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Many sensor network applications require sensors’ locations to function correctly. Despite the
recent advances, location discovery for sensor networks in hostile environments has been mostly
overlooked. Most of the existing localization protocols for sensor networks are vulnerable in hostile
environments. The security of location discovery can certainly be enhanced by authentication.
However, the possible node compromises and the fact that location determination uses certain
physical features (e.g., received signal strength) of radio signals make authentication not as effec-

tive as in traditional security applications. This paper presents two methods to tolerate malicious
attacks against beacon-based location discovery in sensor networks. The first method filters out
malicious beacon signals on the basis of the “consistency” among multiple beacon signals, while
the second method tolerates malicious beacon signals by adopting an iteratively refined voting
scheme. Both methods can survive malicious attacks even if the attacks bypass authentication,
provided that the benign beacon signals constitute the majority of the beacon signals. This paper
also presents the implementation of these techniques on MICA2 motes running TinyOS, and the
evaluation through both simulation and field experiments. The experimental results demonstrate
that the proposed methods are promising for the current generation of sensor networks.
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1. INTRODUCTION

Recent technological advances have made it possible to develop distributed sensor net-
works consisting of a large number of low-cost, low-power, and multi-functional sensor
nodes that communicate in short distances through wirelesslinks [Akyildiz et al. 2002].
Such sensor networks are ideal candidates for a wide range ofapplications such as health
monitoring, data acquisition in hazardous environments, and military operations. The de-
sirable features of distributed sensor networks have attracted many researchers to develop
protocols and algorithms that can fulfill the requirements of these applications (e.g., [Perrig
et al. 2001; Hill et al. 2000; Gay et al. 2003; Niculescu and Nath 2001; Intanagonwiwat
et al. 2003; Newsome and Song 2003; Akyildiz et al. 2002]).

Sensors’ locations play a critical role in many sensor network applications. Not only do
applications such as environment monitoring and target tracking require sensors’ location
information to fulfill their tasks, but several fundamentaltechniques developed for wireless
sensor networks also require sensor nodes’ locations. For example, in geographical routing
protocols (e.g., GPSR [Karp and Kung 2000] and GEAR [Yu et al.2001]), sensor nodes
make routing decisions at least partially based on their ownand their neighbors’ locations.
As another example, in some data-centric storage applications such as GHT [Ratnasamy
et al. 2002; Shenker et al. 2002], storage and retrieval of sensor data highly depend on sen-
sors’ locations. Indeed, many sensor network applicationswill not work without sensors’
location information.

A number of location discovery protocols (e.g., [Savvides et al. 2001; Savvides et al.
2002; Niculescu and Nath 2003a; Nasipuri and Li 2002; Doherty et al. 2001; Bulusu et al.
2000; Niculescu and Nath 2003b; Nagpal et al. 2003; He et al. 2003]) have been proposed
for wireless sensor networks in recent years. These protocols share a common feature:
They all use some special nodes, calledbeacon nodes, which are assumed to know their
own locations (e.g., through GPS receivers or manual configuration). These protocols work
in two stages. In the first stage, non-beacon nodes receive radio signals calledbeacon sig-
nalsfrom the beacon nodes. The packet carried by a beacon signal,which we call abeacon
packet, usually includes the location of the beacon node. The non-beacon nodes then esti-
mate certain measurements (e.g., distance between the beacon and the non-beacon nodes)
based on features of the beacon signals (e.g., received signal strength indicator (RSSI),
time difference of arrival (TDoA)). We refer to such a measurement and the location of
the corresponding beacon node collectively as alocation reference. In the second stage, a
sensor node determines its own location when it has enough number of location references
from different beacon nodes. A typical approach is to consider the location references as
constraints that a sensor node’s location must satisfy, andestimate it by finding a math-
ematical solution that satisfies these constraints with minimum estimation error. Existing
approaches either employrange-basedmethods [Savvides et al. 2001; Savvides et al. 2002;
Niculescu and Nath 2003a; Nasipuri and Li 2002; Doherty et al. 2001], which use the exact
measurements obtained in stage one, orrange-freeones [Bulusu et al. 2000; Niculescu and
Nath 2003b; Nagpal et al. 2003; He et al. 2003; Lazos and Poovendran 2004], which only
need the existences of beacon signals in stage one.

Despite the recent advances, location discovery for wireless sensor networks inhostile
environments, where there may be malicious attacks, has been mostly overlooked. Many
existing location discovery protocols become vulnerable in the presence of malicious at-
tacks. As illustrated in Figure 1, an attacker may provide incorrect location reference by
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Fig. 1. Attacks against location discovery schemes

pretending to be valid beacon nodes (Figure 1(a)), compromising beacon nodes (Figure
1(b)), or replaying the beacon packets that he/she intercepted in different locations (Figure
1(c) ). In either of the above cases, non-beacon nodes will determine their locations incor-
rectly. In either of these cases, non-beacon nodes will determine their locations incorrectly.

Without protection, an attacker may easily mislead the location estimation at sensor
nodes and subvert the normal operation of sensor networks. The security of location
discovery can certainly be enhanced by authentication. Specifically, each beacon packet
should be authenticated with a cryptographic key only knownto the sender and the in-
tended receivers, and a non-beacon node accepts a beacon signal only when the beacon
packet carried by the beacon signal can be authenticated. However, authentication does
not guarantee the security of location discovery, either. An attacker may forge beacon
packets with keys learned through compromised nodes, or replay beacon signals inter-
cepted in different locations. Indeed, our experiment in Section 3 shows that an attacker
can introduce substantial location estimation errors by forging or replaying beacon pack-
ets. Thus, it is highly desirable to have additional methodsto protect location discovery in
sensor networks.

Several techniques has been developed recently to deal withthe security problems of
location discovery in wireless sensor networks [Sastry et al. 2003; Lazos and Poovendran
2004; Ray et al. 2003; Li et al. 2005; S.Capkun and Hubaux 2005; Lazos et al. 2005]. The
location verification technique proposed in [Sastry et al. 2003] can be used to verify the
relative distance between a verifying node and a sensor node. However, it does not provide
a solution to conduct secure location estimation at non-beacon nodes. A robust location
detection is developed in [Ray et al. 2003] using the idea of majority voting. However, it
cannot be directly applied in resource constrained sensor networks due to its high compu-
tation and storage overheads. Similar to our attack-resistant MMSE techniques, a robust
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statistical method is independently discovered in [Li et al. 2005] to achieve robustness
through Least Median of Squares.

SeRLoc [Lazos and Poovendran 2004] protects location discovery with the help of sec-
tored antennae at beacon nodes. Similar to the voting-basedscheme proposed in this pa-
per, SeRLoc can tolerate malicious attacks by adopting the idea of majority voting. SPINE
[S.Capkun and Hubaux 2005] is developed to protect locationdiscovery by using verifiable
multilateration. However, the distance bounding techniques required for verifiable multi-
lateration may not be available in sensor networks due to thedifficulties to (1) deal with
the external attacks in Ultrasound-based distance bounding and (2) achieve nanosecond
processing and time measurements in Radio-based distance bounding. ROPE [Lazos et al.
2005] is developed by integrating SerLoc and SPINE. However, it still requires nanosec-
ond processing and time measurements that are not desirablefor the current generation of
sensor networks.

