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Abstract— A new method for inversion of rectangular matrices the one-to-one mapping criteria [1]. We will spend a rather
in a multivariate polynomial ring with coefficients in a field |ong time establishing notations and definitions in section
is explained. This method requires that the polynomial matrix || g5 a5 to elucidate the problem formulation. Section Il
satisfies the one-to-one mapping criteria defined in [1]. .. . S .

revisits the one-to-one mapping concept first introduced in
[1] for 1-D codes and uses local invertibility to find the
inverse of univariate polynomial matrices. We then extend

The problem of finding inverses of polynomial matriceshis concept to multivariate polynomial matrices in section
plays an important role in general theory of linear multitv. Whenever possible examples are provided to illustrate
dimensional systems. For univariate polynomial matrices thésncepts introduced and detailed examples are given in the
problem has been well studied (see [2] and its referenceappendix.
Solutions to multivariate polynomial system of equations is
the subject of intensive research and has major applications in
the areas of systems and control theory and more recentlyAinG is a Linear Transformation
the study of multidimensionah¢-D) convolutional codes. Sig- Let F = F, be a finite field withg elements. LetR =
nificant differences arise in the multivariate case as compargg,, ..., z,,] be the polynomial ring inm variables overF.
to its univariate counterpart due to the fact that a polynomipkt G € R**™ be ankx n; k < n matrix with elements in
ring in more than one variable with coefficients in a field i®. The mapy induces ankR-module homomorphism given by
not a principal ideal domain. Central to the role of findingnatrix multiplication and is defined by
inverses of multivariate polynomial matrices is the concept

; ; : ¢: RF — R"
of matrix primeness. Formn > 2, new phenomenon arise
in the definitions of matrix primeness, and the notions of u  —uG
zero primeness (ZP), minor primeness (MP) and Ieft—factqrh
primeness (LFP) are no longer equivalent (see for exam%l
[3]). From the perspective ofn-D convolutional codes the
primeness properties translate to the existence of parity ch
matrix or kernel representation and bijective mapping [4], [5
[6]. More specifically, MP= Kernel Representation and Zp
Invertibility. However,ZP = M P = LFP, so the solution S={w:N" > F}
of finding an inverse guarantees existence of the primen%ﬁ

hierarchy and _W|II allow for a better understanding of th?o the coordinatesii, .. .i,,) of the integer latticeN™. The
system dynamics. isgmorphism is given b

The duality between codes and systems is well establishad "°' P 9 y
[7]. Fornasini and Valcher [5] describe 2-D convolutional v: S —R
codes with finite support using the ring[z!, z£!], where W Z wiin
the code is defined as a submodule of the Laurent polynomial .
ring R, and can be viewed as a set of sequences indexed } ] ] ]
on the discrete plan& x Z. Weiner [8], [4] defines an-D The coordinates of the lattic®™ are are associated with

convolutional code as a submodule of the riRg, .. ., 2] monomials ofR via the correspondence

I. INTRODUCTION

II. NOTATION AND DEFINITIONS

eim(¢) is anR-submodule of the R-moduleR™, and can
& viewed agC = rowspace(G) = RFG. It is well known,
see for example [4], [7], that there exists Brisomorphism
ween the multivariate polynomial rifgand them-D finite
equence spacg. We explain for completeness.

ere,w has finite support and elements Bfare attached

clm) 2

(15---im)

where the code is viewed as a set of sequences indexed on (ir im) S im
ae : ! yereyim R
the nonnegative integer lattidé™. In this paper we seek to . .
exploit the equivalence between polynomial multiplication anbh€ valuesii, ... i, form the axes of then-D sequence
discrete convolution to find the inverse of certain multivariatgPaceS and we consider the top left poi,, ... ,in,) of the

polynomial matrices in the ringR[z1,...,z,] that satisfy lattice as thg(0,...,0) coordinate.



Example 1:Consider al-D finite sequence: € S? with The convolut|on operation:(®) g(y) implies that for all

elements frontFs. (i1, yim) >0,
S? R? Km—1  Ki—1
2 (v) _
1ot 10 % [1 + Zl] Ul i) = D D Uty it
1+ 2 lyn=0 1,=0
g(y) (2)
Consider &-D finite sequence, € S* with elements from e(layeslm)
F5. The top left point of the lattice i$iq,i2) = (0,0). whereugz) ity 2 20 for all i, < I,. Addition and
g4 R multiplication ‘are carried out in modulg-
21+ 222 The mapy induces a homomorphism given by discrete
0110 1001 ° convolution and is defined as
1 + 2129
0000 0101 L2
0010 1000 2 p: Sk — 5"
z1 + 2122

U o Uxg

B. Operations in the transform domai For the isomorphism) : S — R, since the notation is

Discrete convolution in the sequence space domain cdiscrete convolution in the domaif and polynomial mul-
be used to compute the coefficients of the product of twiplication in the rangeR, the law of composition translates
polynomials. ie. multiplying two polynomials together, is theo

same as E:(gnvolvin? )their coefficients. L6t € R**", with P(wy * wp) = P(wr).P(ws)
elementsy,”’ (2) = g2 (21,...,2m) € R. _ _ _
Example 2:We clarify the above mapping with an example.
ggl)(% o g@( ) Let R = Fy[z1]. Let G € R?*3 be given by
G = : a - [1—1—21 2 1+21}
i) g A b

