
Designing and Using Views
To Improve Performance of Aggregate Queries

(September 9, 2004)

Foto Afrati1, Rada Chirkova2, Shalu Gupta2, and Charles Loftis2

1 Computer Science Division, National Technical University of Athens,
157 73 Athens, Greece
afrati@cs.ece.ntua.gr

2 Computer Science Department, North Carolina State University,
Raleigh, NC 27695, USA

{chirkova,sgupta5,celoftis}@csc.ncsu.edu

Abstract. Data-intensive systems routinely use derived data, such as indexes or materialized views, to improve
query-evaluation performance. In this context, the problem of designing derived data is as follows: Given a set
of queries and a database, return definitions of derived data that, when materialized in the database, would
reduce the evaluation costs of the queries. Designing materialized views and indexes is an important part of
automated query-performance tuning in data-management systems that experience changes over time, where
a system addresses the performance requirements of current frequent and important queries by periodically
reconsidering and rematerializing the stored derived data.
In this paper we present an extensible system architecture for Query-Performance Enhancement by Tuning
(QPET). QPET combines design and use of derived data in an end-to-end approach to automated query-
performance tuning, and selects appropriate data-design algorithms depending on the characteristics of the
prevalent queries. Our focus in automated query-performance tuning is on a tradeoff between the amount of
system resources spent on designing derived data and the degree of the resulting improvement in query perfor-
mance. We present algorithms and experimental results in designing and using materialized views for practically
important classes of aggregate queries, including range-aggregate queries on star-schema data warehouses.

Keywords: Data warehouses, query language and query optimization, query processing, materialized views.

1 Introduction

Derived data, such as materialized views or indexes, are routinely used in data-intensive systems to improve
query-evaluation performance. In this context, the problem of designing derived data is as follows: Given a
set of queries, a database, and a set of constraints on derived data (e.g., a storage limit), return definitions
of derived data that, when materialized in the database, would satisfy the constraints and reduce the
evaluation costs of the queries. Automated design of materialized views and indexes to answer queries is an
important component of automated query-performance tuning in data-management systems that change
over time, where a system addresses the performance requirements of current frequent and important
queries by periodically reconsidering and rematerializing the stored derived data. For this reason, developing
techniques for designing materialized views and indexes to improve query-answering performance is a
recognized research direction within the discipline of self-administering database systems [1–3]. In this
paper we describe our approach within this research direction and discuss its implementation and validation
in our extensible system architecture for Query-Performance Enhancement by Tuning (QPET) [4].

Generally, spending more time on designing materialized views or indexes for a given query workload
tends to pay off, as greater improvement can thereby be achieved in the performance of evaluating the
workload queries using the resulting stored derived data. Because the number of potentially beneficial
views or indexes tends to be prohibitive even for very simple query workloads [5–7], in many cases it is
not practical to obtain sets of derived data that would globally minimize the evaluation costs of the input
queries. Several approaches, including those described in [6–9], have been proposed in the past to design
good-quality sets of derived data for evaluating SQL queries, without spending an inordinate amount of
time on the design. Unfortunately, even with their runtime advantages, it is not always possible to use
these and other known algorithms in automated query-performance tuning in systems that change over

time. One reason is, in many practical scenarios the amount of time or other system resources available
for designing derived data is limited. The problem is even more pronounced when, under a requirement to
provide continuous services to customers, a system cannot go down for redesign of the stored materialized
views or indexes.

We study design and use of materialized views and indexes in automated query-performance tuning in
relational data-management systems where the set of prevalent queries changes over time. Our objective is
to minimize the evaluation costs of a given query workload subject to given restrictions on design time, by
designing and using derived data. To address the tradeoff between the time allotted for designing derived
data and the quality of the resulting views or indexes, our approach is to develop specialized algorithms for
specific practically important query types. For each type of queries, when designing derived data we use
information about how the resulting materialized views or indexes will be used to evaluate the workload
queries, that is, at the design stage we use information about rewriting the queries using the outputs of the
design stage. In this paper we present techniques for designing and using materialized views; the techniques
are applicable to a practically important class of range-aggregate queries on star-schema data warehouses.

In the experimental results reported in this paper we use a greedy algorithm BPUS introduced in [7].
We say “workload of star-schema queries” to refer here to a set of aggregate queries where all queries have
the same FROM clause and the same join conditions in the WHERE clause.3 To design aggregate views for a
workload of star-schema queries, BPUS explores iteratively views in a view lattice, which is a representation
of the search space of views for the workload, with directed edges between views denoting which view can
be evaluated using another view. At each step, BPUS selects from the lattice a view with the greatest
benefit, that is, a view that reduces the most the average cost of answering a query, per unit space. For
any materialized view designed by the BPUS algorithm of [7], if the view is usable in evaluating some
query, then the answer to the view is the only relation needed in the evaluation. That is, views produced
by the algorithm of [7] determine joinless rewritings of queries. In addition to joinless rewritings, in our
approach we use rewritings that are computed via joins of aggregate views with other relations, namely
central rewritings introduced in [10].

We now show two examples that provide an intuition for our results. The first example demonstrates
that our approach to rewriting star-schema queries can result in better design time than BPUS [7], and that
the types of possible rewritings of the workload queries using views determine the definitions (specifically
the grouping arguments) of the aggregate views we consider to materialize.

