Attack-Resistant Location Estimation in Sensor
Networks
(Revised August 2005

Donggang Liu

The University of Texas at Arlington
and

Peng Ning

North Carolina State University
and

Wenliang Kevin Du

Syracuse University

Many sensor network applications require sensors’ locations to function correctly. Despite the
recent advances, location discovery for sensor networks in hostile environments has been mostly
overlooked. Most of the existing localization protocols for sensor networks are vulnerable in hostile
environments. The security of location discovery can certainly be enhanced by authentication.
However, the possible node compromises and the fact that location determination uses certain
physical features (e.g., received signal strength) of radio signals make authentication not as effec-
tive as in traditional security applications. This paper presents two methods to tolerate malicious
attacks against beacon-based location discovery in sensor networks. The first method filters out
malicious beacon signals on the basis of the “consistency” among multiple beacon signals, while
the second method tolerates malicious beacon signals by adopting an iteratively refined voting
scheme. Both methods can survive malicious attacks even if the attacks bypass authentication,
provided that the benign beacon signals constitute the majority of the beacon signals. This paper
also presents the implementation of these techniques on MICA2 motes running TinyOS, and the
evaluation through both simulation and field experiments. The experimental results demonstrate
that the proposed methods are promising for the current generation of sensor networks.
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1. INTRODUCTION

Recent technological advances have made it possible tdogedestributed sensor net-
works consisting of a large number of low-cost, low-powerd anulti-functional sensor
nodes that communicate in short distances through wirdildss [Akyildiz et al. 2002].
Such sensor networks are ideal candidates for a wide ranggptitations such as health
monitoring, data acquisition in hazardous environmenmtd,railitary operations. The de-
sirable features of distributed sensor networks havecittlamany researchers to develop
protocols and algorithms that can fulfill the requiremerfithese applications (e.g., [Perrig
et al. 2001; Hill et al. 2000; Gay et al. 2003; Niculescu andhN2001; Intanagonwiwat
et al. 2003; Newsome and Song 2003; Akyildiz et al. 2002]).

Sensors’ locations play a critical role in many sensor netapplications. Not only do
applications such as environment monitoring and targeking require sensors’ location
information to fulfill their tasks, but several fundamern&hniques developed for wireless
sensor networks also require sensor nodes’ locations Xaongle, in geographical routing
protocols (e.g., GPSR [Karp and Kung 2000] and GEAR [Yu e2801]), sensor nodes
make routing decisions at least partially based on their amdhtheir neighbors’ locations.
As another example, in some data-centric storage apglitasuch as GHT [Ratnasamy
et al. 2002; Shenker et al. 2002], storage and retrievalrefaredata highly depend on sen-
sors’ locations. Indeed, many sensor network applicatiahsiot work without sensors’
location information.

A number of location discovery protocols (e.g., [Savvideale2001; Savvides et al.
2002; Niculescu and Nath 2003a; Nasipuri and Li 2002; Dghetral. 2001; Bulusu et al.
2000; Niculescu and Nath 2003b; Nagpal et al. 2003; He e0&I3P have been proposed
for wireless sensor networks in recent years. These prist@t@re a common feature:
They all use some special nodes, callehcon nodeswhich are assumed to know their
own locations (e.g., through GPS receivers or manual corafigun). These protocols work
in two stages. In the first stage, non-beacon nodes recali@smnals calledheacon sig-
nalsfrom the beacon nodes. The packet carried by a beacon sigmah we call beacon
packet usually includes the location of the beacon node. The reacbn nodes then esti-
mate certain measurements (e.g., distance between therbaad the non-beacon nodes)
based on features of the beacon signals (e.g., receivedl sigength indicator (RSSI),
time difference of arrival (TDoA)). We refer to such a measuent and the location of
the corresponding beacon node collectively &scation referenceln the second stage, a
sensor node determines its own location when it has enougbeiuof location references
from different beacon nodes. A typical approach is to cagrsile location references as
constraints that a sensor node’s location must satisfy,eatithate it by finding a math-
ematical solution that satisfies these constraints withrmim estimation error. Existing
approaches either emplognge-basedhethods [Savvides et al. 2001; Savvides et al. 2002;
Niculescu and Nath 2003a; Nasipuri and Li 2002; Doherty.e2@01], which use the exact
measurements obtained in stage oneange-freeones [Bulusu et al. 2000; Niculescu and
Nath 2003b; Nagpal et al. 2003; He et al. 2003; Lazos and FPavaa 2004], which only
need the existences of beacon signals in stage one.

Despite the recent advances, location discovery for wiseensor networks imostile
environmentswhere there may be malicious attacks, has been mostlycmkertl. Many
existing location discovery protocols become vulnerabléhe presence of malicious at-
tacks. As illustrated in Figure 1, an attacker may providminect location reference by
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Fig. 1. Attacks against location discovery schemes

pretending to be valid beacon nodes (Figure 1(a)), commiognbeacon nodes (Figure
1(b)), or replaying the beacon packets that he/she intexdep different locations (Figure
1(c)). In either of the above cases, non-beacon nodes vidhaéne their locations incor-
rectly. In either of these cases, non-beacon nodes wiltiahirte their locations incorrectly.

Without protection, an attacker may easily mislead the tlooaestimation at sensor
nodes and subvert the normal operation of sensor networke s€curity of location
discovery can certainly be enhanced by authenticationcifigaly, each beacon packet
should be authenticated with a cryptographic key only kndewthe sender and the in-
tended receivers, and a non-beacon node accepts a beanahaity when the beacon
packet carried by the beacon signal can be authenticatedievdw, authentication does
not guarantee the security of location discovery, eithen aftacker may forge beacon
packets with keys learned through compromised nodes, dayrdgeacon signals inter-
cepted in different locations. Indeed, our experiment inti®a 3 shows that an attacker
can introduce substantial location estimation errors bgifg or replaying beacon pack-
ets. Thus, itis highly desirable to have additional methodsrotect location discovery in
sensor networks.

Several techniques has been developed recently to deatlvétbecurity problems of
location discovery in wireless sensor networks [Sastrnl.&2G03; Lazos and Poovendran
2004; Ray et al. 2003; Li et al. 2005; S.Capkun and Hubaux 208#0s et al. 2005]. The
location verification technique proposed in [Sastry et 803 can be used to verify the
relative distance between a verifying node and a sensor. hbmieever, it does not provide
a solution to conduct secure location estimation at norctreaodes. A robust location
detection is developed in [Ray et al. 2003] using the idea @bnity voting. However, it
cannot be directly applied in resource constrained seretaranks due to its high compu-
tation and storage overheads. Similar to our attack-ee#i$fiMSE techniques, a robust
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statistical method is independently discovered in [Li et24l05] to achieve robustness
through Least Median of Squares.