For this univariate polynomial matrix, we haveé,, = 1. The

The sequence space representatioafefined byy ! is sequence space representatiorGois

g g 11 01 11
: 01 10 10
® _ A
9e > -0 Gk with K; = 2. For the sequence =11 01 10 = [1427 1+

@) z1], the product
The elementg,;”’ € S are calledgenerator sequencg8].
3

Let K. be the maximum degree alongof the polynomial v=u.G = [1+2} 1+2z} 27+ z}]

entries inG, that is . . .
G, In the transform domain the equations can be writtem as

K. = max [deg g ()] u * g. Sincem = 1, equation (2) reduces to
1 <e<k
1<y<n 1
) - Z D g
Equivalently, K., = K; — 1, where K; is the length of the (i1) = (i1 —l) ()
longest generator sequence along iHe axis of the m-D !
sequence space.
a P o =y s g @ gD
K; = max [len g{") = (101 11)+ (110 + 01) = 1001
1<y<n V@ = W gD 4y @ gD
For a finite sequence: € S* discrete m-D convolution = (101 %01) 4+ (110 x 10) = 1001
(denoted byx) is defined as 0@ = Dy 9(3) +u® s g(3>
v=uxg @ = (101 % 11) + (110 % 10) = 0011

The input sequence € S? and the output of the convolution
o = uW gy B () v E 53._ The sequence space representation @ obtained
by multiplexingv®, +® andv®

. 3
o = g™ ) g v o= 110 000 001 111 % [1423 1423 224 23]



Example 3:Consider a polynomial vectom(z,z2) € Our aim is to find the inverse of the polynomial matrix
R?, R =TFsy[z1, 29]. Grxn, k < n. G can be viewed as a linear transformation
from R* — R™. Throughout section Il we have used the iso-

— 2
v= [1 + 2122 22] morphisme~! to convertG to its equivalent sequence space

Let G € R?*5 pbe given by representatiory. So far we have used as a transformation
2 2 from S*¥ — S™ but we do not know the inverse mapping.
zi%a 0 zo 2 1 0 . 1 .

G = A solution for g—* in the sequence space would give us

0 142zf2 0 1+ 22+ ; : . g I
172 s A TR G~ in the ring R. We do this by findingy—! using discrete

The productv = u.G give us the transformation(z1,22) €  convolution based on the conceptiotal invertibility and then

R° switch back to the ring? using the isomorphisnp to give us

2220 + 2323 T G~! thenx k inverse polynomial matrix.

2 2.3
Z 1% IIl. L OCAL INVERTIBILITY
v |, 2SR A. O Mappi
T2 4 e+ 223 . One-to-one Mapping
1+ 2120 + 2122 In [1], [10], [11] Bitzer, Vouk, Dholakia and Koorapaty

22+ 2222 + 23 define a class ofl-D codes known ad ocally Invertible

Convolutional Codesbased on the concept afne-to-one

H 2
For the input sequence € R* we have mapping From example (2) we see that f6f € R**" the

R? S? convolution operatiorv = u * g producesn output symbols
_, 10 00 for every k input symbols. The ratee = k/n is called
[1+ 2120 23] YL 00 10 the rate of convolution The one-to-one mapping technique
01 00 finds a relationship between the input and output sequence
which involves the same number of symbols. We start by
10 00 explaining this concept for thé-D case and later extend
v = 01 u® = 00 it to m-dimensions. Wherk > 1, the generator sequences
00 10 are represented in a composite form, where, for a fiyed
The sequence space representatioi:dé eachgwy);x = 1 to k is multiplexed into a single sequence,
k symbols at a time. Theomposite generator sequente
000 0B 9B 483 408 88 represerted as

000 100 000 000 010 101 |~ g:{ g, . g(n)}
000 001 000 010 000 100 ) J g

with K, = 3 and K, = 2. In the transform domain the Where eachy®) € Sk)' If K, is the length of the longest
equations can be written as= u * g. Sincem = 2, equation 9enerator sequencg”’, then the length of each composite

(2) reduces to generator sequengg?) is then simply
1 2 —
o=@ g Ly =hkFo 3
() =l L () (2 mle) el fa) When the generator sequences are expressed in the composite
& 6 form the convolutiorw = u * g from equation (1) for tha-D
case is now represented as
10 00 000010 000000 000100 000000 W W
010 X9 001000 000010 100000 000100 v = uxg
01 00 010001 001010 000001 100000
000001 000100 010000 000000 n) ’ n)
As per the isomorphism) the polynomial representation of v -y
the above sequenaeis the same as the product= u.G The convolutionu * g implies that for all(i;) > 0,
C. Problem Formulation Ly
. . (v) _ ) ~(y)
The transformation from the rin@® to the m-D sequence Y0y = Z Ui —li+k)9(Ly—1y) (4)
spaceS can be visualized with the following commutative h=1
diagram whereu;, _;, +x) = 0 for all i; < I, andg'¥) is the composite
N 9 . generator sequence reversedymbols at a time.
RY —o> R Example 4:For the polynomial matrixG € R?*3 in
wkT lwnl example (2) with sequence space representation
—1

R gn 11 01 11
S o (01 10 10 )°



we have K; = 2. The composite generator sequence is For the matrixG € R?*3 from example (2) we have
obtained by multiplexingt = 2 symbols at a time such that

