000000000000000000
000101000000000000000000
000000010100000000000000
000000000001000000000000
000001000000100000000000
000000010000001000000000
000000001000000010000000
000000000010000000100000
000000000100010000000000
000000001001000101000000
010000000110000000010100
000100000001000000000001
000000000000000001000000
000000000000000000010000
000000000000000000001000
000000000000000000000010
000000000000000000000100
000000000000000000001001
000000000000010000000110
000000000000000100000001



(17)

Ĝ−1
24×24 =



100000000000000000000000
000010000000000000000000
010000000000000000000000
000000010000000100100100
001000000000000000000000
000001010000000100100100
000100000000000000000000
000000100000100000011010
000000010000010010100101
000000000000100000011010
000010000000101001010010
000000010000000000000000
000001011000000100100100
000000000000000000011010
000000100100100000011010
000000000000000000100101
000000010010010010100101
000000000000000010000000
000010000001101001010010
000000000000000001000000
000000000000000000100000
000000000000000000001000
000000000000000000010000
000000000000000000100100



(18)

If we specify the rate of convolution asr = 2/6 = 2/3× 1/2,
then, the reduced encoding matrix constructed from the2-D

standard basisE is

Ĝ24×24 =



100000000000000000000000
010000000000000000000000
000100000000000000000000
000010000000100000000000
000000100000000000000000
000000010000001100000000
000000000100000000000000
000000000010000001100000
000000000000000000000000
000000000000000000001100
000000000000000000000000
000000000000000000000001
000000000000100000000000
000000000000001000000000
000000000000000100000000
000000000000010001000000
001000000000010000100000
010000000000001010001000
000001000000000010000100
000010000000000001010001
000000001000000000010000
000000010000000000001010
000000000001000000000010
000000000010000000000001



(19)

B. Non-Unique Inverses

Consider theG(z1, z2) ∈ R2×6 polynomial matrix

G =


z1z

2
2 1

z1z2 z2 + z1z
2
2

1 + z2
2 + z1z

2
2 z2

2

z2 + z2
2 1

z2
2 z1 + z2

1 + z1 + z1z2 1 + z1z
2
2



T

The sequence space representation ofG is
00 00 10 00 00 11
00 01 00 10 00 01
01 00 11 10 10 00
10 00 00 10 01 10
00 10 00 00 10 00
00 01 10 00 00 01


If we specify the rate of convolution asr = 2/6 = 2/3× 1/2
as defined in proposition (1), then, the composite generator
sequence ofG is formed by interleavingk1 = 2 symbols along
the i1 andk2 = 1 symbols along thei2 axes respectively.

g =

{
01 00 00 00 10 00 01 00 00 01 11 10
00 00 01 10 00 00 10 00 01 00 00 10
00 10 00 01 11 10 10 00 10 00 00 01

}
The lengths of the composite generator sequence areL1 = 4
andL2 = 3. The rater = 2/6 = 2/3× 1/2 gives usk1 =
2, k2 = 1 andn1 = 3, n2 = 2.

w1 =
3(4− 2)
3− 2

= 6

w2 =
2(3− 1)
2− 1

= 4

w = w1 × w2 = 24



The reduced encoding matrix̂G = [ĝ1, . . . , ĝ24]T constructed
from the2-D standard basisE is

Ĝ24×24 =



101000000000000000000000
010000001000000000000000
001101110000000000000000
001010000001000000000000
000001000110000000000000
000001000000000000000000
010000001000101000000000
000000000000010000001000
000010100001001101110000
010000010000001010000001
000000000100000001000110
000010000010000001000000
000000001000010000001000
000000010000000000000000
001000001001000010100001
100000101010010000010000
000001000001000000000100
000100000101000010000010
000000000000000000001000
000000000000000000010000
000000000000001000001001
000000000000100000101010
000000000000000001000001
000000000000000100000101



(20)

Ĝ−1
24×24 =



011010110000011101111100
010000010000100000000000
111010110000011101111100
100110111100010111101111
111000010111000111011000
000001000000000000000000
010101001100011010010011
000000000000010000000000
000000010000100000000000
001100111100100011011111
001111111100100011011111
000110100111011010100100
100111001010100100101101
000000010000000000100000
110111101010100100101101
110000001101111100100000
010000010100110000101000
110111101010100100000111
011011111001111011110101
000000000000000000010000
000000000000000000100000
000111100111011000100100
111100110011011111111100
110111101010100100000101



(21)

Each column ofĜ−1
24×24 is a reversed sequence∈ S6 ordered

as an1× n2 = 3× 2, column vector. The elementse1 ande2
match the orderk1× k2 = 2× 1. The columns ofĜ−1