SeRLoc [Lazos and Poovendran 2004] protects location dsgavith the help of sec-
tored antennae at beacon nodes. Similar to the voting-ks$eane proposed in this pa-
per, SeRLoc can tolerate malicious attacks by adoptingiibe of majority voting. SPINE
[S.Capkun and Hubaux 2005] is developed to protect localigrovery by using verifiable
multilateration. However, the distance bounding techaegjrequired for verifiable multi-
lateration may not be available in sensor networks due tdliffieulties to (1) deal with
the external attacks in Ultrasound-based distance bogratid (2) achieve nanosecond
processing and time measurements in Radio-based distanodibng. ROPE [Lazos et al.
2005] is developed by integrating SerLoc and SPINE. Howaetetill requires nanosec-
ond processing and time measurements that are not dedwaltie current generation of
sensor networks.

In this paper, we develop two types of attack-resistanttionaestimation techniques
to tolerate the malicious attacks against range-basetidoodiscovery in wireless sensor
networks. Our first technique, namattack-resistant Minimum Mean Square Estimation
is based on the observation that malicious location retm®introduced by attacks are
intended to mislead a sensor node about its location, arslahei usually inconsistent
with the benign ones. To exploit this observation, our metientifies malicious location
references by examining the inconsistency among locatéerences (indicated by the
mean square error of estimation) and defeats maliciouskattay removing such malicious
data. Three variants are developed to identify maliciogation referencesthe brute-
force algorithm the greedy algorithnandthe enhanced greedy algorithnirhe brute-
force algorithm tries every combination of location refeses to identify the largest set of
consistent location references. It introduces high coatmr overhead at sensor nodes.
The greedy algorithm is developed to reduce the computatierhead. It works in rounds
and remove the most suspicious location reference in eagidroThe enhanced greedy
algorithm is developed to improve the performance of thedyelgorithm by adopting a
more efficient way to identify the most suspicious locatieference.

Our second technique yvating-based location estimationethod, quantizes the deploy-
ment field into a grid of cells and has each location referémate” on the cells in which
the node may reside. Moreover, we develop a method that slik@native refinement of
the “voting” results so that it can be executed in resourestained sensor nodes.

We have implemented the proposed schemes on MICA2 motesgBow Technology
Inc. ] running TinyOS [Hill et al. 2000], and evaluated thefpemance through simulation
and field experiments. It shows that the proposed schemefeatively remove the effect
of malicious location references when the majority of lomateferences are benign. In
addition, the implementation and field experiment alsodatts that the proposed schemes
are promising for the current generation of sensor netwiortesms of the storage overhead
and computation overhead.

The rest of the paper is organized as follows. Section 2 digsisome assumptions and
the threat model. Sections 3 and 4 present the attackaesMMSE location estimation
and the voting-based location estimation technique reésedc Section 5 provides the
security analysis for the proposed schemes. Sections 6 pres$@nt the detailed evaluation
through simulation and field experiments. Section 8 disesisslated work. Section 9
concludes this paper and points out some future researettidins.
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2. ASSUMPTIONS AND THREAT MODEL

In this paper, we present two approaches to dealing withaioals attacks against location
discovery in wireless sensor networks. The first approaettisnded from the minimum
mean square estimation (MMSE). It uses the mean squareasri@t indicator to identify
and remove malicious location references. The second omgtsdn iteratively refined
voting scheme to tolerate malicious location referenceeduced by attackers.

Our techniques are purely based on a set of location refesefitie location references
may come from beacon nodes that are either single hop orpteutibps away, or from
those non-beacon nodes that already estimated theirdosatiVe do not distinguish these
location references, though the effect of “error propamggtmay affect the performance of
our techniques due to the estimation errors at non-beaat@sndVe consider such inves-
tigations as possible future work. Since our techniquey otilize the location references
from beacon nodes, there is no extra communication oveihealyed when compared to
the previous localization schemes.

We assume all beacon nodes are uniquely identified. In otbetsya non-beacon node
can identify the original sender of each beacon packet barséuk cryptographic key used
to authenticate the packet. This can be easily achievedaniirwise key establishment
scheme [Eschenauer and Gligor 2002; Chan et al. 2003; Du 20@8] or a broadcast
authentication scheme [Perrig et al. 2001].

We assume each non-beacon node uses at most one locatiemeefderived from the
beacon signals sent by each beacon node. As a result, evdéreécan node is compro-
mised, the attacker that has access to the compromised Reynbaintroduce at most one
malicious location reference to a given non-beacon noderipeisonating the compro-
mised node.

For simplicity, we assume the distances measured from besignals (e.g., with RSSI
or TDoA [Savvides et al. 2001]) are used for location estiomat (Our techniques can
certainly be modified to accommodate other measuremenisasuangles.) For the sake
of presentation, we denote a location reference obtairmed & beacon signal as a triple
(x,y,d), where(z, y) is the location of the beacon declared in the beacon padhket, s
the distance measured from its beacon signal.

We assume an attacker may change any field in a location neferdn other words,
it may declare a wrong location in its beacon packets, orfeblyananipulate the beacon
signals to affect the distance measurement by, for examgjasting the signal strength
when RSSI is used for distance measurement. We also assultigl@malicious beacon
nodes may collude together to make the malicious locatitereaces appear to be “con-
sistent”. Our techniques can still defeat such colludingakis as long as the majority of
location references are benign.

3. ATTACK-RESISTANT MINIMUM MEAN SQUARE ESTIMATION

Intuitively, a location reference introduced by a maligaitack is aimed at misleading a
sensor node about its location. Thus, it is usually “diffétérom benign location refer-

ences. When there are redundant location references,thestehe some “inconsistency”
between the malicious location references and the benigs. ¢An attacker may still have
a location reference consistent with the benign ones aftanging both the location and
the distance values. However, such a location referentaetijenerate significantly neg-
ative impact on location determination.) To take advantdgRis observation, we propose
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Fig. 2. Location estimation error. Unit of measurementf@ndy axes: meter

to use the “inconsistency” among the location referencedentify the malicious ones,
and discard them before finally estimating the locationgassr nodes.

In this paper, we assume a sensor node uses a MMSE-baseddnfetyq [Savvides
et al. 2001; Savvides et al. 2002; Niculescu and Nath 2002ajuri and Li 2002; Do-
herty et al. 2001; Niculescu and Nath 2003b]) to estimatevis location. Thus, most
current range-based localization methods can be used higtheichnique. To harness this
observation, we first estimate the sensor’s location whMIMSE-based method and then
assess if the estimated location could be derived from afsstresistent location refer-
ences. If yes, we accept the estimation result; otherwisedentify and remove the most
“inconsistent” location reference, and repeat the aboweg®ss. This process may continue
until we find a set of consistent location references or ioispossible to find such a set.