Ly = kK = 4. g = {1011 0110 1110 }
g = {1011 0110 1110} Herek =2, n =3, andL; = 4. Substituting the;e values in
equation (5) we get the one-to-one mapping size
g is reversedt = 2 symbols at a time to give us 34— 2)
g = {1110 1001 1011 } W=y =0
Sincem = 1, equation (4) reduces to B. Reduced Encoding Matrix
4 Now consider the map generated by a #étcontaining
v&)) = Z u(il,llﬁ)gg)_ll) w standard basisvectors. Let the sell = {e;,...,e,} be
=1 defined by
v@ = yxg® =11 01 10%10 11 = 1001 ee = 100...0
v® = usxg® =11 01 10%01 10 = 1001 ez = 010...0
v® = uwxg® =11 01 10%11 10 = 0011
L . . ew = 000...1
The sequence space representation of obtained by multi-
plexingv®, v andv® where eacl, € S* is of sizel xw. The convolution operation
v = 110 000 001 111 gr=exg¥;y=1ton (6)
Consider the production of output symbols during the convo- ) ]
lution operation. gives us an output map, wheje € S™ is of sizel x w. The
. wx w square matrix' = [§y, . .-, g, is formed by using
I temlmfm I TZPUt Output eachg,; r = 1 to w, as a row vector.
1 n _ _
2 Ly +k 2n gty g
3 Ll + 2k 3n : :
o (1) (n) (1) (n)
i Li+(i—1)k in 9r-i-k " 9r-1-k9L-1" " 9L
. a , _ G o : : : P ()
In equation (4),u(;, i, +x = 0 for all i; < I; implies that Gwxw=| - : : : -1 91
the input sequence € S* is padded with zeros. The firdgt, g(()l) gé") : : :
input symbols produce output symbols. In the next iteration ) (n)
k additional input symbols produce more output symbols. 90" " Y0 ' ‘
If we require the number of input and output symbols to be g(()l) gé”)
equal we get ) N
_ _ Notice that the firsk columns of the reduced encoding matrix
Li+(@—-1k = in are the composite generator sequences revetsbils at a
i = Ly —k time. The nextn columns are formed by shifting down the
n—k composite generator sequences hbyows and so on. This
The one-to-one mapping size is then is due to the fact that+ is a w x w subsection of the semi-
infinite generator matrix [9]. S& can be formed by inspection
w=in = ——— (5) without actually performing the convolution operation defined
n—

_ in equation (6).
If the parameterd.,,n, andk are chosen such that is an  Since ¢ is constructed from the standard basis input
positive integer, then, we have a sequence space relationsfiguence, for any: € S*, discrete convolution can now

of w input symbols mapping ta output symbols. . be represented by matrix multiplication as shown below by
Example 5:For the matrixG = [1 + z; 1+ 21 + 27] v, consideringl x w sized subsequencésand shifting over the
(110 111), we havek =1,n =2, K; =3 andL; = k.K| = input sequence, k-symbols at a time.
3. . A
g ={110 111} b=aG (7)

&Eéhe matrix G (called thereduced encoding matriin [1])
Is Invertible thenG is calledLocally Invertible[10] and the
inverse mapping is given by

Substituting these values in equation (5) we get the one-to-
mapping size

_26-1) .

w=—— =4 i =.G071 8)



The sequenceu is obtained by considering x w sized
subsequences and shifting over the sequenee n-symbols
at a time.

Example 6:For the polynomial matrixG = [1 +2; 1+
21 + 27] from example (5) we have = {110 111} and one-

to-one mapping sizev = 4. Now equation (6) gives us the

transformation
el g1 e g2
1000 2% o100 0100 £ 1101
es3 g3 eq 94
0010 ¢ 1111 0001 4 0011

The reduced encoding matri¥ is formed by using each,
as a row vector

0 0100
© gl |11 01
G=1%1=11 111

i 00 1 1

For & = 1011 € S* equations (7) and (8) give us

.G = 1011. =10 00

O = = O

i = 9.G7'=10 00. = 1011

COoO R = O e
_ oo B KErOoOOo
—_— O = == O

_ o O =

The sequencé = 4.G = 10 00 forms only a part of the
output sequence =uxg = 11 11 10 00 10 01. The
complete output sequence can be obtained by padidiwgh
zeros and multiplyingl x w sized subsequences with by
shifting £ symbols at a time as followg = 1011 ~ 00101100

U v
0010 1111
0101 1110
1011 — 1000
0110 0010
1100 1001

00101100 —11 11 10 00 10 01

Discrete convolution carried out using the operatio@¥ leads
to aw — n symbol overlap in the output sequenceThis is

becausev — k symbols ofu are reconsidered with every Sh'ftEach column ofi ! is a reversed sequenees2.

of k£ over the input sequence

The inverse mapping is obtained by consideringw sized
subsequences af and multiplying with G=! by shifting n

symbols at a time.

v U
1111 0010
1110 ., 0101
1000 — 1011
0010 0110
1001 1100

11 11 10 00 10 01— 00101100

Thew — k symbol overlap in the sequeneds due to the fact
thatw — n symbols ofv are reconsidered with every shift of
n during the operatior, = 9.G~*

C. Extracting the Inverse

The commutative diagram shown in section (lI-C) can now
be viewed using the reduced encoding matrixas follows

RkHGRn

Tk

Sk <— 8"

Notice that the transformation froi” — S* is now carried
out usingGG—! instead ofg—!. By virtue of the mapy each
row of (¢ is a finite sequence S™. SinceG.G~! = I, each
columng; ! of G—' = [g;! 9,"'] is a finite sequence

€ S™. From the definition of discrete convolution we see that
one of the sequences is reversed. Notice that each raf of
has elements gf in the reverse order (see example (6)). So the
columns of G~ will also be finite sequence S™ in reverse
order. During the operatios = .G~!, observe from the
overlapping symbols in the previous example that fisst &
columnsg; *, ..., g1, of G~ produce forward shifts along

the i*" axis in S* and correspond to multiplication with'

in the ring R*. Only the lastk columns of G~! yield new
symbols and therefore represent the inverse generator sequence
g~'. Thesek columnsg, ', ., ..., g, correspond to the
elementsey, ..., e; of the standard basi€. Since G~! is

a linear transformation from™ — S* and sincey is an
isomorphism fromS — R, the polynomial representation of
these columns of/~! should give usz~!. ie. the inverse of
the polynomial matrixG.