24×24 that

correspond toe2 ande1 are

ĝ−1
23 = 000100100110000001000000
ĝ−1
24 = 000100100110101001100001

Rearranging as a6× 4 subsequence gives us

000100
100110
000001
000000

000100
100110
101001
100001

Reversingn1 = 3 andn2 = 2 bits alongz1 andz2

000100
100110
000001
000000

→
100 000
110 100
001 000
000 000

→
001 000
000 000
100 000
110 100

ψ6

→


z2
0
1

z2 + z1z2
z2
0



000100
100110
101001
100001

→
100 000
110 100
001 101
001 100

→
001 101
001 100
100 000
110 100

ψ6

→


z1 + z2

0
1 + z1

z1 + z2 + z1z2
z2
1



G−1 =


z2 z1 + z2
0 0
1 1 + z1

z2 + z1z2 z1 + z2 + z1z2
z2 z2
0 1


If we specify the rate of convolution asr = 2/6 = 1/2× 2/3
as defined in proposition (1), then, the composite generator
sequence ofG is formed by interleavingk1 = 1 symbols along
the i1 andk2 = 2 symbols along thei2 axes respectively.

g =


00 00 10 00 00 11
10 00 00 10 01 10
00 01 00 10 00 01
00 10 00 00 10 00
01 00 11 10 10 00
00 01 10 00 00 01


The lengths of the composite generator sequence areL1 = 2
andL2 = 6. The rater = 2/6 = 1/2× 2/3 gives usk1 =
1, k2 = 2 andn1 = 2, n2 = 3.

w1 =
2(2− 1)
2− 1

= 2

w2 =
3(6− 2)
3− 2

= 12

w = w1 × w2 = 24



The reduced encoding matrix̂G = [ĝ1, . . . , ĝ24]T constructed
from the2-D standard basisE is

Ĝ24×24 =



101000000000000000000000
001110000000000000000000
010001000000000000000000
001000000000000000000000
010001101000000000000000
000100001110000000000000
000000010001000000000000
010010001000000000000000
000001010001101000000000
001001000100001110000000
000010000000010001000000
100101010010001000000000
000000000001010001101000
000000001001000100001110
000000000010000000010001
000000100101010010001000
000000000000000001010001
000000000000001001000100
000000000000000010000000
000000000000100101010010
000000000000000000000001
000000000000000000001001
000000000000000000000010
000000000000000000100101



(22)

Ĝ−1
24×24 =



100100000000000000000000
111000100011101011000101
000100000000000000000000
101010100101111110000111
111110100101111110000111
110000100011101011000101
001100010110010101000010
011111100010001110101100
000110010110010101000010
000100101100000010111010
101001011111101001111111
011111000010001110101100
111000110001011001010100
010111111000011101111000
001000111010110010010001
111000110001011011001110
000000000000000000100000
101001011111100011111111
100001100101010000100111
101001011111100001110111
000000000000000000001100
100001100101010000101110
000000000000000000000010
000000000000000000001000



(23)

Each column ofĜ−1
24×24 is a reversed sequence∈ S6 ordered

as an1× n2 = 2× 3, column vector. The elementse1 ande3
match the orderk1× k2 = 1× 2. The columns ofĜ−1

24×24 that

correspond toe3 ande1 are

ĝ−1
22 = 010111010011100101111100
ĝ−1
24 = 010111000010001001110000

Rearranging as a2× 12 subsequence gives us

01
01
11
01
00
11
10
01
01
11
11
00

01
01
11
00
00
10
00
10
01
11
00
00

Reversingn1 = 2 andn2 = 3 bits alongz1 andz2

01
01
11
01
00
11
10
01
01
11
11
00

→

01
01
11
01
00
11
10
01
01
11
11
00

→

11
11
00
10
01
01
01
00
11
01
01
11

ψ6

→


1 + z2

1 + z2
2 + z3

2

1
1 + z2 + z3

2

z2
2 + z3

2

z2 + z2
2 + z3

2



01
01
11
00
00
10
00
10
01
11
00
00

→

01
01
11
00
00
10
00
10
01
11
00
00

→

11
00
00
00
10
01
00
00
10
01
01
11

ψ6

→


1

1 + z3
2

z2
z3
2

z2
2 + z3

2

z2 + z3
2



G−1 =


1 + z2 1

1 + z2
2 + z3

2 1 + z3
2

1 z2
1 + z2 + z3

2 z3
2

z2
2 + z3

2 z2
2 + z3

2

z2 + z2
2 + z3

2 z2 + z3
2





C. Rater = 1/4 = 1/2× 1/2

Consider theG(z1, z2) ∈ R1×4 polynomial matrix

G =


1 + z2

1z2 + z2
2 + z2

1z
2
2

1 + z1z
2
2

1 + z2
1 + z1z2

1 + z2
1z

2
2


T

The sequence space representation ofG is

(
100 100 101 100
001 000 010 000
101 010 000 001

)