3.1 Checking the Consistency of Location References

We use the mean square ertdrof the distance measurements based on the estimated
location as an indicator of the degree of inconsistencgesall the MMSE-based methods
estimate a sensor node’s location by (approximately) mikiirg this mean square error.
Other indicators are possible but need further investigati

DEFINITION 1. Given a set of location referencés = {(x1,y1,01), (z2,y2,02), ...,
(Tm, Ym, Om) } @nd a location(Zo, go) estimated based ofy, themean square error of this
location estimatioris

2 i (0 = /(@0 —2:)* + (o — 9:)*)*
=1 m

Intuitively, the more inconsistent a set of location referes is, the greater the corre-
sponding mean square error should be. To gain further utachelieg, we performed an
experiment through simulation with the MMSE-based methof{Savvides et al. 2001].
We assume the distance measurement error is uniformlytdistd between-e,, ., and
emaz- We used 9 honest beacon nodes and 1 malicious beacon nady @eployed in a
30m x 30m field. The node that estimates location is positioned at ¢mter of the field.
The malicious beacon node always declares a false locétatrstc meters away from its
real location, where: is a parameter in our experiment.

Figures 2 and 3 show the location estimation error (i.e.dte&ance between a sensor’s
real location and the estimated location) and the mean egraors? whenz increases.
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Fig. 3. Mean square erra?. Unit of measurement fat-axis: meter

As these figures show, if a malicious beacon node increasdsthtion estimation error
by introducing greater errors, it also increases the meaarscerrok? at the same time.
This further demonstrates that the mean square efriw potentially a good indicator of
inconsistent location references.

In this paper, we choose a simple, threshold-based methdetéomine if a set of loca-
tion references is consistent. Specifically, a set of locateference€ = {(x1,y1, 1),
(x2,Y2,02), .., {Tm,Ym,m)} Obtained at a sensor nodesisconsistent w.r.t. a MMSE-
based methoil the method gives an estimated locati@n, 7o) such that the mean square
error of this location estimation

S R/ eyt )

m

< 72

S

=1
3.2 Determining Threshold

The determination of thresholddepends on the measurement error model, which is as-
sumed to be available for us to perform simulation off-limel @etermine an appropriate

7. The threshold is stored on each sensor node. Usually, tlvemment of sensor nodes
(beacon or non-beacon nodes) does not have significant frapalis threshold, since the
measurement error model will not change significantly in ncases. However, when the
error model changes frequently and significantly, the perémce of our techniques may
be affected. In this paper, we assume the measurement evd®i mill not change.

Note that the malicious beacon signals usually increasestiance of estimation. Thus,
having a lower bound (e.g., Cramer-Rao bound) is not enoaghd to filter malicious
beacon signals. In fact, the upper bound or the distributiotne mean square error are
more desirable. In this paper, we study the distributiorhefrhean square errof when
there are no malicious attacks, and use this informatiorlp thetermine the threshotd

Since there is no other error besides the distance measoremer, a benign location
referencex, y, ) obtained by a sensor node(at), yo) must satisfy:

6= Vlo =20+ ly—w)?| <«
wheree is the maximum distance measurement error.
All the localization techniques are aimed at estimatingcafimn as close to the sensor’s
real location as possible. Thus, we may assume the estintation is very close to
the real location when there are no attacks. Next, we demelistribution of the mean
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square errot? using the real location as the estimated location, and cearipavith the
distribution obtained through simulation when there apatmn estimation errors.

The measurement error of a benign location referénggy;, 4;) can be computed as
e; = 86—/ (w0 — ;)% + (yo — vi)%, where(zo, yo) is the real location of the sensor node.
Assuming the measurement errors introduced by differenigipeocation references are
independent, we can get the distribution of the mean squaoe through the following
Lemma.

LEMMA 1. Let{es,...,e,,} be a set of independent random variables, ando? be
the mean and the variance ef, respectively. If the estimated location of a sensor node is
its real location, the probability distribution af is

2 _
lim Fle® < o] = (2 5),
m— 00 o
wherep' = 3" i o' = /Y ey 07, and®(z) is the probability of a standard normal
random variable being less than

2
PROOF. Obviously, the mean square error can be computecfby > | % Thus,
the cumulative distribution function can be calculated by

F(® <) =F()_ef <mgp).
=1

Since{e?,e3,- -+, €2, } are independent, according to the central limit theoremhawe
S _ !
lim P(—/——— p H <z)=d(x),
m—oo g

whereS,, = > (7). Thus, we have

limy, oo F((s? < 68) = limy, oo F(Sy < med)
Sm—p' WCS—M/)

o' = o'

= limy;,— 00 P(
= (it

o/

O

Lemma 1 describes the probability distributiondfbased on a sensor’s real location.
Though it is different from the probability distribution ¢f based on a sensor’s estimated
location, it can be used to approximate such distributiom@st cases.

Let us further assume a simple model for measurement ewbese the measurement
error is evenly distributed betweere ande. Then the mean and the variance épiare 0
and%, respectively, and the mean and the variance foreér@reé and%, respectively.
Letc = =2, we have

VEm(3c? — 1)
2 )

Figure 4 shows the probability distribution of derived from Lemma 1 and the sim-
ulated results using sensors’ estimated locations. We earttat when the number of
location references: is large (e.g.;mm = 9) the theoretical result derived from Lemma 1
is very close to the simulation results. However, whens small (e.g.;n = 4), there

F(? < (e x€)?) = o
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Fig. 4. Cumulative distribution functiof (s < <2). Letc = <2,

are observable differences between the theoretical segntt the simulation. The reasons
are twofold. First, our theoretical analysis is based orctérdral limit theorem, which is
only an approximation of the distribution whemis a large number. Second, we used the
MMSE-based method proposed in [Savvides et al. 2001] inithelation, which estimates

a node’s location by onlgpproximatelyminimizing the mean square error. (Otherwise,
the value of? for benign location references should never exeéed

Figure 4 gives three hints about the choice of the thresholdFirst, when there are
enough number of benign location references, a threshetdtlean the maximum mea-
surement error is enough. For example, when= 9, 7 = 0.8¢ can guarantee the nine
benign location references are considered consistentigthprobability. Besides, a large
threshold may lead to the failure to filter out malicious lima references. Second, when
m is small (e.g. 4), the cumulative probability becomes ftadied flatter where > 0.8.
This means that setting a large thresholtbr smallm may not help much to guarantee
the consistency test for benign location references; agsté may give an attacker high
chance to survive the detection. Third, the threshold cebadoo small; otherwise, a set
of benign location references has high probability to besgeined as a non-consistent
reference set.

Based on the above observations, we propose to choose thefeal- with a hybrid
method. Specifically, when the number of location refersrisdarge (e.g., more than
8), we determine the value af based on Lemma 1. Specifically, we choose a value of
T corresponding to a high cumulative probability (e.g., 0.8Jhen the number location
references is small, we perform simulation to derive theiaatlistribution of the mean
square error, and then determine the value atcordingly. Since there are only a small
number of simulations to run, we believe this approach istpral.

3.3 ldentifying the Largest Consistent Set

Since the MMSE-based methods can deal with measuremerd batter if there are more

benign location references, we should keep as many benigtidm references as possi-
ble when the malicious ones are removed. This implies weldhgrt the largest set of

consistent location references.