Example 7:From example (6) the row-reduced inverse of
the reduced encoding matrix is

= o o

Sincek =
1, the columng; * corresponds te; .

gyt = 1001



Reversingn = 2 symbols at a time give us inverse composite 1+z; 2 142z 0 0 {1 0

generator sequengg !
2
g ' = {0110} = m =G

1+ 2 1+zl+z%].hl}[1]

As mentioned above the first — k columns ofG—! produce
forward shifts along the® axis in S' and correspond to

multiplication with z!* in the ring R'.
g; b= 1011
Reversingn = 2 symbols at a time

1—1—21}

{1110}ﬂ>{ )

[l—i—zl 1—|—zl+z%][1‘:21} — [zl]

g, = 0011

Reversingn = 2 symbols at a time

(1100} 25 H

[1+2 1+z1+zf]~m = 4]

gyt = 1100

Reversingn = 2 symbols at a time
2
{0011} 2> [21]
21

[1—|—z1 1+ 2z —&-zﬂ . {2] = [zﬂ

For the matrixG € R?*3 from example (2) we have) = 6

]. 1+Zl
1 Z1

z1 1 1 0 1

IV. LOCAL INVERTIBILITY IN m-DIMENSIONS
A. Reordering then-D Sequence Space

The one-to-one mapping sizev is a relation between
the input and output sequences involving equal number of
symbols. For the univariate polynomial riffg[z] or the 1-D
sequence space this size implicitly translates to a measure of
length. Let us examine the parameters involved in computing
w as defined in equation (5).

v n—=k

Here, L; represents the length of the composite generator
sequence and and n represent the number of input and
output symbols generated during each step of the convolution
operation. The symbols in the sequence are ordered d@long
since this is the only possible axis ineD space and therefore
k andn signify units of length. When extending the concept
of one-to-one mapping ton-dimensions or a multivariate
polynomial ring R[z1, . . . , 2], it is desirable to maintain this
relation along the axis of each dimension. Notice that if we
form the composite generator sequence by interleaving, say
k symbols along the; axis, then for the terml., we have
the lengthsl,; = k.K; and L, = Ko,...,L,, = K,, along
each of them dimensions. But the terms andn no longer
explicitly translate to units of length. The rate= k/n for
m-D convolution means that output symbols are generated
for every k input symbols without specifying their order in
the m-D space.S is simply defined as a sequence having
finite support with elements (symbols) &f attached to the
coordinates(iy, . . . i, ) Of the integer latticeN™. In current
literature [8], [4], [12], say for a2-D sequence space, a
sequences” is always ordered using symbols along; and
1 symbol alongis.

Since S is a linear shift invariant system and operations

and the row-reduced inverse of the reduced encoding matgX ¢ are symbol-wise linearly independent, reordering of

Gis
01 00 0O
01 1 1 0 1
Q01 (1011 0 1
G = 1 101 0 O
11 0 1 11
1 1 0 1 1 0

The columnsj; ' andg; ! corresponding te, ande;.

g5 1 = 000011
g ' = 011010

Reversingn = 3 symbols at a time give us the inverse

composite generator sequenge!

0 0
. [ 011000 | o
9 _{010011 - 1 1;“21 =G
1

symbols attached to each point of the lattice will not change
the structure of the sequence as long as the order is maintained
during computation.

Proposition 1: When specifying then-D convolution rate
r, the notation

r=k/n==Fk/ny X ka/ng X+ X kpm/Nm 9)

specifies the rate of convolution along the dimensions
i1,...,in, Of the m-D sequence space, and the values
ki,...,kn andnq,...,n,, define the ordering of the input
and output sequence spaces.

When k£ > 1, the m-D composite generator sequence
is now formed from the sequence space representation of
G(z1,...,2m) by interleavingk; symbols at a time along the

it" axis. The composite generator sequence is represented as

g={ gV, ..., g™ },



where eacly¥) € S*. Now, If K; is the length of the longest s? S°
generator sequen@ﬂy), then the length of each composite 88 88 8(1) 88
generator sequenagg?) is 10 00 00 00
00 00 10 00
Li = k. K; (10) 10 00 00 01

xg 00 10 00 00
01 00 00 10
00 10 00 00
01 10 01 00

00 00 01 00
Lo Ly 00 01 00 00

”éiyl),.‘.,z'm) :Z ZU((u—zl+k1),...,(im—zm+km)) 01 00 00 00
lm=1 L=l As per the isomorphismp the polynomial representation of

_(y) i -
'9(?L1—ll),..‘,(Lm—lm) (11) the above sequenceis the same as the produet= u.G

For them-D convolutionv = u * g, the operationu x g
implies that for all(iy,...,%,) >0