Sincek = 1 the sequences are not interleaved. If we specify
the rate of convolution asr = 1/4 = 1/2× 1/2 as defined in
proposition (1), then, the composite generator sequence ofG
is and is the same as the sequence space representation above.

g =

{
100 100 101 100
001 000 010 000
101 010 000 001

}

The lengths of the composite generator sequence areL1 = 3
andL2 = 3. The rater = 1/2× 1/2 gives usk1 = 1, k2 = 1
andn1 = 2, n2 = 2.

w1 =
2(3− 1)
2− 1

= 4

w2 =
2(3− 1)
2− 1

= 4

w = w1 × w2 = 16

The reduced encoding matrix̂G = [ĝ1, . . . , ĝ16]T constructed
from the2-D standard basisE is

Ĝ16×16 =



1000010000000000
0110000100000000
1001000000000000
0010000000000000
1000000010000100
0010100001100001
0000001010010000
0000000000100000
0000100010000000
0000001000101000
1100110000000010
0011001100000000
0000000000001000
0000000000000010
0000000011001100
0000000000110011



(24)

Ĝ−1
16×16 =



0001111111000111
0111111010011111
0001000000000000
0011111111000111
1111111010111011
1001111111000111
0000000101001000
0010111010011111
1111111000111011
0001011111001101
0000000100000000
1111110101110011
0000000000001000
1110100111111100
0000000000000100
1111110001110110



(25)

Each column ofĜ−1
16×16 is a reversed sequence∈ S4 ordered

as an1×n2 = 2×2, column vector. The elemente1 matches the
orderk1×k2 = 1×1. The column ofĜ−1

16×16 that corresponds
to e1 is

ĝ−1
16 = 1101110111010000

Rearranging as a4× 4 subsequence gives us

1101
1101
1101
0000

Reversingn1 = 2 andn2 = 2 bits alongz1 andz2

1101
1101
1101
0000

→
01 11
01 11
01 11
00 00

→
01 11
00 00
01 11
01 11

ψ4

→


z1 + z1z2

1 + z1 + z2 + z1z2
z1z2

z2 + z1z2



G−1 =


z1 + z1z2

1 + z1 + z2 + z1z2
z1z2

z2 + z1z2


D. 3-D Generator Sequences

Consider theG(z1, z2, z3) ∈ R1×8 polynomial matrix

G =



z1 + z2 + z1z2z3
z3 + z2z3
1 + z1z2 + z1z3
z2 + z1z3
z1z2 + z1z3
z1 + z1z2 + z1z3
z2 + z1z3 + z1z2z3
z1z2 + z1z3 + z2z3



T



i3

•

??�������� //

��

i1

i2

Sincek = 1 the sequences are not interleaved. If we specify
the rate of convolution asr = 1/4 = 1/2×1/2×1/2 as defined
in proposition (1), then, the composite generator sequence of
G is

g =
{

01 00 10 00 00 01 00 00
10 00 01 10 01 01 10 01

}
; i3 = 0{

00 10 01 01 01 01 01 01
01 10 00 00 00 00 01 10

}
; i3 = 1

The lengths of the composite generator sequence areL1 = 2,
L2 = 2 andL2 = 2. The rater = 1/2× 1/2× 1/2 gives us

w1 =
2(2− 1)
2− 1

= 2

w2 =
2(2− 1)
2− 1

= 2

w3 =
2(2− 1)
2− 1

= 2

w = w1 × w2 × w3 = 8

The reduced encoding matrix̂G = [ĝ1, . . . , ĝ8]T constructed
from the3-D standard basisE is

Ĝ8×8 =



10000010
01000001
00111111
01000000
00101101
10010010
10000100
00100000


(26)

Ĝ−1
8×8 =



00101100
00010000
00000001
10000100
01110111
00101110
10101100
01010000


(27)

Each column ofĜ−1
8×8 is a reversed sequence∈ S8 ordered as

a n1× n2× n3 = 2× 2× 2, column vector. The elemente1
matches the orderk1× k2× k3 = 1× 1× 1. The column of
Ĝ−1

8×8 that corresponds toe1 is

ĝ−1
8 = 00101000

Rearranging as a2× 2× 2 subsequence gives us

00
10

i3 = 0
;

10
00

i3 = 1

Reversingn1 = 2, n2 = 2 andn3 = 2 bits alongi1, i2 andi3

00
10 ;

10
00

ψ8

→
[
0 0 1 0 1 0 0 0

]T
G−1 =

[
0 0 1 0 1 0 0 0

]T
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