3.3.1 Brute-force Algorithm.Given a setC of n location references and a threshold
7, a simple approach to computing the largest set-obnsistent location references is to
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check all subsets of with ¢ location references abowtconsistency, whergstarts from

n and drops until a subset dfis found to ber-consistent or it is not possible to find such
a set. Thus, if the largest set of consistent location refere consists aof: elements, a
sensor node has to use the MMSE method at leasf, ", |) +-- - + (I7) times to find out
the right one. Ifn = 10 andm = 5, a node needs to perform the MMSE method for at
least 387 times. It is certainly not desirable to do such egjye operations on resource
constrained sensor nodes.

3.3.2 Greedy Algorithm.To reduce the computation on sensor nodes, we may use a
greedy algorithm, which is simple but suboptimal. This gsealgorithm works in rounds.

It starts with the set of all location references in the fiostnd. In each round, it first verifies
if the current set of location referencesricconsistent. If yes, the algorithm outputs the
estimated location and stops. Optionally, it may also ottipe set of location references.
Otherwise, it considers all subsets of location referendtsone fewer location reference,
and chooses the subset with the least mean square erroriapuh® the next round. This
algorithm continues until it finds a set ofconsistent location references or when it is not
possible to find such a set (i.e., there are only 3 remainiogtion references).

The greedy algorithm significantly reduces the computafiowerhead in sensor nodes.
To continue the earlier example, a sensor node only needsrform MMSE operations
for about 50 times (instead of 387 times) using this algamitin general, a sensor node
needs to use a MMSE-based method for at mhast+ (n —1)+---+4 = 1+ w
times.

However, as we mentioned, the greedy algorithm cannot gtegahat it can always
identify the largest consistent set. It is possible thatidretocation references are re-
moved. In out earlier version of this paper [Liu et al. 20Q%e& note that this generates
a big impact on the accuracy of location estimation — esfigaidnen there are multiple
malicious location references. To deal with this problera,develop an enhanced greedy
algorithm in the following. The new algorithm is based on &itent approach to identi-
fying the most suspicious location reference from a setcdtion references.

3.3.3 Enhanced Greedy Algorithiin the previous discussion, we only consider the
consistency of 3 or more location references. A further stigation also reveals that
two benign location references are usually “consistenthweach other in the sense that
there exists at least one location in the deployment field leiclnboth location references
agree. Hence, when the majority of location references anéigh, we can usually find
many location references that are consistent with a beoicgatibn reference. In addition,
when a malicious location reference tries to create a ldagation error, the number of
location references that are consistent with the malicomeswill decrease quickly.

According to the above discussion, for each location refege we simply count the
number of location references that are consistent with [tdation reference. We call
this number thelegree of consisten@nd use it to rank the suspiciousness of the location
references received at a particular non-beacon node. Thhesithe degree is, the more
likely that the corresponding location reference is malisi.

The consistency between two location references can bBeeeds follows. For any
location referencéx, y, 9), the non-beacon node derives the area that it may residd base
on this location reference. This area can be representedibyg aentered afz, y), with
the inner radiusnax{d — ¢, 0} and the outer radius+ ¢, wheree is the maximum distance
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error. For the sake of presentation, we refer to such a ringralidate ring (centered)
at location (z,y). The non-beacon node then check whether the candidateafrig®
location references overlap each other. If yes, they arsistamt; otherwise, they are not
consistent.

The algorithm to check whether the candidate rings of twation references =
(Ta,Ya,0q) @NAb = (xp,yp, 0p) Overlap can be done efficiently in the following way.
Let d,, denote the distance betweén,, y,) and(xy, yp). Let rmax(z) andrmin(z)
denote the outer radius and the inner radius of the candidajeof location reference
x respectively. We can easily figure out that the candidatgsrof location references
and b will not overlap when either of the following three condit®is true: (1)d,, >
rmaz(a) +rmaz(b), (2) dep + rmaz(a) < rmin(b) and (3)dqp + rmaz(b) < rmin(a).

Similar to the greedy algorithm, the enhanced algorithmdemtify the largest consis-
tent set starts with the set of all location references infitls¢ round. In each round, it
verifies whether the current set of location referencesdsnsistent. If yes, the algorithm
outputs the estimated location and stops. Optionally, it aiso output the set of location
references. If not, it removes the location reference epoading to the smallest degree
and use the remaining location references as the input togkieround. This algorithm
continues until it finds a set af-consistent location references or when it is not possible
to find such a set (i.e., there are only 3 remaining locatiferemces).

The enhanced algorithm not only improves the accuracy cftios estimation in the
presence of malicious attacks, but also reduces the cotigputaverhead significantly
since it can identify the most suspicious location refeeeeiiciently and effectively. To
continue the earlier example, a non-beacon node only nequstorm MMSE operations
for 5 times. In general, a non-beacon node needs to use a Md4aS&d method for at most
n — 3 times.

4. VOTING-BASED LOCATION ESTIMATION

In this approach, we have each location reference “voteherdcations at which the node
of concern may reside. To facilitate the voting process, uangjze the target field into a
grid of cells, and have each sensor node determine how litkslyn each cell based on each
location reference. We then select the cell(s) with the ésglrote and use the “center” of
the cell(s) as the estimated location. To deal with the nesbconstraints on sensor nodes,
we further develop an iterative refinement scheme to rechecstorage overhead, improve
the accuracy of estimation, and make the voting schemeeeffion resource constrained
sensor nodes.

4.1 The Basic Scheme

After collecting a set of location references, a sensor isbdeld determine the target field.
The node does so by first identifying the minimum rectange dovers all the locations
declared in the location references, and then extendisg#utangle byR,, whereR;, is
the maximum transmission range of a beacon signal. Thisdgterectangle forms the
target field, which contains all possible locations for tkesor node. The sensor node
then divides this rectangle intd/ small squares (cells) with the same side lenbthas
illustrated in Figure 5. (The node may further extend thgegfield to have square cells.)
The node then keeps a voting state variable for each ceifligiset to 0.

At the beginning of this algorithm, the non-beacon node seeddentify the candidate
ring of each location reference. For example, in Figure & rithg centered at point A is a
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Fig. 5. The voting-based location estimation

candidate ring at A, which is derived from the location refeze with the declared location
at A.

For each location referen¢e, y, ¢), the sensor node identifies the cells that overlap with
the corresponding candidate ring, and increments theyeotiniables for these cells by 1.
After the node processes all the location references, bsb®the cell(s) with the highest
vote, and uses its (their) geometric centroid as the esiinatation of the sensor node.

4.2 Overlap of Candidate Rings and Cells

A critical problem in the voting-based approach is to detaenif a candidate ring overlaps
with a cell. We discuss how to determine this efficiently elo

Suppose we need to check if the candidate ring at A overlagistive cell shown in
Figure 6(a). Letd,,;»(A) andd,,q.(A) denote the minimum and maximum distances
from a pointin the cell to point A, respectively. We can ses the candidate ring does not
overlap with the cell only whed, ,;,, (4) > r, Or dyas(A) < 7;, wherer; = max{0,0 —
€} andr, = § + € are the inner and the outer radius of the candidate ringectisgly.