—Oo OO O
OO O OO

B. Reduced Encoding Matrix

WHETe w((iy —1, 1k, (il k) = O for all 4, < I, and

g¥ is the composite generator sequence reveised ..k,  1he ordering of sequences as per proposition (1) gives us a
symbols at a time along,.. ., i,, respectively. simple way to extend the one-to-one mapping concept-D
Example 8:For the polynomial matrixG € R2?*6 from SPaces using
example (3) the sequence space representatidn isf ni(L; — ki) .
000 000 000 001 100 000 M 13
001 000 100 000 000 000 W= wp X X Wy (13)
888 (1)8(1) 888 8(1)8 8(1)8 %8(1) w is the m-D one-to-one mapping size, witlr; X - - - X wy,

input symbols mapping ta; x- - -x w,, output symbols in the
If we specify the rate of convolution as=2/6 = 1/2x 2/3 m-D space. For example we haug x w, sized rectangles in
as defined in proposition (1), then, the composite generatbP, w1 x wy X w3 sized cubes ir8-D, wy x. .. x w,, sized
sequence ofy is formed by interleaving; = 1 symbols along hypercubes inn-D. As before, eachw; needs to be a positive

thei; andk, = 2 symbols along thé, axes respectively.  integer and therefore the rate= k/n = ki /nix- - -x kp /nm
has to be factored such that > k; in each dimension.
000 000 000 001 100 000 - i
~J 000 100 000 000 010 101 Let E represent the set a, m-D standard basis vectors.
9= 001 000 100 000 000 000 E={e,...,en}

000 001 000 010 000 100
_ _ ~ where,e, € S* is a m-D sequence of sizev; x - - - X wy,.
g is reversedk; = 1 andk, = 2 symbols at a time along  piscretern-D convolution as defined in equation (11) gives

andsz to form us the output map
b — ()
100 000 001 000 000 000 gr=er*g (14)
g= 888 (1)88 888 (1)58 88(1) 883 where, g, € S™ is am-D sequence of sizen X -- X wy,. If
000 001 000 000 010 101 this multidimensional map is injective, then, the polynomial

matrix G is locally invertible. The reduced encoding matfix
The lengths of the composite generator sequencelare= is constructed by taking eagh and rearranging it as Bx w,
3 and Ly = 4. The rater = 1/2 x 2/3 imposes an order 1-D row vector to form a row of7.

k1 x ko = 1x 2 on the input sequence € S? P _—
G:[gla"'7gw]

nn
™)

2 2 N ~
R 5 If the wx w matrix G is nonsingular, then, its invergg—! can

For anyu € S* andv € S™ the transformations can now
be represented by matrix multiplication as

- i — i i 6 . . A
2-D convolutionv = u * g gives us the transformatione S°, Pixe = Bixw-Coxw (15)

wherew is order as a; x ny = 2x 3 sequence as defined by A

10 00 (1) 8 be found by row-reduction. Since the order of the sequence is
[1 4oz 22] w_*: 010 _ 01 preserved during the convolution and row-reduction operations
1=z =2 00 the structure of the sequence is preserved.
01 00 00
10

- N -1
the rater = 1/2x 2/3. Sincem = 2, equation (11) reduces Uixw = Obxw- Gy (16)
to where & and v are m-D sequence of sizev; X - -+ X wy,
3 2 represented a&-D vectors of sizel x w.
(v) _ _(y) . i 26
U(Z@) —Z Z U((n7zl+1),(i2712+2))g(§’3_ll)7(4_12)) Example 9:For the matrixG € R“*® from example (8)

lo—01,—=0 with rate of convolutionr = 2/6 = 1/2x 2/3 we havek; =



1,k = 2 andn;, = 1,n, = 3. The lengths of the compositeThe columns ofG~! corresponding to the elements of the
generator sequence afg = 3 and L, = 4. Equation (12) standard basis that match the ordex- - -x &, will yield the

gives us polynomial inverse.
2(3—1) Example 10:Each column ofégij (appendix (18)) is a
wy = o1 = 4 reversed sequence S% ordered as a; x ny = 2x 3, column
3(4 - 2) vector. The eIemAentsl andes match the ordek;x ky = 1x 2.
Wy = Ty T 6 The columns ofG;,. ,, that correspond tes ande; are
We now have4 x 6 input symbols mapping td x 6 output 20" = 000000010110011000100010
symbols and the one-to-one mapping size from equation (13) Goi = 000000001000000110000000
is w = 24. . .
The setE = {ey, ..., eaq} Of 24 standard basis vectors eaChRearrangmg as & x 6, 2-D sequence gives us
of size4 x 6 give us the output map 0000 0000
s oo i 10 1000
6000 5099 0000 a0 1 0110 0001
0000 =g 00 00 0000 *g¢ 00 00 0010 1000
0000 =" 0o 0o 0000 T 0o 0O 0010 0000
0000 00 00 0000 00 00 . :
0000 00 00 0000 00 00 Reversingn, = 2 andny = 3 bits alongi; andi,
es 95 €24 924 0000 1
it 0 00 0000 00 00 oot BN 1000 | o=
0000 “g 00 00 0000 g 00 00 0110 . 10 01 . 10 00 ﬂ 1
0000 — o oo 0000 0o o1 0110 %8 8(1) 8(1) 88 2
00 00 00 00
0000 00 00 0007 00 01 ReOr LU L S
Each g, of size 4 x 6 is represented as ax 24, 1-D row
. . 0000 0
vector and forms a row of thx 24 reduced encoding matrix 0000 00 00 01 00 1
G =[i1,...,G24)" (see Appendix (17)). I is nonsingular 00 00 00 10
then the polynomial matrixz(z1, 22) is locally invertible 1000 — 00 10 — 0000 v
. ’ ' 0001 01 (1)8 88 88 0
C. Extracting the Inverse 1000 88 00 00 10 2172
The output map from equation (14) generatesD se- 0000 0
quences (shown above) of size x --- x w,, ordered as 1 0
ny X -+ x n,, as defined in proposition (1). The matri¥ 2 1
is constructed by rearranging theseD sequences as row B 1 %
vectors. Just as in thé-D case each column ofi~! is a G = > 0
reversedn-D sequences S™ of sizew; x- - -x w,, with order 1 +2Z
. . . . 2 Z1%2
ny X---X n,,. The transformations defined in equations (15) . 0