In this paper, we develop two types of attack-resistant location estimation techniques
to tolerate the malicious attacks against range-based location discovery in wireless sensor
networks. Our first technique, namedattack-resistant Minimum Mean Square Estimation,
is based on the observation that malicious location references introduced by attacks are
intended to mislead a sensor node about its location, and thus are usually inconsistent
with the benign ones. To exploit this observation, our method identifies malicious location
references by examining the inconsistency among location references (indicated by the
mean square error of estimation) and defeats malicious attacks by removing such malicious
data. Three variants are developed to identify malicious location references:the brute-
force algorithm, the greedy algorithmand the enhanced greedy algorithm. The brute-
force algorithm tries every combination of location references to identify the largest set of
consistent location references. It introduces high computation overhead at sensor nodes.
The greedy algorithm is developed to reduce the computationoverhead. It works in rounds
and remove the most suspicious location reference in each round. The enhanced greedy
algorithm is developed to improve the performance of the greedy algorithm by adopting a
more efficient way to identify the most suspicious location reference.

Our second technique, avoting-based location estimationmethod, quantizes the deploy-
ment field into a grid of cells and has each location reference“vote” on the cells in which
the node may reside. Moreover, we develop a method that allows iterative refinement of
the “voting” results so that it can be executed in resource constrained sensor nodes.

We have implemented the proposed schemes on MICA2 motes [Crossbow Technology
Inc. ] running TinyOS [Hill et al. 2000], and evaluated the performance through simulation
and field experiments. It shows that the proposed schemes caneffectively remove the effect
of malicious location references when the majority of location references are benign. In
addition, the implementation and field experiment also indicates that the proposed schemes
are promising for the current generation of sensor networksin terms of the storage overhead
and computation overhead.

The rest of the paper is organized as follows. Section 2 discusses some assumptions and
the threat model. Sections 3 and 4 present the attack-resistant MMSE location estimation
and the voting-based location estimation technique respectively. Section 5 provides the
security analysis for the proposed schemes. Sections 6 and 7present the detailed evaluation
through simulation and field experiments. Section 8 discusses related work. Section 9
concludes this paper and points out some future research directions.
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2. ASSUMPTIONS AND THREAT MODEL

In this paper, we present two approaches to dealing with malicious attacks against location
discovery in wireless sensor networks. The first approach isextended from the minimum
mean square estimation (MMSE). It uses the mean square erroras an indicator to identify
and remove malicious location references. The second one adopts an iteratively refined
voting scheme to tolerate malicious location references introduced by attackers.

Our techniques are purely based on a set of location references. The location references
may come from beacon nodes that are either single hop or multiple hops away, or from
those non-beacon nodes that already estimated their locations. We do not distinguish these
location references, though the effect of “error propagation” may affect the performance of
our techniques due to the estimation errors at non-beacon nodes. We consider such inves-
tigations as possible future work. Since our techniques only utilize the location references
from beacon nodes, there is no extra communication overheadinvolved when compared to
the previous localization schemes.

We assume all beacon nodes are uniquely identified. In other words, a non-beacon node
can identify the original sender of each beacon packet basedon the cryptographic key used
to authenticate the packet. This can be easily achieved witha pairwise key establishment
scheme [Eschenauer and Gligor 2002; Chan et al. 2003; Du et al. 2003] or a broadcast
authentication scheme [Perrig et al. 2001].

We assume each non-beacon node uses at most one location reference derived from the
beacon signals sent by each beacon node. As a result, even if abeacon node is compro-
mised, the attacker that has access to the compromised key can only introduce at most one
malicious location reference to a given non-beacon node by impersonating the compro-
mised node.

For simplicity, we assume the distances measured from beacon signals (e.g., with RSSI
or TDoA [Savvides et al. 2001]) are used for location estimation. (Our techniques can
certainly be modified to accommodate other measurements such as angles.) For the sake
of presentation, we denote a location reference obtained from a beacon signal as a triple
〈x, y, δ〉, where(x, y) is the location of the beacon declared in the beacon packet, and δ is
the distance measured from its beacon signal.

We assume an attacker may change any field in a location reference. In other words,
it may declare a wrong location in its beacon packets, or carefully manipulate the beacon
signals to affect the distance measurement by, for example,adjusting the signal strength
when RSSI is used for distance measurement. We also assume multiple malicious beacon
nodes may collude together to make the malicious location references appear to be “con-
sistent”. Our techniques can still defeat such colluding attacks as long as the majority of
location references are benign.

3. ATTACK-RESISTANT MINIMUM MEAN SQUARE ESTIMATION

Intuitively, a location reference introduced by a malicious attack is aimed at misleading a
sensor node about its location. Thus, it is usually “different” from benign location refer-
ences. When there are redundant location references, theremust be some “inconsistency”
between the malicious location references and the benign ones. (An attacker may still have
a location reference consistent with the benign ones after changing both the location and
the distance values. However, such a location reference will not generate significantly neg-
ative impact on location determination.) To take advantageof this observation, we propose
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Fig. 2. Location estimation error. Unit of measurement forx andy axes: meter

to use the “inconsistency” among the location references toidentify the malicious ones,
and discard them before finally estimating the locations at sensor nodes.

In this paper, we assume a sensor node uses a MMSE-based method (e.g., [Savvides
et al. 2001; Savvides et al. 2002; Niculescu and Nath 2003a; Nasipuri and Li 2002; Do-
herty et al. 2001; Niculescu and Nath 2003b]) to estimate itsown location. Thus, most
current range-based localization methods can be used with this technique. To harness this
observation, we first estimate the sensor’s location with the MMSE-based method and then
assess if the estimated location could be derived from a set of consistent location refer-
ences. If yes, we accept the estimation result; otherwise, we identify and remove the most
“inconsistent” location reference, and repeat the above process. This process may continue
until we find a set of consistent location references or it is not possible to find such a set.

3.1 Checking the Consistency of Location References

We use the mean square errorς2 of the distance measurements based on the estimated
location as an indicator of the degree of inconsistency, since all the MMSE-based methods
estimate a sensor node’s location by (approximately) minimizing this mean square error.
Other indicators are possible but need further investigation.

DEFINITION 1. Given a set of location referencesL = {〈x1, y1, δ1〉, 〈x2, y2, δ2〉, ...,
〈xm, ym, δm〉} and a location(x̃0, ỹ0) estimated based onL, themean square error of this
location estimationis

ς2 =

m
∑

i=1

(δi −
√

(x̃0 − xi)2 + (ỹ0 − yi)2)
2

m
.