To computed,,,;,, andd,,..., we divide the target field into 9 regions based on the cell,
as shown in Figure 6(b). Itis easy to see that given the cefitery candidate ring, we can
determine the region in which it falls with at most 6 companis between the coordinates
of the center and those of the corners of the cell. When thieceha candidate ring is in
region 1 (e.g., point A in Figure 6(b)), it can be shown tha&t tfosest point in the cell to
A is the upper left corner, and the farthest point in the gelfrf A is the lower right corner.
Thus,d i (A) andd,....(A) can be calculated accordingly. These two distances can be
computed similarly when the center of a candidate ring fatis regions 3, 7, and 9.

Consider point B in region 2. Assume the coordinate of poirg B 5, y5). We can see
thatd,,;»(B) = yp — y2. Computingd,,...(B) is a little more complex. We first need to
checkifxg — 21 > 29 — x . If yes, the farthest pointin the cell from B must be the lower
left corner of the cell. Otherwise, the farthest point in tie#f from B should be the lower
right corner of the cell. Thus, we have

dmae(B) = /(max{zp — 21,22 — 25})? + (y5 — 1)
These two distances can be computed similarly when the cehtecandidate ring falls

ACM Journal Name, Vol. , No., 20.




Attack-Resistant Location Estimation in Sensor Networks . 13

y A

(c) Limiting the examinations of cells

Fig. 6. Determine whether a ring overlaps with a cell

into regions 4, 6, and 8.

Consider a point C in region 5. Obvioush,,;,,(C) = 0 since point C itself is in the
cell. Assume the coordinate of point C(is., y.). The farthest point in the cell from C
must be one of its corners. Similarly to the above case fant@®i we may check which
point is farther away from C by checking — z; > x5 — x. andy. —y1 > y2 — y.. As a
result, we get

dmaz(C) = \/(max{xc — 21,22 — 2 })? + (max{t. — y1,92 — yc})>.

Based on the above discussion, we can determine if a cell aaddidate ring overlap
with at most 10 comparisons and a few arithmetic operatidagrove the correctness of
the above approach only involves elementary geometry,tamslis omitted.

For a given candidate ring, a sensor node does not have t& ali¢le cells for which
it maintains voting states. As shown in Figure 6(c), withgiencomputation, the node can
get the outer bounding box centered at A with side lergth+ ¢). The node only needs
to consider the cells that intersect with or fall inside thisx. Moreover, the node can get
the inside bounding box with simple computation, which isteeed at A with side length
V2(6 — €), and all the cells that fall into this box need not be checked.

4.3 lterative Refinement

The number of celld/ (or equivalently, the quantization sté)) is a critical parameter for
the voting-based algorithm. It has several implicationthi&performance of our approach.
First, the largetM is, the more state variables a sensor node has to keep, anithéhmnore
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storage is required. Second, the valueMdf(or L) determines the precision of location
estimation. The larged/ is, the smaller each cell will be. As a result, a sensor node ca
determine its location more precisely based on the ovetldpeocells and the candidate
rings.

However, due to the resource constraints on sensor nogsg,ahularity of the partition
is usually limited by the memory available for the votingtstaariables on the nodes. This
puts a hard limit on the accuracy of location estimation. ddrass this problem, we
propose ariterative refinemendf the above basic algorithm to achieve fine accuracy with
reduced storage overhead.

In this version, the number of cell¥/ is chosen according to the memory constraint in
a sensor node. After the first round of the algorithm, the modg find one or more cells
having the largest vote. To improve the accuracy of locagistimation, the sensor node
then identifies the smallest rectangle that contains altétis having the largest vote, and
performs the voting process again. For example, in Figuthéssame algorithm will be
performed in a rectangle which exactly includes the 4 celigrg 3 votes. Note thatin a
later iteration of the basic voting-based algorithm, a fmeareference does not have to be
used if it does not contribute to any of the cells with the leigftvote in the current iteration.

Due to a smaller rectangle to quantize in a later iteratiomstze of cells can be reduced,
resulting in a higher precision. Moreover, a malicious tarareference will most likely
be discarded, since its candidate ring usually does notagevith those derived from
benign location references. For example, in Figure 5, tielidate ring centered at point
D will not be used in the second iteration.

The iterative refinement process should terminate when isedegsrecision is reached
or the estimation cannot be refined. The former conditionbeatested by checking if the
side lengthL of each cell is less than a predefined thresHflavhile the latter condition
can be determined by checking whetlieremains the same in two consecutive iterations.
The algorithm then stops and outputs the estimated locatiteined in the last iteration.

It is easy to see that the algorithm will fall into either ob#ie two cases, and thus will
alway terminate. In practice, we may set the desired pi@tisi O in order to get the best
precision.

5. SECURITY ANALYSIS

Both proposed techniques can usually remove the effecteofrtlilicious location refer-
ences from the final location estimation when there are menégh location references
than the malicious ones. Theorem 1 shows that when the myagdriocation references
are benign, the location estimation error of the attackstast MMSE is bounded if we
can successfully identify the largest consistent set. Hetadefeat the attack-resistant
MMSE approach, the attacker has to distribute to a victimenmere malicious location
references than the benign ones, and control the declacatidas and the physical fea-
tures (e.g., signal strength) of beacon signals so that #ieious location references are
considered consistent.

LEMMA 2. Assume there arer benign location references andmalicious location
references in a-consistent set. The location estimation error from thisofdocation ref-
erences using MMSE is no more thaR + , / ’”T*”T, whereR is the radio communication
range of a sensor node.
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PROOF LetO = (z9,yo) denote the real location of the non-beacon node@he-
(x5, y4) denote the estimated location of the non-beacon node basatl location ref-
erences (including the malicious ones). L&t3| denote the distance betwednand B.
Thus, the location estimation error can be representé@ty|. Let{L4,-- -, L,,} denote
the set of benign location references §dd,, 11, - - -, Lin+r } denote the set of malicious
location references.

Consider a particular benign location referentes= (z;,y;, ;). Since the communi-
cation range of sensor nodesis we haveOL;| < R. In addition,e; = ¢; — |O’L;| and
0; < R. Thus, we have

|OO/| < |OLZ| + |L10/| < R+6; —e; <2R —e;.