and (16) lead to an-D sequence overlap. Note that in thé® ) ) _
case due to the implicit ordering of the input sequence aloRy Diversity ofm-D Sequence Ordering
i1, only the lastk columns ofG~! yield the inverse. But, for ~ The matrixGyx.,; k < n is rectangular, so unlike the case
a multivariate polynomial matrix with convolution rafe/n, of a nonsingular matrix, which has a single unique inverse,
the orderk; /ny x -+ X ky/nm; ki < m; is not unique. For G may not have an inverse or it may have a multiplicity of
example the composite generator sequences of 2féte-D  generalized inversgd 3], [14]. From proposition (1) we know
polynomial matrix could be ordered ag2x 2/3 or 2/3x 1/2 that the orderk; /ny x - -- X ky,/nm; k; < m; iS not unique,
which in turn would impose an order afx 2 or 2x 1 on the so it is natural to question the choice of the convolution rate
input sequence respectively. Therefore the column&of = = 2/6 = 1/2x 2/3 in the above example. It is interesting
that represent the inverse generator sequgnéedepends on to note what happens if the rate= 2/6 = 2/3x 1/2 is
the numbering of thev, x - - - x w,, sized standard basi&. chosen while ordering the composite generator sequence. The
For our2-D example we have chosen to number the standasequence space representatiorGois
basis in a row wise incrementing order 000 000 000 001 100 000

el ey ez es 001 000 100 000 000 000

€5 € €7 €3 000 100 000 000 010 101
eg €19 €11 €12 000 001 000 010 000 100

€13 €14 €15 €16 . .
If we specify the rate of convolution as = 2/6 = 2/3 x
€17 €18 €19 €20 p fy / /

€21 €29 €33 €ay 1/2, then, the composite generator sequenceg @ formed



by interleavingk, = 2 symbols along the; and k, = 1
symbols along thé, axes respectively.

00 00 00 01 00 00 00 0000 000010 1001 00 01 00 01
00 00 10 0000 01 1000 00 00 0100 0000 00 01 00 00

The lengths of the composite generator sequencd.are 6
and L, = 2. Equation (12) gives us; = 12, we, = 2 and

w = wy X we = 24. The reduced encoding matriXs s 24 (see
appendix (19)) is constructed from tReD standard basi€’
with eache; of size 12 x 2. Notice that rows9 and 11 of

G are all-zero rows and hence make it singular. Therefore the
polynomial inverseG—! cannot be be found using this method
for the rater = 2/6 = 2/3x 1/2. However, for someZ, the
reduced encoding matri¥ is nonsingular when factored using
different rates (appendix B) and the polynomial inve€se!
obtained for each rate need not be unique.



APPENDIX
A. Rater =2/6 =1/2x2/3

The reduced encoding matrig’ =
structed from the-D standard basi& is

100000000000000000000000
001000000000000000000000
000010000000000000000000
000000100000000000000000
010000000000000000000000
000101000000000000000000
000000010100000000000000
000000000001000000000000
000001000000100000000000
000000010000001000000000
000000001000000010000000
000000000010000000100000
000000000100010000000000
000000001001000101000000
010000000110000000010100
000100000001000000000001
000000000000000001000000
000000000000000000010000
000000000000000000001000
000000000000000000000010
000000000000000000000100
000000000000000000001001
000000000000010000000110
000000000000000100000001

[91,---,G2a]" con-

é24>< 24 = (17)

100000000000000000000000
000010000000000000000000
010000000000000000000000
000000010000000100100100
001000000000000000000000
000001010000000100100100
000100000000000000000000
000000100000100000011010
000000010000010010100101
000000000000100000011010
000010000000101001010010
000000010000000000000000
000001011000000100100100
000000000000000000011010
000000100100100000011010
000000000000000000100101
000000010010010010100101
000000000000000010000000
000010000001101001010010
000000000000000001000000
000000000000000000100000
000000000000000000001000
000000000000000000010000
000000000000000000100100

If we specify the rate of convolution as=2/6 = 2/3x 1/2,
then, the reduced encoding matrix constructed from 2t

(18)

A1 .
G24><24 -

standard basi& is

[ 100000000000000000000000 |
010000000000000000000000
000100000000000000000000
000010000000100000000000
000000100000000000000000
000000010000001100000000
000000000100000000000000
000000000010000001100000
000000000000000000000000
000000000000000000001100
000000000000000000000000
000000000000000000000001
000000000000100000000000
000000000000001000000000
000000000000000100000000
000000000000010001000000
001000000000010000100000
010000000000001010001000
000001000000000010000100
000010000000000001010001
000000001000000000010000
000000010000000000001010
000000000001000000000010
000000000010000000000001