Intuitively, the more inconsistent a set of location references is, the greater the corre-
sponding mean square error should be. To gain further understanding, we performed an
experiment through simulation with the MMSE-based method in [Savvides et al. 2001].
We assume the distance measurement error is uniformly distributed between−emax and
emax. We used 9 honest beacon nodes and 1 malicious beacon node evenly deployed in a
30m × 30m field. The node that estimates location is positioned at the center of the field.
The malicious beacon node always declares a false location that isx meters away from its
real location, wherex is a parameter in our experiment.

Figures 2 and 3 show the location estimation error (i.e., thedistance between a sensor’s
real location and the estimated location) and the mean square errorς2 whenx increases.
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Fig. 3. Mean square errorς2. Unit of measurement forx-axis: meter

As these figures show, if a malicious beacon node increases the location estimation error
by introducing greater errors, it also increases the mean square errorς2 at the same time.
This further demonstrates that the mean square errorς2 is potentially a good indicator of
inconsistent location references.

In this paper, we choose a simple, threshold-based method todetermine if a set of loca-
tion references is consistent. Specifically, a set of location referencesL = {〈x1, y1, δ1〉,
〈x2, y2, δ2〉, ..., 〈xm, ym, δm〉} obtained at a sensor node isτ -consistent w.r.t. a MMSE-
based methodif the method gives an estimated location(x̃0, ỹ0) such that the mean square
error of this location estimation

ς2 =

m
∑

i=1

(δi −
√

(x̃0 − xi)2 + (ỹ0 − yi)2)
2

m
≤ τ2.

3.2 Determining Threshold τ

The determination of thresholdτ depends on the measurement error model, which is as-
sumed to be available for us to perform simulation off-line and determine an appropriate
τ . The threshold is stored on each sensor node. Usually, the movement of sensor nodes
(beacon or non-beacon nodes) does not have significant impact on this threshold, since the
measurement error model will not change significantly in most cases. However, when the
error model changes frequently and significantly, the performance of our techniques may
be affected. In this paper, we assume the measurement error model will not change.

Note that the malicious beacon signals usually increase thevariance of estimation. Thus,
having a lower bound (e.g., Cramer-Rao bound) is not enough for us to filter malicious
beacon signals. In fact, the upper bound or the distributionof the mean square error are
more desirable. In this paper, we study the distribution of the mean square errorς2 when
there are no malicious attacks, and use this information to help determine the thresholdτ .

Since there is no other error besides the distance measurement error, a benign location
reference〈x, y, δ〉 obtained by a sensor node at(x0, y0) must satisfy:

|δ −
√

(x − x0)2 + (y − y0)2| ≤ ǫ,

whereǫ is the maximum distance measurement error.
All the localization techniques are aimed at estimating a location as close to the sensor’s

real location as possible. Thus, we may assume the estimatedlocation is very close to
the real location when there are no attacks. Next, we derive the distribution of the mean
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square errorς2 using the real location as the estimated location, and compare it with the
distribution obtained through simulation when there are location estimation errors.

The measurement error of a benign location reference〈xi, yi, δi〉 can be computed as
ei = δi−

√

(x0 − xi)2 + (y0 − yi)2, where(x0, y0) is the real location of the sensor node.
Assuming the measurement errors introduced by different benign location references are
independent, we can get the distribution of the mean square error through the following
Lemma.

LEMMA 1. Let {e1, ..., em} be a set of independent random variables, andµi, σ2
i be

the mean and the variance ofe2
i , respectively. If the estimated location of a sensor node is

its real location, the probability distribution ofς2 is

lim
m→∞

F[ς2 ≤ ς2
0 ] = Φ(

mς2
0 − µ′

σ′
),

whereµ′ =
∑m

i=1 µi, σ′ =
√

∑m

i=0 σ2
i , andΦ(x) is the probability of a standard normal

random variable being less thanx.

PROOF. Obviously, the mean square error can be computed byς2 =
∑m

i=1
e2

i

m
. Thus,

the cumulative distribution function can be calculated by

F (ς2 ≤ ς2
0 ) = F (

m
∑

i=1

e2
i ≤ mς2

0 ).

Since{e2
1, e

2
2, · · · , e2

m} are independent, according to the central limit theorem, wehave

lim
m→∞

P (
Sm − µ′

σ′
≤ x) = Φ(x),

whereSm =
∑m

i=0(e
2
i ). Thus, we have

limm→∞ F (ς2 ≤ ς2
0 ) = limm→∞ F (Sm ≤ mς2

0 )

= limm→∞ P (Sm−µ′

σ′
≤ mς2

0
−µ′

σ′
)

= Φ(
mς2

0
−µ′

σ′
)

Lemma 1 describes the probability distribution ofς2 based on a sensor’s real location.
Though it is different from the probability distribution ofς2 based on a sensor’s estimated
location, it can be used to approximate such distribution inmost cases.

Let us further assume a simple model for measurement errors,where the measurement
error is evenly distributed between−ǫ andǫ. Then the mean and the variance forei are 0
and ǫ2

3 , respectively, and the mean and the variance for anye2
i are ǫ2

3 and4ǫ4

45 , respectively.
Let c = ς0

ǫ
, we have

F (ς2 ≤ (c × ǫ)2) = Φ(

√
5m(3c2 − 1)

2
).

Figure 4 shows the probability distribution ofς2 derived from Lemma 1 and the sim-
ulated results using sensors’ estimated locations. We can see that when the number of
location referencesm is large (e.g.,m = 9) the theoretical result derived from Lemma 1
is very close to the simulation results. However, whenm is small (e.g.,m = 4), there
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are observable differences between the theoretical results and the simulation. The reasons
are twofold. First, our theoretical analysis is based on thecentral limit theorem, which is
only an approximation of the distribution whenm is a large number. Second, we used the
MMSE-based method proposed in [Savvides et al. 2001] in the simulation, which estimates
a node’s location by onlyapproximatelyminimizing the mean square error. (Otherwise,
the value ofς2 for benign location references should never exceedǫ2.)

Figure 4 gives three hints about the choice of the thresholdτ . First, when there are
enough number of benign location references, a threshold less than the maximum mea-
surement error is enough. For example, whenm = 9, τ = 0.8ǫ can guarantee the nine
benign location references are considered consistent withhigh probability. Besides, a large
threshold may lead to the failure to filter out malicious location references. Second, when
m is small (e.g. 4), the cumulative probability becomes flatter and flatter whenc > 0.8.
This means that setting a large thresholdτ for smallm may not help much to guarantee
the consistency test for benign location references; instead, it may give an attacker high
chance to survive the detection. Third, the threshold cannot be too small; otherwise, a set
of benign location references has high probability to be determined as a non-consistent
reference set.

Based on the above observations, we propose to choose the value for τ with a hybrid
method. Specifically, when the number of location references is large (e.g., more than
8), we determine the value ofτ based on Lemma 1. Specifically, we choose a value of
τ corresponding to a high cumulative probability (e.g., 0.9). When the number location
references is small, we perform simulation to derive the actual distribution of the mean
square error, and then determine the value ofτ accordingly. Since there are only a small
number of simulations to run, we believe this approach is practical.