There are two different cases; > 0 ore; < 0. Whene; > 0, we havelOO’| < 2R.
Whene; < 0, we have|OO'| — 2R < —e;. Assume|OO’| > 2R, we havee? >
(|OO'| = 2R)?. Since{Ly, -, L1y} is T-consistent, we havEer” 2< (m+n)T
Therefore,

m—+n

m(]00’| — 2R)? Z Z 2 < (m+n)72

Hence, we hav¢l00'| — 2R)? < W™ jtimplies

00| < 2R+ /2"
m

According to the above analysis, we can conclude that themgnt in Lemma 2 is
true. O

THEOREM 1. Assume a non-beacon node receiveBenign location references amd
malicious loccation references, whetve > n. The location estimation error at this non-
beacon node using the attack-resistant MMSE scheme withrtite-force algorithm is no
more thare R + , / = if the thresholdr is set greater than the maximum distance error

€, whereR is the radio communication range of a sensor node.
PROOF It is easy to know that the set of benign location references is always
consistent ifr > ¢. Thus, there are at least location references in the largest consistent

set. Assume there arelocation references in the largest consistent set, where m.
According to Lemma 2, we have

|O0'| < 2R +

k
T <2R+ .
-n m-—n

O

Similarly, theorem 2 shows that when the majority of locatreferences are benign,
the location estimation error of the voting-based schenbeisided. Hence, to defeat the
voting-based approach, the attacker needs similar effortthat the cell containing the
attacker’s choice gets more votes than those containinggthgor’s real location.

THEOREM 2. When the majority of location references at a non-beacorerard be-
nign, the location estimation error at this non-beacon nadimg the voting-based scheme
is no more thar2R + /2L, whereL is the side length of the cell.
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PROOF Assume the real location of the sensor nod@ is- (zo, yo) and the estimated
location of the sensor node using the voting-based sche®ess(xzy, y;)).

Since the candidate ring of a benign location referenceyawavers the real locatian
of the sensor node, the number of votes in the cell that cosais at leastn. Thus, the
number of votes in the cell that contaif$is at leasin. Since the number of votes coming
from the malicious location references is at mastwe know that there is at least one
benign location reference whose candidate ring coverseti¢hat containg)’. Assume
one of such benign location referecnedjs= (x;, y;, 9;), we have

|L;0'| < R+ V2L,
wherelL is the side length of a cell. Therefore, we have
|00'| < |OLi| + |L;O'] < 2R + V2L.
O

An attacker has two ways to satisfy the above conditions (@ieto defeat our tech-
nigques). First, the attacker may compromise beacon nodiksham generate malicious
beacon signals. Since all beacon packets are authentieaigd sensor node uses at most
one location reference derived from the beacon signalstseatich beacon node, the at-
tacker needs to compromise more beacon nodes than the lrs@gan nodes from which
a target sensor node may receive beacon signals, besigdsliyacrafting the forged bea-
con signals.

Second, the attacker may launch wormhole attacks [Hu eD8B]Xor replay attacks)
to tunnel benign beacon signals from one area to anothehidrcase, the attacker does
not have to compromise any beacon node, though he/she haerttiriate the wormhole
attacks. This paper does not provide techniques to addresahwle attacks. However,
our methods can still tolerate wormhole attacks to a cedagree as long as the number
of malicious location references at a sensor node is lesgiieenumber of benign location
references. On the other hand, we may also use some of gxigtirmhole detection
methods (e.g., packet leashes [Hu et al. 2003], directam&innae [Hu and Evans 2003b])
to make it more difficult for an attacker to introduce many igials location references to
a sensor node by launching wormhole attacks.

Our techniques certainly have a limit. In an extreme casell the beacon nodes are
compromised, our techniques will fail. However, the prambtechniques offer a graceful
performance degradation as more malicious location reée® are introduced. In con-
trast, an attacker may introduce arbitrary location errith\& single malicious location
reference in the previous schemes. To further improve tberig of location discovery,
other complementary mechanisms (e.g., detection of makicbeacon nodes) should be
used.

6. SIMULATION EVALUATION

This section presents the simulation results for both pgedasschemes. The evaluation
focuses on the performance under different configurationksthe improvement on the
accuracy of location estimation in hostile environments.

Three attack scenarios are considered. The first scenangidaws a single malicious
location reference that declares a wrong locatianeters away from the beacon node’s
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real location. (An attacker may also modify the distance gonenté in a location ref-
erence, which will generate a similar impact.) In the secetghario, there are multiple
non-colluding malicious location references, and eacthefit independently declares a
wrong location that i meters away from the beacon node’s real location. In the thir
scenario, multiple colluding malicious location referes@re considered. In this case, the
malicious location references declare false locationsdaydinating with each other to
create a virtual locatioa meters away from the sensor’s real location. Thus, the inakc
location references may appear to be consistent to a viciohe.n

In all simulations, a set of benign beacon nodes and a fewciona$ beacon nodes are
evenly deployed in 80m x 30m target field. The non-beacon sensor node is located at the
center of this target field. We assume the maximum transomisange of beacon signals is
Ry = 22m, so that the non-beacon node can receive the beacon signakfrery beacon
node located in the target field. We assume the entire de@ot/field is much larger than
this target field so that an attacker can create a very lagitn estimation error inside
the deployment field. Each malicious beacon node declaratsa lbcation according to
the three attack scenarios discussed above. We assume la gistance measurement
error model. That is, the distance measurement error i®umiy distributed between ¢
ande, where the maximum distance measurement eri®set toe = 4m.

6.1 Evaluation of Attack-Resistant MMSE

In the simulation, we use the MMSE-based method propose8amides et al. 2001],
which we call thebasic MMSE methgdo perform the basic location estimation. Our
attack-resistant MMSE method is then implemented on thisldghis method, as dis-
cussed in Section 3. We set= 0.8¢ according to Figure 4, which guaranteebenign
location references are considered consistent with pitiyadd 0.999.

Figure 7(a) shows the performance of the attack-resistaviSE method when the
brute-force algorithm is used to identify the largest cetesit set. We can see that our
technique can significantly reduce the location estimagioor when there are malicious
location references. The figure also indicates that whemidlecious location references
create large location errors, they are always removed fhanfihal location estimation at
a non-beacon node.

Figure 7(b) shows the performance of the attack-resistaSE method when the
greedy algorithm is used to identify the largest consisseit From the figure, we can
see that the technique can significantly reduce the locattimation error when there is
only one malicious location reference. However, the pentoice degrades quickly when
there are multiple malicious location references. Thisdsause multiple malicious lo-
cation references, especially when they collude togethake the filtering of malicious
location references more difficult. It is very possible thahign location references being
identified as malicious and being removed. Hence, we knotitileayreedy algorithm can-
not effectively identify the largest consistent set whegréhare more than one malicious
location references.

Figure 7(c) shows the performance of the attack resistanSEhethod when the en-
hanced greedy algorithm is used to identify the largest istert set. We can see that
that the attack-resistant MMSE with the enhanced greedyristhgn reduces the location
estimation error significantly compared with the one witeegty algorithm. It indicates
that the enhanced greedy algorithm can identify the largmssistent set more effectively
than the greedy algorithm. Hence, in the following evaluatiwe always assume that the
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Fig. 7. 7 = 0.8¢. Unit of measurement far andy axes: meter

enhanced greedy algorithm is used in the attack-resistdBEImethod.