B. Non-Unique Inverses
Consider theG(z1, z2) € R2*6 polynomial matrix

Gaaxaa = (19)

T
2123 1
2129 29 +—zlz§
1+ 235 + 2123 22
G - 2
Z2 + 235 1
22 21+ 29
1—‘—2’14—2122 1+2’12’%

The sequence space representatioli:aé

00 00 10 00 00 11
00 01 00 10 00 01
01 00 11 10 10 00
10 00 00 10 01 10
00 10 00 00 10 00
00 01 10 00 00 01

If we specify the rate of convolution as=2/6 =2/3x 1/2

as defined in proposition (1), then, the composite generator

sequence off is formed by interleaving;, = 2 symbols along
thei; andky = 1 symbols along thé, axes respectively.

0100 0000 1000 0100 0001 1110
g = 0000 0110 0000 1000 0100 0010
0010 0001 1110 1000 1000 0001
The lengths of the composite generator sequencd.are 4
and L, = 3. The rater = 2/6 = 2/3x 1/2 gives usk; =
2, ko =1 andn1 =3,n0 = 2.

3(4-2)
= :6
b 32
2(3 —
2—1
w = wi X wy =24



The reduced encoding matri¥ = (g1, .-
from the 2-D standard basi& is

101000000000000000000000
010000001000000000000000
001101110000000000000000
001010000001000000000000
000001000110000000000000
000001000000000000000000
010000001000101000000000
000000000000010000001000
000010100001001101110000
010000010000001010000001
000000000100000001000110
000010000010000001000000
000000001000010000001000
000000010000000000000000
001000001001000010100001
100000101010010000010000
000001000001000000000100
000100000101000010000010
000000000000000000001000
000000000000000000010000
000000000000001000001001
000000000000100000101010
000000000000000001000001
000000000000000100000101

(20)

G24><24 =

[ 011010110000011101111100
010000010000100000000000
111010110000011101111100
100110111100010111101111
111000010111000111011000
000001000000000000000000
010101001100011010010011
000000000000010000000000
000000010000100000000000
001100111100100011011111
001111111100100011011111
000110100111011010100100
100111001010100100101101
000000010000000000100000
110111101010100100101101
110000001101111100100000
010000010100110000101000
110111101010100100000111
011011111001111011110101
000000000000000000010000
000000000000000000100000
000111100111011000100100
111100110011011111111100
110111101010100100000101

é541x 24 = (21)

Each column of(;. ,, is a reversed sequeneesS® ordered
as anj x ny = 3x 2, column vector. The elements andes
match the ordek; x ko = 2x 1. The columns ofG3,., ,, that

,924]7 constructed correspond ta, ande; are

g;; = 000100100110000001000000
-1

go4 = 000100100110101001100001

Rearranging as é x 4 subsequence gives us

000100 000100
100110 100110
000001 101001
000000 100001

Reversingn; = 3 andn, = 2 bits alongz; and z,

Z2
000100 100 000 001 000 0
100110 110 100 _ 000 000 v° 1
000001 001 000 100 000 Zo + 2129
000000 000 000 110 100 -
0
21+ 29
000100 100 000 001 101 0
100110 110 100 _ 001 100 142
101001 001 101 100 000 21+ 20 + 2120
100001 001 100 110 100 -
1
29 21+ 29
0 0
G_l _ 1 1 + Z1
zo + 2122 21+ 22 + 2122
zZ2 z2
0 1

If we specify the rate of convolution as=2/6 =1/2x 2/3

as defined in proposition (1), then, the composite generator
sequence of7 is formed by interleaving; = 1 symbols along
the i, andks = 2 symbols along thé; axes respectively.

00 10
00 00

01 00
10 00

00 11
01 10

00
10

10
00

10
00

00 11
01 10

00
10

10
00

The lengths of the composite generator sequencd.are 2
and Ly = 6. The rater = 2/6 = 1/2x 2/3 gives usk; =
].,kg =2andn; = 2,n9 = 3.

2(2-1)
= :2
b 2_1
wy, = 6= 4
32
w = wi X wy =24



The reduced encoding matri¥ = [01,- .-, 024]T constructed correspond ta; ande; are
from the 2-D standard basi# is

— - A_l f—
101000000000000000000000 532_1 = 010111010011100101111100
gsy = 010111000010001001110000

001110000000000000000000
010001000000000000000000

001000000000000000000000 Rearranging as a x 12 subsequence gives us
010001101000000000000000
000100001110000000000000 0101
000000010001000000000000 01 01
010010001000000000000000 1111
000001010001101000000000 0L 00
001001000100001110000000 00 00
000010000000010001000000 1110
é _ | 100101010010001000000000 22) 1000
24x24 000000000001010001101000 01 10
000000001001000100001110 0oL 01
000000000010000000010001 11 11
000000100101010010001000 1100
000000000000000001010001 00 00
000000000000001001000100 _
000000000000000010000000 Reversingn; = 2 andn, = 3 bits alongz; and z,
000000000000100101010010
000000000000000000000001 01
000000000000000000001001 00 01 1
000000000000000000000010 1 i
000000000000000000100101 00 10 1tz
B N 00 00 01 1425 + 25
11 11 01 ¢ 1
[ 100100000000000000000000 | 10 710 7 01 | 142+ 23
111000100011101011000101 01 o 0 22+ 23
000100000000000000000000 01 1 o1 PO B
101010100101111110000111 1 11 01
111110100101111110000111 11 00 11
110000100011101011000101 00