3.3 Identifying the Largest Consistent Set

Since the MMSE-based methods can deal with measurement errors better if there are more
benign location references, we should keep as many benign location references as possi-
ble when the malicious ones are removed. This implies we should get the largest set of
consistent location references.

3.3.1 Brute-force Algorithm.Given a setL of n location references and a threshold
τ , a simple approach to computing the largest set ofτ -consistent location references is to
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check all subsets ofL with i location references aboutτ -consistency, wherei starts from
n and drops until a subset ofL is found to beτ -consistent or it is not possible to find such
a set. Thus, if the largest set of consistent location references consists ofm elements, a
sensor node has to use the MMSE method at least1 +

(

n
m+1

)

+ · · ·+
(

n
n

)

times to find out
the right one. Ifn = 10 andm = 5, a node needs to perform the MMSE method for at
least 387 times. It is certainly not desirable to do such expensive operations on resource
constrained sensor nodes.

3.3.2 Greedy Algorithm.To reduce the computation on sensor nodes, we may use a
greedy algorithm, which is simple but suboptimal. This greedy algorithm works in rounds.
It starts with the set of all location references in the first round. In each round, it first verifies
if the current set of location references isτ -consistent. If yes, the algorithm outputs the
estimated location and stops. Optionally, it may also output the set of location references.
Otherwise, it considers all subsets of location referenceswith one fewer location reference,
and chooses the subset with the least mean square error as theinput to the next round. This
algorithm continues until it finds a set ofτ -consistent location references or when it is not
possible to find such a set (i.e., there are only 3 remaining location references).

The greedy algorithm significantly reduces the computational overhead in sensor nodes.
To continue the earlier example, a sensor node only needs to perform MMSE operations
for about 50 times (instead of 387 times) using this algorithm. In general, a sensor node
needs to use a MMSE-based method for at most1+n+(n−1)+ · · ·+4 = 1+ (n−3)(n+4)

2
times.

However, as we mentioned, the greedy algorithm cannot guarantee that it can always
identify the largest consistent set. It is possible that benign location references are re-
moved. In out earlier version of this paper [Liu et al. 2005a], we note that this generates
a big impact on the accuracy of location estimation – especially when there are multiple
malicious location references. To deal with this problem, we develop an enhanced greedy
algorithm in the following. The new algorithm is based on an efficient approach to identi-
fying the most suspicious location reference from a set of location references.

3.3.3 Enhanced Greedy Algorithm.In the previous discussion, we only consider the
consistency of 3 or more location references. A further investigation also reveals that
two benign location references are usually “consistent” with each other in the sense that
there exists at least one location in the deployment field on which both location references
agree. Hence, when the majority of location references are benign, we can usually find
many location references that are consistent with a benign location reference. In addition,
when a malicious location reference tries to create a largerlocation error, the number of
location references that are consistent with the maliciousone will decrease quickly.

According to the above discussion, for each location reference, we simply count the
number of location references that are consistent with thislocation reference. We call
this number thedegree of consistencyand use it to rank the suspiciousness of the location
references received at a particular non-beacon node. The smaller the degree is, the more
likely that the corresponding location reference is malicious.

The consistency between two location references can be verified as follows. For any
location reference〈x, y, δ〉, the non-beacon node derives the area that it may reside based
on this location reference. This area can be represented by aring centered at(x, y), with
the inner radiusmax{δ− ǫ, 0} and the outer radiusδ + ǫ, whereǫ is the maximum distance
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error. For the sake of presentation, we refer to such a ring acandidate ring (centered)
at location(x, y). The non-beacon node then check whether the candidate ringsof two
location references overlap each other. If yes, they are consistent; otherwise, they are not
consistent.

The algorithm to check whether the candidate rings of two location referencesa =
〈xa, ya, δa〉 and b = 〈xb, yb, δb〉 overlap can be done efficiently in the following way.
Let dab denote the distance between(xa, ya) and (xb, yb). Let rmax(x) andrmin(x)
denote the outer radius and the inner radius of the candidatering of location reference
x respectively. We can easily figure out that the candidate rings of location referencesa
and b will not overlap when either of the following three conditions is true: (1)dab >

rmax(a)+ rmax(b), (2)dab + rmax(a) < rmin(b) and (3)dab + rmax(b) < rmin(a).
Similar to the greedy algorithm, the enhanced algorithm to identify the largest consis-

tent set starts with the set of all location references in thefirst round. In each round, it
verifies whether the current set of location references isτ -consistent. If yes, the algorithm
outputs the estimated location and stops. Optionally, it may also output the set of location
references. If not, it removes the location reference corresponding to the smallest degree
and use the remaining location references as the input to thenext round. This algorithm
continues until it finds a set ofτ -consistent location references or when it is not possible
to find such a set (i.e., there are only 3 remaining location references).

The enhanced algorithm not only improves the accuracy of location estimation in the
presence of malicious attacks, but also reduces the computation overhead significantly
since it can identify the most suspicious location reference efficiently and effectively. To
continue the earlier example, a non-beacon node only needs to perform MMSE operations
for 5 times. In general, a non-beacon node needs to use a MMSE-based method for at most
n − 3 times.

4. VOTING-BASED LOCATION ESTIMATION

In this approach, we have each location reference “vote” on the locations at which the node
of concern may reside. To facilitate the voting process, we quantize the target field into a
grid of cells, and have each sensor node determine how likelyit is in each cell based on each
location reference. We then select the cell(s) with the highest vote and use the “center” of
the cell(s) as the estimated location. To deal with the resource constraints on sensor nodes,
we further develop an iterative refinement scheme to reduce the storage overhead, improve
the accuracy of estimation, and make the voting scheme efficient on resource constrained
sensor nodes.

4.1 The Basic Scheme

After collecting a set of location references, a sensor nodeshould determine the target field.
The node does so by first identifying the minimum rectangle that covers all the locations
declared in the location references, and then extending this rectangle byRb, whereRb is
the maximum transmission range of a beacon signal. This extended rectangle forms the
target field, which contains all possible locations for the sensor node. The sensor node
then divides this rectangle intoM small squares (cells) with the same side lengthL, as
illustrated in Figure 5. (The node may further extend the target field to have square cells.)
The node then keeps a voting state variable for each cell, initially set to 0.

At the beginning of this algorithm, the non-beacon node needs to identify the candidate
ring of each location reference. For example, in Figure 5, the ring centered at point A is a
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Fig. 5. The voting-based location estimation

candidate ring at A, which is derived from the location reference with the declared location
at A.

For each location reference〈x, y, δ〉, the sensor node identifies the cells that overlap with
the corresponding candidate ring, and increments the voting variables for these cells by 1.
After the node processes all the location references, it chooses the cell(s) with the highest
vote, and uses its (their) geometric centroid as the estimated location of the sensor node.

4.2 Overlap of Candidate Rings and Cells

A critical problem in the voting-based approach is to determine if a candidate ring overlaps
with a cell. We discuss how to determine this efficiently below.