From 7(c), we note that the malicious location referencesemerate big impact when
the location errors created by them are arowh. Therefore, we assume that malicious
location references introdu@®m location errors and evaluate the effect of threshold
on the performance of the attack-resistant MMSE method.urgi@® indicates that the

ACM Journal Name, Vol. , No., 20.



Attack-Resistant Location Estimation in Sensor Networks . 19

15

T T T
——AR-MMBE with 1 malicious
—=—AR-MVSE with 3 non-col | udi ng

2 -1 % ARMEEwith 3 colluding [~~~

Location estimation error

Fig. 8. Performance of Attack-resistant MMSE under difféerthresholdr. Assume each malicious location
reference introduce20m location error.

thresholdr cannot be set too large or too small since it will either failémove malicious
location references or remove a large number of benignitotatferences. This result is
consistent with our analysis in Section 3.2.

6.2 Evaluation of Voting-Based Scheme

Location estinmation error

0 25 50 75 100 125 150 175 200
The granularity of partition (M

Fig. 9. Performance for differert/ (e: error introduced by a malicious location reference)

We first study the impact of parametif on the voting-based method. Figure 9 shows
the performance of the voting-based scheme with differahtes ofA/ when there is only
one malicious location reference. We can see that the tattimation error initially
decreases whef/ increases, but then does not decrease much wiitiéa greater than
100. Moreover, the paramet@f also has implications in computational cost. Since the
voting-based method is finally reduced to checking whetreamalidate ring derived from
a location reference overlaps with the cells in the grid, eethe number of cells being ex-
amined as an indicator of the computational cost. Figurehd@s the computational costs
of the voting-based method for different valuesiéfwhen there is one malicious location
reference. As this figure shows, the computational coseas®s almost linearly with the
value of M. When there are no or more malicious location referencescéimputational
costwill increase similarly ad/ increases. Based on these results, wéet 100, which
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implies 100 Bytes memory for the voting variables, in thelaimulations to trade-off the
accuracy with the storage and computation overhead.
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Fig. 10. Computational cost for differedt (e: error introduced by a malicious location reference)

Next, we study the performance of the voting-based schemerunalicious attacks. In
the simulation, we also sét = 0 to get the minimum location estimation error achievable
by this method. Figure 11 compares the accuracy of the baMSE method and our
voting-based scheme under different types of attacks. \Welearly see that the accuracy
of location estimation is improved significantly in our sofe In addition, unlike the
attack-resistant MMSE scheme, the voting-based schemmaate multiple (colluding
or non-colluding) malicious location references more@fiely.
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Fig. 11. Performance of the voting-based schete-£ 100, .S = 0). Unit of measurement far andy axes:
meter

Note that the curves for the voting-based scheme in Figureal& a bump when the
location error introduced by malicious location referenisearound 10m. This is because
the malicious location references are not significantljedént from the benign location
references around this point, and our scheme cannot caghpsdtield the effect of ma-
licious location references. Nevertheless, the attackiénat be able to introduce large
location estimation errors by simply creating large lamagrrors. As a result, the location
estimation errors are always bounded even if there are imadi@ttacks. In addition, we
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also note that the performance of voting-based scheme atideks is usually better than
the performance of MMSE scheme without attacks. This is iezave used the MMSE-
based method in [Savvides et al. 2001] in the simulation¢tvBstimates a node’s location
by only approximatelyminimizing the mean square error.

Now let us compare the attack-resistant MMSE and the vdiexgpd methods. Based
on the earlier results, we choose threshold 0.8¢ for the attack-resistant MMSE, and set
M = 100 andS = 0 for the voting-based scheme. Figure 12 shows that the wid@sgd
scheme performs slightly better than the attack-resiftiSE scheme in terms of the
location estimation accuracy when there are maliciougiocaeferences.
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Fig. 12. Comparison between the attack-resistant MMSE heddting-based scheme. Unit of measurement:
meter

7. IMPLEMENTATION AND FIELD EXPERIMENTS

We have implemented both schemes on TinyOS [Hill et al. 2080]operating system
for networked sensors. These implementations are targeteliCA2 motes [Crossbow
Technology Inc. ] running TinyOS. The attack-resistant MMS implemented based on
the basic MMSE method proposed in [Savvides et al. 2001]. éd&w our implementation
of the basic MMSE method is simplified by only using the logatcoordinates (without
the ultrasound propagation speed, which is not necessaiyristudy).

Scheme ROM (bytes) | RAM (bytes)

MMSE 2034 286
EAR-MMSE 3738 434
\oting-Based 4488 174

Table I.

Code size (assume 12 location referengés= 100)

Table | gives the code size (ROM and RAM) for these implentgria on MICA2
platform. Table | is obtained by assuming at most 12 locatéfarences. More location
references will increase the RAM size of the program, butitlteeased RAM is only
required to save the additional location references.

Figure 13 shows the average execution time of the basic MMiSEattack-resistant
MMSE, and the voting-based schemes on real MICA2 motes. eTtat are collected
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Fig. 13. Average execution time on MICA2 motes=£ 4m, 7 = 0.8¢, M = 100 and
S =0)

by counting the numbers of CPU clock cycles spent on locagiimation. The location
references used in the experiment are generated from thdagiom in Section 6. We
can see that the basic MMSE method has the least executien fiine attack-resistant
MMSE scheme has less computational cost than the votingdbesheme. The number
of malicious location references does not affect the coatprnal overheads of the basic
MMSE method and the voting-based method but does affectahmpuatational overhead
of the attack-resistant MMSE method. From Table | and Fidiewe conclude that our
proposed techniques are practical for the current geoarafisensor networks in terms of
the storage and the computation overheads, especially thiedacations of sensor nodes
do not change frequently.

To further study the feasibility of our techniques, we perfed an outdoor field exper-
iment. In this experiment, eight MICA2 motes were deploye@il0 x 10 target field,
where each unit of distance is 4 feet, as shown in Figure 14.s€hsor node with ID 0 is
configured as a non-beacon node, which is located at theraatee field. All the other
sensor nodes are configured as beacon nodes.

We considered three attack scenarios in this experimentherirst scenario, beacon
node 1 is configured as a malicious beacon node that alwayarde@ locatiore feet
away from its real location in the direction away from the flmacon node. In the second
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Fig. 14. Target area of field experiment.

scenario, beacon nodés2 and3 are configured as malicious beacon nodes. Each of these
three nodes declares a locatielfieet away from its real location in the directions away
from the non-beacon node. In the third scenario, three imakcheacon nodes 2, and

3 work together to create a virtual location. Each of theseghrodes declares a false
location by increasing its horizontal coordinate dfeet. This actually creates a virtual
location in the horizontal axis feet away from the non-beacon node’s real location. This
is illustrated in Figure 14 by the horizontal arrow startfrgm the non-beacon node.