001100010110010101000010
011111100010001110101100

000110010110010101000010 01
000100101100000010111010 01 01 11
101001011111101001111111 11 9% 88
G-1__ | 011111000010001110101100 23) 00 00 00 1 ,
24x24 111000110001011001010100 00 00 10 1+ 23
010111111000011101111000 10 10 0L 4| =z
001000111010110010010001 00 % o 2N
111000110001011011001110 10 01 10 25 + 23
000000000000000000100000 01 11 01 zo + 25
101001011111100011111111 11 00 01
100001100101010000100111 oo 00 M
101001011111100001110111 00
000000000000000000001100
100001100101010000101110
000000000000000000000010 14522 5 1 5
000000000000000000001000 I+z+z 142
) ] Gl = ! 3 Z?z
Each column of(;,.,, is a reversed sequeneesS® ordered 1 +222 +322 .2,
as an; x ng = 2x 3, column vector. The elements ande; R RS B

A 2 3 3
match the ordek; x k2 = 1x 2. The columns ofG5 ,, that 2tz +z 2tz



C. Rater = 1/4 =1/2x 1/2 [ 0001111111000111 |
0111111010011111
Consider theG (21, z2) € R'** polynomial matrix 0001000000000000
0011111111000111
1111111010111011
1422+ 22 + 2222 |7 1001111111000111
G 1+ 2123 0000000101001000
T 142+ 2z G—1 | 0010111010011111 25
1+ 2§23 16x16 = | 1111111000111011 (25)
0001011111001101
The sequence space representation:aé 0000000100000000
1111110101110011
0000000000001000
100 100 101 100 1110100111111100
9d1 god plo 00 0000000000000100
| 1111110001110110 |

Sincek = 1 the sequences are not interleaved. If we speci
the rate of convolution as = 1/4 = 1/2x 1/2 as defined in
-1

proposition (1), then, the composite generator sequencg Oorderk;lx ks — 1 1. The column 0@16“6 that corresponds

is and is the same as the sequence space representation a%)\ée. i
1

E/ach column ofG 1., 1 is a reversed sequeneesS* ordered
fas anixng = 2x2, column vector. The elemenf matches the

100 100 101 100 §f61:1101110111010000

:{ 001 000 010 OOO}

101 010 000 001 . .
Rearranging as 4 x 4 subsequence gives us

The lengths of the composite generator sequencd.are 3 1101
and L, = 3. The rater = 1/2x 1/2 gives usk; = 1,ko =1 1101
andn; = 2,n, = 2. 1101
0000
2(3—1)
wo= 5T = 4 Reversingn, = 2 andn, = 2 bits alongz; and z,
_o20-1
W2 = 5T = ﬂg} 8% H 8(1) (1)(1) . 1+Z1_|‘_|'Zli2
= = P 21 T R2 T Z1%2
b e =16 1101~ 01 11 o111 2129
The reduced encoding matri¥ = [g, .. ., gis)” constructed
from the 2-D standard basi& is
21+ 2122
[ 1000010000000000 | g-lo [1Tatatazn
0110000100000000 21722
1001000000000000 Z2 + 2122
0010000000000000
1000000010000100 D. 3-D Generator Sequences
0010100001100001 _ _ _
0000001010010000 Consider th@(zl, 29, 23) S R1><8 pOlynomlal matrix
A 0000000000100000
G16x16 = | 1000100010000000 (24) [ 21+ 22+ 212023 ]
0000001000101000 23+ 2923
1100110000000010 14 2120 + 2123
0011001100000000 G- Z9 + 2123
0000000000001000 21290 + 2123
0000000000000010 21+ 2129 + 2123
0000000011001100 29 + 2123 + 212223
| 0000000000110011 | | 2122 + 2123 + 2223 |
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Sincek = 1 the sequences are not interleaved. If we specisz]
the rate of convolution as=1/4 = 1/2x1/2x1/2 as defined

in proposition (1), then, the composite generator sequence of

G is (3]

_ ) 01 00 10 00 00 01 00 00 L. . _ (4]
9=93 10 00 01 10 01 01 10 Ol (* ®B=
00 10 01 01 01 01 01 OL L. ., _ 4
01 10 00 00 00 00 O1 10 (> “8= [5]

The lengths of the composite generator sequencd.ate 2,
Ly=2andL, =2. Therater =1/2x 1/2x 1/2 gives us

22-1)

W= oy =2 y
2(2—-1

2= (2—1):2
2(2—-1

w = Wi Xwy Xwg=2~8

. [9]
The reduced encoding matrix = [g1, ...

from the 3-D standard basi& is
[ 10000010
01000001
00111111
Clons = 01000000
00101101
10010010
10000100
00100000

,9s]T constructed

(11]

(26) [12]

(13]

(14]
00101100

00010000
00000001
10000100
01110111
00101110
10101100
01010000

Each column ofi'g; is a reversed sequeneeS® ordered as
an; X ng X ny = 2x 2x 2, column vector. The element
matches the ordek; x ko x k3 = 1 x 1x 1. The column of
Gl that corresponds te; is

gs " = 00101000

8x8 (27)

Rearranging as @ x 2 x 2 subsequence gives us

00 10
10 ; 00

Reversingn, = 2, no = 2 andng = 2 bits alongiy, i, andis

00
10 °

10¢_}8

00
G'=[00101000

0010100 0
]T
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