Suppose we need to check if the candidate ring at A overlaps with the cell shown in
Figure 6(a). Letdmin(A) and dmax(A) denote the minimum and maximum distances
from a point in the cell to point A, respectively. We can see that the candidate ring does not
overlap with the cell only whendmin(A) > ro or dmax(A) < ri, whereri = max{0, δ −
ǫ} andro = δ + ǫ are the inner and the outer radius of the candidate ring, respectively.

To computedmin anddmax, we divide the target field into 9 regions based on the cell,
as shown in Figure 6(b). It is easy to see that given the centerof any candidate ring, we can
determine the region in which it falls with at most 6 comparisons between the coordinates
of the center and those of the corners of the cell. When the center of a candidate ring is in
region 1 (e.g., point A in Figure 6(b)), it can be shown that the closest point in the cell to
A is the upper left corner, and the farthest point in the cell from A is the lower right corner.
Thus,dmin(A) anddmax(A) can be calculated accordingly. These two distances can be
computed similarly when the center of a candidate ring fallsinto regions 3, 7, and 9.

Consider point B in region 2. Assume the coordinate of point Bis (xB , yB). We can see
thatdmin(B) = yB − y2. Computingdmax(B) is a little more complex. We first need to
check ifxB −x1 > x2 −xB . If yes, the farthest point in the cell from B must be the lower
left corner of the cell. Otherwise, the farthest point in thecell from B should be the lower
right corner of the cell. Thus, we have

dmax(B) =
√

(max{xB − x1, x2 − xB})2 + (yB − y1)2.

These two distances can be computed similarly when the center of a candidate ring falls
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Fig. 6. Determine whether a ring overlaps with a cell

into regions 4, 6, and 8.
Consider a point C in region 5. Obviously,dmin(C) = 0 since point C itself is in the

cell. Assume the coordinate of point C is(xc, yc). The farthest point in the cell from C
must be one of its corners. Similarly to the above case for point B, we may check which
point is farther away from C by checkingxc − x1 > x2 − xc andyc − y1 > y2 − yc. As a
result, we get

dmax(C) =
√

(max{xc − x1, x2 − xc})2 + (max{tc − y1, y2 − yc})2.
Based on the above discussion, we can determine if a cell and acandidate ring overlap

with at most 10 comparisons and a few arithmetic operations.To prove the correctness of
the above approach only involves elementary geometry, and thus is omitted.

For a given candidate ring, a sensor node does not have to check all the cells for which
it maintains voting states. As shown in Figure 6(c), with simple computation, the node can
get the outer bounding box centered at A with side length2(δ + ǫ). The node only needs
to consider the cells that intersect with or fall inside thisbox. Moreover, the node can get
the inside bounding box with simple computation, which is centered at A with side length√

2(δ − ǫ), and all the cells that fall into this box need not be checked.

4.3 Iterative Refinement

The number of cellsM (or equivalently, the quantization stepL) is a critical parameter for
the voting-based algorithm. It has several implications tothe performance of our approach.
First, the largerM is, the more state variables a sensor node has to keep, and thus the more
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storage is required. Second, the value ofM (or L) determines the precision of location
estimation. The largerM is, the smaller each cell will be. As a result, a sensor node can
determine its location more precisely based on the overlap of the cells and the candidate
rings.

However, due to the resource constraints on sensor nodes, the granularity of the partition
is usually limited by the memory available for the voting state variables on the nodes. This
puts a hard limit on the accuracy of location estimation. To address this problem, we
propose aniterative refinementof the above basic algorithm to achieve fine accuracy with
reduced storage overhead.

In this version, the number of cellsM is chosen according to the memory constraint in
a sensor node. After the first round of the algorithm, the nodemay find one or more cells
having the largest vote. To improve the accuracy of locationestimation, the sensor node
then identifies the smallest rectangle that contains all thecells having the largest vote, and
performs the voting process again. For example, in Figure 5,the same algorithm will be
performed in a rectangle which exactly includes the 4 cells having 3 votes. Note that in a
later iteration of the basic voting-based algorithm, a location reference does not have to be
used if it does not contribute to any of the cells with the highest vote in the current iteration.

Due to a smaller rectangle to quantize in a later iteration, the size of cells can be reduced,
resulting in a higher precision. Moreover, a malicious location reference will most likely
be discarded, since its candidate ring usually does not overlap with those derived from
benign location references. For example, in Figure 5, the candidate ring centered at point
D will not be used in the second iteration.

The iterative refinement process should terminate when a desired precision is reached
or the estimation cannot be refined. The former condition canbe tested by checking if the
side lengthL of each cell is less than a predefined thresholdS, while the latter condition
can be determined by checking whetherL remains the same in two consecutive iterations.
The algorithm then stops and outputs the estimated locationobtained in the last iteration.
It is easy to see that the algorithm will fall into either of these two cases, and thus will
alway terminate. In practice, we may set the desired precision to 0 in order to get the best
precision.

5. SECURITY ANALYSIS

Both proposed techniques can usually remove the effect of the malicious location refer-
ences from the final location estimation when there are more benign location references
than the malicious ones. Theorem 1 shows that when the majority of location references
are benign, the location estimation error of the attack-resistant MMSE is bounded if we
can successfully identify the largest consistent set. Hence, to defeat the attack-resistant
MMSE approach, the attacker has to distribute to a victim node more malicious location
references than the benign ones, and control the declared locations and the physical fea-
tures (e.g., signal strength) of beacon signals so that the malicious location references are
considered consistent.

LEMMA 2. Assume there arem benign location references andn malicious location
references in aτ -consistent set. The location estimation error from this set of location ref-

erences using MMSE is no more than2R+
√

m+n
m

τ , whereR is the radio communication

range of a sensor node.
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PROOF. Let O = (x0, y0) denote the real location of the non-beacon node andO′ =
(x′

0, y
′

0) denote the estimated location of the non-beacon node based on all location ref-
erences (including the malicious ones). Let|AB| denote the distance betweenA andB.
Thus, the location estimation error can be represented by|OO′|. Let{L1, · · · , Lm} denote
the set of benign location references and{Lm+1, · · · , Lm+n} denote the set of malicious
location references.

Consider a particular benign location referencesLi = 〈xi, yi, δi〉. Since the communi-
cation range of sensor nodes isR, we have|OLi| ≤ R. In addition,ei = δi − |O′Li| and
δi ≤ R. Thus, we have

|OO′| ≤ |OLi| + |LiO
′| ≤ R + δi − ei ≤ 2R − ei.

There are two different cases:ei ≥ 0 or ei < 0. Whenei ≥ 0, we have|OO′| ≤ 2R.
When ei < 0, we have|OO′| − 2R ≤ −ei. Assume|OO′| ≥ 2R, we havee2

i ≥
(|OO′| − 2R)2. Since{L1, · · · , Lm+n} is τ -consistent, we have

∑m+n

i=1 e2
i ≤ (m + n)τ2.

Therefore,

m(|OO′| − 2R)2 ≤
m

∑

i=1

e2
i ≤

m+n
∑

i=1

e2
i ≤ (m + n)τ2.