To measure the distancé) (between sensor nodes, we use a simple RSSI based tech-
nigue. Note that the Active Message protocol in TinyOS patesia reading in thgtrength
field for the MICA2 platform. This value is returned in evegceived packet, and can be
used to compute the signal strength. Thus, we performedperiexent before the actual
field experiment to estimate the relationship between thgegeof this field and the dis-
tance between two nodes. For each given distance, we codigtaverage of this values
on 20 observations. We then built a table that contains distaacdshe corresponding av-
erage readings. During the field experiments, when a sewnsierneceiveg0 packets from
a beacon node, it computes the average ofthlengthvalues, and estimates the distance
with interpolation according to this table. For examplethié average reading falls in
between two adjacent points;, d;) and(v;11, d;+1) in the table, the sensor computes the
distance

d=d + (v — i) X (dit1 _di).
Vit1 — Vs
We sete to 4 feet, which is the maximum distance measurement error ebdéen the
experiment.

Figure 15 shows the performance of the proposed method$famdsic MMSE method
in the field experiment. For the first two attack scenarios,ceve see that the proposed
methods can tolerate malicious location references gtfiteterely. The performance in
the third scenario is worse than the first two cases. The ndagbat the non-beacon nodes
has only4 benign location references, bditcolluding location references. However, we
still see that the location estimation error drops when tdwation errors introduced by
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Fig. 15. Results of the field experiment. Assuie= 100 and.S = 0 for voting-based
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the malicious attacks are above certain thresholds. Qy#rallocation estimation errors
caused by malicious attacks are bounded when the propageddees are used, while the
errors can be arbitrarily large when the basic MMSE methaéd.

The field experiment further shows that our methods are efficind effective in tol-
erating malicious attacks. It also indicates that our mgshare promising for the current
generation of sensor networks.

8. RELATED WORK

Many range-based localization schemes have been propmssetisor networks [Savvides
et al. 2001; Savvides et al. 2002; Niculescu and Nath 2002ajuri and Li 2002; Do-
herty et al. 2001]. Savvides et al. developed AHLOS protbesied on Time Difference
of Arrive [Savvides et al. 2001], which was extended in [Sdes et al. 2002]. Doherty
et al. presented a localization scheme based on conngativistraints and relative signal
angles between neighbors [Doherty et al. 2001]. Angle ofvAhis used to develop lo-
calization scheme in [Niculescu and Nath 2003a] and [Nasgnd Li 2002]. Range-free
schemes are proposed to provide localization servicesiéoapplications with less preci-
sion requirements [Bulusu et al. 2000; Niculescu and Naf@8BpNagpal et al. 2003; He
et al. 2003]. Bulusu, Heidemann and Estrin proposed to aestim sensor’s location as the
centroid of all locations in the received beacon signaldiyBu et al. 2000]. Niculescu and
Nath proposed to use the minimum hop count and the averageiz®fp estimate the dis-
tance between nodes and then determine sensor nodesblmeaticordingly [Niculescu
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and Nath 2003b]. None of these schemes will work properlyninere are malicious
attacks.

The location verification technique proposed in [Sastry.&@03] can verify the relative
distance between a verifying node and a sensor node. It dugsrovide a solution to
conduct secure location estimation at non-beacon noddsisipaper, we provide efficient
ways to estimate locations of sensor nodes securely. Thédwmcverification technique is
complementary to our techniques since it can be used to entiha security of distance
measurement between two nodes.

A robust location detection is developed in [Ray et al. 2008pwever, it cannot be
directly applied in sensor networks due to its high compomeand storage overheads. A
voting-based Cooperative Location Sensing (CLS) was wegdn [Fretzagias and Pa-
padopouli 2004]. However, CLS is designed for powerful rofieg., PDAS), while our
scheme further uses iterative refinement to improve theopegnce with small storage
overhead. Therefore, our technique can be implemented>awited efficiently on re-
source constrained sensor nodes.

Similar to our attack-resistant location estimation teéghas, the following two tech-
nigues are independently discovered to tolerate maliciasks against location discov-
ery in wireless sensor networks. A robust statistical mestbat is similar to the attacker-
resistant MMSE scheme is discovered in [Li et al. 2005] toi@ah robustness through
Least Median of Squares. A secure range-independentzatialn scheme (SeRLoc) that
is similar to our voting-based scheme is discovered in [saaod Poovendran 2004] to
protect location discovery with the help of sectored ansenat beacon nodes. Compared
to these two studies, we provide more alternative ways &raté malicious attacks and
also include the real implementation and field experimentkis paper.

SPINE [S.Capkun and Hubaux 2005] is developed to proteatilme discovery by using
verifiable multilateration. However, the distance bougdiechniques required for verifi-
able multilateration may not be available due to the diffieslto (1) deal with the external
replay attacks in Ultrasound-based distance boundingrathieve nanosecond process-
ing and time measurements in Radio-based distance bourRMBE [Lazos et al. 2005]
is developed by integrating SerLoc and SPINE. Howeverilitrstjuires nanosecond pro-
cessing and time measurements that are not desirable fouthent generation of sensor
networks. Compared with these two studies, we provide igales to tolerate malicious
attacks without the above constraints. Moreover, our psegdechniques can be easily
combined with most of existing localization techniques.

To further enhance the security of location discovery, atizal technique is developed
to detect malicious beacon nodes that are providing maléctmeacon signals [Du et al.
2005; Liu et al. 2005b]. This detection technique can belyasimbined with our tech-
nigues. We consider it complementary to the techniquedsmtiper.

In addition to secure location discovery, location privdigcomes a more and more
interesting topic recently. Several techniques are dgegloecently to protect the location
privacy in sensor networks [Ozturk et al. 2004; Kamat et @03].

Security in sensor networks has attracted a lot of atteritidhne past several years. To
provide practical key management, researchers have gmcel®y pre-distribution tech-
nigues [Eschenauer and Gligor 2002; Chan et al. 2003; Du 2088B]. To enable broad-
cast authentication, a protocol namedESLA has been explored to adapt to resource
constrained sensor networks [Perrig et al. 2001]. Secofisensor data has been stud-
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ied in [Przydatek et al. 2003; Hu and Evans 2003a]. Attacksresg routing protocols in

sensor networks and possible counter measures were gatestiin [Karlof and Wagner
2003]. The research in this paper addresses another fumdareecurity problem that has
not drawn enough attention.

9. CONCLUSION AND FUTURE WORK

In this paper, we proposed an attack-resistant MMSE-baseatibn estimation and a
voting-based location estimation technique to deal withckss in localization schemes.
We have implemented the proposed techniques on MICA2 m@tesgbow Technology
Inc. ] running TinyOS [Hill et al. 2000], and evaluated themaugh both simulation and
field experiments. Our experiences indicate that the pmgbtschniques are promising
solutions for securing location discovery in wireless semetworks.

Our future research is two-fold. First, we will study how tinebine the proposed tech-
nigues with other protection mechanisms such as wormhaéztien. Second, our simu-
lations and experiments in this paper are conducted in Stalks. It is very interesting to
study the performance in a large scale.
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