Hence, we have(|OO′| − 2R)2 ≤ (m+n)τ2

m
. It implies

|OO′| ≤ 2R +

√

m + n

m
τ.

According to the above analysis, we can conclude that the statement in Lemma 2 is
true.

THEOREM 1. Assume a non-beacon node receivesm benign location references andn
malicious loccation references, wherem > n. The location estimation error at this non-
beacon node using the attack-resistant MMSE scheme with thebrute-force algorithm is no

more than2R+
√

m
m−n

τ if the thresholdτ is set greater than the maximum distance error

ǫ, whereR is the radio communication range of a sensor node.

PROOF. It is easy to know that the set ofm benign location references is alwaysτ -
consistent ifτ ≥ ǫ. Thus, there are at leastm location references in the largest consistent
set. Assume there arek location references in the largest consistent set, wherek ≥ m.
According to Lemma 2, we have

|OO′| ≤ 2R +

√

k

k − n
τ ≤ 2R +

√

m

m − n
τ.

Similarly, theorem 2 shows that when the majority of location references are benign,
the location estimation error of the voting-based scheme isbounded. Hence, to defeat the
voting-based approach, the attacker needs similar effortsso that the cell containing the
attacker’s choice gets more votes than those containing thesensor’s real location.

THEOREM 2. When the majority of location references at a non-beacon node are be-
nign, the location estimation error at this non-beacon nodeusing the voting-based scheme
is no more than2R +

√
2L, whereL is the side length of the cell.
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PROOF. Assume the real location of the sensor node isO = (x0, y0) and the estimated
location of the sensor node using the voting-based scheme isO′ = (x′

0, y
′

0).
Since the candidate ring of a benign location reference always covers the real locationO

of the sensor node, the number of votes in the cell that containsO is at leastm. Thus, the
number of votes in the cell that containsO′ is at leastm. Since the number of votes coming
from the malicious location references is at mostn, we know that there is at least one
benign location reference whose candidate ring covers the cell that containsO′. Assume
one of such benign location referecnes isLi = 〈xi, yi, δi〉, we have

|LiO
′| ≤ R +

√
2L,

whereL is the side length of a cell. Therefore, we have

|OO′| ≤ |OLi| + |LiO
′| ≤ 2R +

√
2L.

An attacker has two ways to satisfy the above conditions (in order to defeat our tech-
niques). First, the attacker may compromise beacon nodes and then generate malicious
beacon signals. Since all beacon packets are authenticated, and a sensor node uses at most
one location reference derived from the beacon signals sentby each beacon node, the at-
tacker needs to compromise more beacon nodes than the benignbeacon nodes from which
a target sensor node may receive beacon signals, besides carefully crafting the forged bea-
con signals.

Second, the attacker may launch wormhole attacks [Hu et al. 2003] (or replay attacks)
to tunnel benign beacon signals from one area to another. In this case, the attacker does
not have to compromise any beacon node, though he/she has to coordinate the wormhole
attacks. This paper does not provide techniques to address wormhole attacks. However,
our methods can still tolerate wormhole attacks to a certaindegree as long as the number
of malicious location references at a sensor node is less than the number of benign location
references. On the other hand, we may also use some of existing wormhole detection
methods (e.g., packet leashes [Hu et al. 2003], directionalantennae [Hu and Evans 2003b])
to make it more difficult for an attacker to introduce many malicious location references to
a sensor node by launching wormhole attacks.

Our techniques certainly have a limit. In an extreme case, ifall the beacon nodes are
compromised, our techniques will fail. However, the proposed techniques offer a graceful
performance degradation as more malicious location references are introduced. In con-
trast, an attacker may introduce arbitrary location error with a single malicious location
reference in the previous schemes. To further improve the security of location discovery,
other complementary mechanisms (e.g., detection of malicious beacon nodes) should be
used.

6. SIMULATION EVALUATION

This section presents the simulation results for both proposed schemes. The evaluation
focuses on the performance under different configurations and the improvement on the
accuracy of location estimation in hostile environments.

Three attack scenarios are considered. The first scenario considers a single malicious
location reference that declares a wrong locatione meters away from the beacon node’s
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real location. (An attacker may also modify the distance componentδ in a location ref-
erence, which will generate a similar impact.) In the secondscenario, there are multiple
non-colluding malicious location references, and each of them independently declares a
wrong location that ise meters away from the beacon node’s real location. In the third
scenario, multiple colluding malicious location references are considered. In this case, the
malicious location references declare false locations by coordinating with each other to
create a virtual locatione meters away from the sensor’s real location. Thus, the malicious
location references may appear to be consistent to a victim node.

In all simulations, a set of benign beacon nodes and a few malicious beacon nodes are
evenly deployed in a30m×30m target field. The non-beacon sensor node is located at the
center of this target field. We assume the maximum transmission range of beacon signals is
Rb = 22m, so that the non-beacon node can receive the beacon signal from every beacon
node located in the target field. We assume the entire deployment field is much larger than
this target field so that an attacker can create a very large location estimation error inside
the deployment field. Each malicious beacon node declares a false location according to
the three attack scenarios discussed above. We assume a simple distance measurement
error model. That is, the distance measurement error is uniformly distributed between−ǫ

andǫ, where the maximum distance measurement errorǫ is set toǫ = 4m.

6.1 Evaluation of Attack-Resistant MMSE

In the simulation, we use the MMSE-based method proposed in [Savvides et al. 2001],
which we call thebasic MMSE method, to perform the basic location estimation. Our
attack-resistant MMSE method is then implemented on the basis of this method, as dis-
cussed in Section 3. We setτ = 0.8ǫ according to Figure 4, which guarantees9 benign
location references are considered consistent with probability of 0.999.

Figure 7(a) shows the performance of the attack-resistant MMSE method when the
brute-force algorithm is used to identify the largest consistent set. We can see that our
technique can significantly reduce the location estimationerror when there are malicious
location references. The figure also indicates that when themalicious location references
create large location errors, they are always removed from the final location estimation at
a non-beacon node.

Figure 7(b) shows the performance of the attack-resistant MMSE method when the
greedy algorithm is used to identify the largest consistentset. From the figure, we can
see that the technique can significantly reduce the locationestimation error when there is
only one malicious location reference. However, the performance degrades quickly when
there are multiple malicious location references. This is because multiple malicious lo-
cation references, especially when they collude together,make the filtering of malicious
location references more difficult. It is very possible thatbenign location references being
identified as malicious and being removed. Hence, we know that the greedy algorithm can-
not effectively identify the largest consistent set when there are more than one malicious
location references.

Figure 7(c) shows the performance of the attack resistant MMSE method when the en-
hanced greedy algorithm is used to identify the largest consistent set. We can see that
that the attack-resistant MMSE with the enhanced greedy algorithm reduces the location
estimation error significantly compared with the one with greedy algorithm. It indicates
that the enhanced greedy algorithm can identify the largestconsistent set more effectively
than the greedy algorithm. Hence, in the following evaluation, we always assume that the
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(a) Performance of attack-resistant MMSE using the brute-force
algorithm.
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(b) Performance of attack-resistant MMSE using the greedy al-
gorithm.
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(c) Performance of attack-resistant MMSE using the enhanced
greedy algorithm

Fig. 7. τ = 0.8ǫ. Unit of measurement forx andy axes: meter

enhanced greedy algorithm is used in the attack-resistant MMSE method.
From 7(c), we note that the malicious location references can generate big impact when

the location errors created by them are around20m. Therefore, we assume that malicious
location references introduce20m location errors and evaluate the effect of thresholdτ

on the performance of the attack-resistant MMSE method. Figure 8 indicates that the
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Fig. 8. Performance of Attack-resistant MMSE under different thresholdτ . Assume each malicious location
reference introduces20m location error.

thresholdτ cannot be set too large or too small since it will either fail to remove malicious
location references or remove a large number of benign location references. This result is
consistent with our analysis in Section 3.2.

6.2 Evaluation of Voting-Based Scheme
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Fig. 9. Performance for differentM (e: error introduced by a malicious location reference)

We first study the impact of parameterM on the voting-based method. Figure 9 shows
the performance of the voting-based scheme with different values ofM when there is only
one malicious location reference. We can see that the location estimation error initially
decreases whenM increases, but then does not decrease much whenM is greater than
100. Moreover, the parameterM also has implications in computational cost. Since the
voting-based method is finally reduced to checking whether acandidate ring derived from
a location reference overlaps with the cells in the grid, we use the number of cells being ex-
amined as an indicator of the computational cost. Figure 10 shows the computational costs
of the voting-based method for different values ofM when there is one malicious location
reference. As this figure shows, the computational cost increases almost linearly with the
value ofM . When there are no or more malicious location references, the computational
cost will increase similarly asM increases. Based on these results, we setM = 100, which
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implies 100 Bytes memory for the voting variables, in the later simulations to trade-off the
accuracy with the storage and computation overhead.
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Fig. 10. Computational cost for differentM (e: error introduced by a malicious location reference)

Next, we study the performance of the voting-based scheme under malicious attacks. In
the simulation, we also setS = 0 to get the minimum location estimation error achievable
by this method. Figure 11 compares the accuracy of the basic MMSE method and our
voting-based scheme under different types of attacks. We can clearly see that the accuracy
of location estimation is improved significantly in our scheme. In addition, unlike the
attack-resistant MMSE scheme, the voting-based scheme cantolerate multiple (colluding
or non-colluding) malicious location references more effectively.
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Fig. 11. Performance of the voting-based scheme (M = 100, S = 0). Unit of measurement forx andy axes:
meter

Note that the curves for the voting-based scheme in Figure 11have a bump when the
location error introduced by malicious location references is around 10m. This is because
the malicious location references are not significantly different from the benign location
references around this point, and our scheme cannot completely shield the effect of ma-
licious location references. Nevertheless, the attacker will not be able to introduce large
location estimation errors by simply creating large location errors. As a result, the location
estimation errors are always bounded even if there are malicious attacks. In addition, we
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also note that the performance of voting-based scheme underattacks is usually better than
the performance of MMSE scheme without attacks. This is because we used the MMSE-
based method in [Savvides et al. 2001] in the simulation, which estimates a node’s location
by onlyapproximatelyminimizing the mean square error.

Now let us compare the attack-resistant MMSE and the voting-based methods. Based
on the earlier results, we choose thresholdτ = 0.8ǫ for the attack-resistant MMSE, and set
M = 100 andS = 0 for the voting-based scheme. Figure 12 shows that the voting-based
scheme performs slightly better than the attack-resistantMMSE scheme in terms of the
location estimation accuracy when there are malicious location references.
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Fig. 12. Comparison between the attack-resistant MMSE and the voting-based scheme. Unit of measurement:
meter

7. IMPLEMENTATION AND FIELD EXPERIMENTS

We have implemented both schemes on TinyOS [Hill et al. 2000], an operating system
for networked sensors. These implementations are targetedat MICA2 motes [Crossbow
Technology Inc. ] running TinyOS. The attack-resistant MMSE is implemented based on
the basic MMSE method proposed in [Savvides et al. 2001]. However, our implementation
of the basic MMSE method is simplified by only using the location coordinates (without
the ultrasound propagation speed, which is not necessary inour study).

Scheme ROM (bytes) RAM (bytes)
MMSE 2034 286

EAR-MMSE 3738 434
Voting-Based 4488 174

Table I. Code size (assume 12 location references;M = 100)

Table I gives the code size (ROM and RAM) for these implementations on MICA2
platform. Table I is obtained by assuming at most 12 locationreferences. More location
references will increase the RAM size of the program, but theincreased RAM is only
required to save the additional location references.

Figure 13 shows the average execution time of the basic MMSE,the attack-resistant
MMSE, and the voting-based schemes on real MICA2 motes. These data are collected
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Fig. 13. Average execution time on MICA2 motes (ǫ = 4m, τ = 0.8ǫ, M = 100 and
S = 0)

by counting the numbers of CPU clock cycles spent on locationestimation. The location
references used in the experiment are generated from the simulation in Section 6. We
can see that the basic MMSE method has the least execution time. The attack-resistant
MMSE scheme has less computational cost than the voting-based scheme. The number
of malicious location references does not affect the computational overheads of the basic
MMSE method and the voting-based method but does affect the computational overhead
of the attack-resistant MMSE method. From Table I and Figure13, we conclude that our
proposed techniques are practical for the current generation of sensor networks in terms of
the storage and the computation overheads, especially whenthe locations of sensor nodes
do not change frequently.

To further study the feasibility of our techniques, we performed an outdoor field exper-
iment. In this experiment, eight MICA2 motes were deployed in a 10 × 10 target field,
where each unit of distance is 4 feet, as shown in Figure 14. The sensor node with ID 0 is
configured as a non-beacon node, which is located at the center of the field. All the other
sensor nodes are configured as beacon nodes.

We considered three attack scenarios in this experiment. Inthe first scenario, beacon
node 1 is configured as a malicious beacon node that always declares a locatione feet
away from its real location in the direction away from the non-beacon node. In the second
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Fig. 14. Target area of field experiment.

scenario, beacon nodes1, 2 and3 are configured as malicious beacon nodes. Each of these
three nodes declares a locatione feet away from its real location in the directions away
from the non-beacon node. In the third scenario, three malicious beacon nodes1, 2, and
3 work together to create a virtual location. Each of these three nodes declares a false
location by increasing its horizontal coordinate bye feet. This actually creates a virtual
location in the horizontal axise feet away from the non-beacon node’s real location. This
is illustrated in Figure 14 by the horizontal arrow startingfrom the non-beacon node.

To measure the distance (δ) between sensor nodes, we use a simple RSSI based tech-
nique. Note that the Active Message protocol in TinyOS provides a reading in thestrength
field for the MICA2 platform. This value is returned in every received packet, and can be
used to compute the signal strength. Thus, we performed an experiment before the actual
field experiment to estimate the relationship between the values of this field and the dis-
tance between two nodes. For each given distance, we computed the average of this values
on20 observations. We then built a table that contains distancesand the corresponding av-
erage readings. During the field experiments, when a sensor node receives20 packets from
a beacon node, it computes the average of thestrengthvalues, and estimates the distance
with interpolation according to this table. For example, ifthe average readingv falls in
between two adjacent points(vi, di) and(vi+1, di+1) in the table, the sensor computes the
distance

d = di +
(v − vi) × (di+1 − di)

vi+1 − vi

.

We setǫ to 4 feet, which is the maximum distance measurement error observed in the
experiment.

Figure 15 shows the performance of the proposed methods and the basic MMSE method
in the field experiment. For the first two attack scenarios, wecan see that the proposed
methods can tolerate malicious location references quite effectively. The performance in
the third scenario is worse than the first two cases. The reason is that the non-beacon nodes
has only4 benign location references, but3 colluding location references. However, we
still see that the location estimation error drops when the location errors introduced by
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Fig. 15. Results of the field experiment. AssumeM = 100 andS = 0 for voting-based
scheme;τ = 0.8ǫ = 3.2 feet for attack-resistant MMSE. Unit of measurement forx andy

axes: feet

the malicious attacks are above certain thresholds. Overall, the location estimation errors
caused by malicious attacks are bounded when the proposed techniques are used, while the
errors can be arbitrarily large when the basic MMSE method isused.

The field experiment further shows that our methods are efficient and effective in tol-
erating malicious attacks. It also indicates that our methods are promising for the current
generation of sensor networks.

8. RELATED WORK

Many range-based localization schemes have been proposed for sensor networks [Savvides
et al. 2001; Savvides et al. 2002; Niculescu and Nath 2003a; Nasipuri and Li 2002; Do-
herty et al. 2001]. Savvides et al. developed AHLoS protocolbased on Time Difference
of Arrive [Savvides et al. 2001], which was extended in [Savvides et al. 2002]. Doherty
et al. presented a localization scheme based on connectivity constraints and relative signal
angles between neighbors [Doherty et al. 2001]. Angle of Arrival is used to develop lo-
calization scheme in [Niculescu and Nath 2003a] and [Nasipuri and Li 2002]. Range-free
schemes are proposed to provide localization services for the applications with less preci-
sion requirements [Bulusu et al. 2000; Niculescu and Nath 2003b; Nagpal et al. 2003; He
et al. 2003]. Bulusu, Heidemann and Estrin proposed to estimate a sensor’s location as the
centroid of all locations in the received beacon signals [Bulusu et al. 2000]. Niculescu and
Nath proposed to use the minimum hop count and the average hopsize to estimate the dis-
tance between nodes and then determine sensor nodes’ locations accordingly [Niculescu
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and Nath 2003b]. None of these schemes will work properly when there are malicious
attacks.

The location verification technique proposed in [Sastry et al. 2003] can verify the relative
distance between a verifying node and a sensor node. It does not provide a solution to
conduct secure location estimation at non-beacon nodes. Inthis paper, we provide efficient
ways to estimate locations of sensor nodes securely. The location verification technique is
complementary to our techniques since it can be used to enhance the security of distance
measurement between two nodes.

A robust location detection is developed in [Ray et al. 2003]. However, it cannot be
directly applied in sensor networks due to its high computation and storage overheads. A
voting-based Cooperative Location Sensing (CLS) was proposed in [Fretzagias and Pa-
padopouli 2004]. However, CLS is designed for powerful nodes (e.g., PDAs), while our
scheme further uses iterative refinement to improve the performance with small storage
overhead. Therefore, our technique can be implemented and executed efficiently on re-
source constrained sensor nodes.

Similar to our attack-resistant location estimation techniques, the following two tech-
niques are independently discovered to tolerate maliciousattacks against location discov-
ery in wireless sensor networks. A robust statistical methods that is similar to the attacker-
resistant MMSE scheme is discovered in [Li et al. 2005] to achieve robustness through
Least Median of Squares. A secure range-independent localization scheme (SeRLoc) that
is similar to our voting-based scheme is discovered in [Lazos and Poovendran 2004] to
protect location discovery with the help of sectored antennae at beacon nodes. Compared
to these two studies, we provide more alternative ways to tolerate malicious attacks and
also include the real implementation and field experiments in this paper.

SPINE [S.Capkun and Hubaux 2005] is developed to protect location discovery by using
verifiable multilateration. However, the distance bounding techniques required for verifi-
able multilateration may not be available due to the difficulties to (1) deal with the external
replay attacks in Ultrasound-based distance bounding and (2) achieve nanosecond process-
ing and time measurements in Radio-based distance bounding. ROPE [Lazos et al. 2005]
is developed by integrating SerLoc and SPINE. However, it still requires nanosecond pro-
cessing and time measurements that are not desirable for thecurrent generation of sensor
networks. Compared with these two studies, we provide techniques to tolerate malicious
attacks without the above constraints. Moreover, our proposed techniques can be easily
combined with most of existing localization techniques.

To further enhance the security of location discovery, a practical technique is developed
to detect malicious beacon nodes that are providing malicious beacon signals [Du et al.
2005; Liu et al. 2005b]. This detection technique can be easily combined with our tech-
niques. We consider it complementary to the techniques in this paper.

In addition to secure location discovery, location privacybecomes a more and more
interesting topic recently. Several techniques are developed recently to protect the location
privacy in sensor networks [Ozturk et al. 2004; Kamat et al. 2005].

Security in sensor networks has attracted a lot of attentionin the past several years. To
provide practical key management, researchers have developed key pre-distribution tech-
niques [Eschenauer and Gligor 2002; Chan et al. 2003; Du et al. 2003]. To enable broad-
cast authentication, a protocol namedµTESLA has been explored to adapt to resource
constrained sensor networks [Perrig et al. 2001]. Securityof sensor data has been stud-
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ied in [Przydatek et al. 2003; Hu and Evans 2003a]. Attacks against routing protocols in
sensor networks and possible counter measures were investigated in [Karlof and Wagner
2003]. The research in this paper addresses another fundamental security problem that has
not drawn enough attention.

9. CONCLUSION AND FUTURE WORK

In this paper, we proposed an attack-resistant MMSE-based location estimation and a
voting-based location estimation technique to deal with attacks in localization schemes.
We have implemented the proposed techniques on MICA2 motes [Crossbow Technology
Inc. ] running TinyOS [Hill et al. 2000], and evaluated them through both simulation and
field experiments. Our experiences indicate that the proposed techniques are promising
solutions for securing location discovery in wireless sensor networks.

Our future research is two-fold. First, we will study how to combine the proposed tech-
niques with other protection mechanisms such as wormhole detection. Second, our simu-
lations and experiments in this paper are conducted in smallscales. It is very interesting to
study the performance in a large scale.
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