Example 1. Consider a data warehouse with stored relations Sales, Customer, and Time:

Sales(CustID,DateID,ProductID,SalespersonID,QuantitySold,TotalAmount,Discount)

Customer(CustID,CustName,Address,City,State,RegistrDateID)

Time(DateID,Month,Year)

Keys of the tables are underlined. Sales is the fact table, and Customer and Time are dimension tables.

Let the query workload of interest have two star-schema queries, Q1 and Q2. Query Q1 asks for the total
quantity of products sold per customer in the second quarter of the year 2004. Q2 asks for the total product
quantity sold per year for all years after 1997 to customers in North Carolina.

Q1: SELECT c.CustID, SUM(QuantitySold) Q2: SELECT t.Year, SUM(QuantitySold)

FROM Sales s, Time t, Customer c FROM Sales s, Time t, Customer c

WHERE s.DateID = t.DateID AND s.CustID = c.CustID WHERE s.DateID = t.DateID AND s.CustID = c.CustID

AND Year = 2004 AND Month >= 4 AND Month <= 6 AND Year > 1997 AND State = ‘NC’

GROUP BY c.CustID; GROUP BY t.Year;

By running BPUS [7] on { Q1, Q2 } we would obtain materialized views that could be used to evaluate
Q1 and Q2 using just selection, grouping, and aggregation. In finding grouping arguments of the views, BPUS
would consider all subsets of a set of four attributes { CustID, Year, Month, State }.

We now show two central rewritings [10], R1 and R2, of the query Q1, which use joins of aggregate views
with other relations, and discuss the tradeoffs in using each rewriting to evaluate Q1. Consider an aggregate
view V1, which returns the total quantity of products sold to each customer based on just the Sales data:

3 Formally, additional requirements need to be satisfied by star-schema queries; see Section 2.

V1: SELECT CustID,DateID,SUM(QuantitySold) AS SumQS FROM Sales GROUP BY CustID,DateID;

A rewriting R1 of the query Q1 uses a join of the view V1 with relations Customer and Time:

R1: SELECT c.CustID, sum(SumQS) FROM V1, Time t, Customer c

WHERE V1.DateID = t.DateID AND V1.CustID = c.CustID AND Year = 2004 AND Month >= 4 AND Month <= 6

GROUP BY c.CustID;

Another equivalent rewriting of Q1, R2, uses a view V2, which has two relations in its FROM clause:

V2: SELECT c.CustID AS CID, R2: SELECT CID, sum(SumQS)

DateID AS DID, SUM(QuantitySold) AS SumQS FROM V2, Time t

FROM Sales s, Customer c WHERE V2.DID = t.DateID AND Year = 2004

WHERE s.CustID = c.CustID AND Month >= 4 AND Month <= 6

GROUP BY c.CustID, DateID; GROUP BY CID;

Assuming that there are typically many product IDs and product categories per sale event, and that
different salespeople are responsible for selling products in different categories, the relation for each of V1
and V2 will likely be much smaller than the fact table Sales. Accordingly, the evaluation time of each of R1
and R2 will likely be lower than that of Q1 using its original definition.4 In addition, assuming the stored
data satisfy integrity constraints that are typical for star-schema databases,5 the evaluation time of the
rewriting R2 will be strictly less on typical databases than the evaluation time of R1, as the relations for
V1 and V2 in this case are of the same size and as evaluating R1 involves an extra join compared to R2.

We now compare the set { V1 } with sets of views produced by BPUS [7]. (All the observations we make
here about the view V1 also hold about V2.) First, V1 by itself provides equivalent central rewritings of both
Q1 and Q2 and thus gives a solution { V1 } for the workload { Q1, Q2 }. Second, recall that BPUS would
consider all subsets of a set of four grouping arguments. In contrast, to design the set { V1 } we had to
look at just two grouping arguments, CustID and DateID. The reason is, we consider only aggregate views
whose FROM clause has just the Sales relation6, and CustID and DateID are the only grouping arguments
of such views that are required in constructing equivalent rewritings of the workload queries.

We now show that compared to other approaches, one novelty of our approach is that it can be used
to design materialized views for aggregate queries of a more general type than star-schema queries:

Example 2. Consider the database schema and query Q1 of Example 1, and let query Q3 ask for the total
quantity of products sold per customer, for customers who got registered in the second quarter of 2004:

Q3: SELECT c.CustID, SUM(QuantitySold) FROM Sales s, Time t, Customer c

WHERE s.CustID = c.CustID AND c.RegistrDateID = t.DateID AND Year = 2004 AND Month >= 4 AND Month <= 6

GROUP BY c.CustID;

As the join condition c.RegistrDateID = t.DateID of Q3 differs from the condition s.DateID =

t.DateId of Q1, { Q1, Q3 } is not a workload of star-schema queries. Thus, BPUS is not applicable.
At the same time, view V1 from Example 1 can be used to evaluate both Q1 and Q3; we give here an
equivalent rewriting of Q3 using V1.

R3: SELECT c.CustID, sum(SumQS) FROM V1, Time t, Customer c

WHERE c.RegistrDateID = t.DateID AND V1.CustID = c.CustID AND Year = 2004 AND Month >= 4 AND Month <= 6

GROUP BY c.CustID;

Similarly, if we add RegistrDateID to the list of grouping arguments of view V2 in Example 1, the
resulting view could be used to evaluate each of Q1 and Q3.

Contributions The paper’s contributions are as follows. (1) We propose a system architecture for automated
query-performance tuning in data-management systems over time, by periodically designing materialized
views and indexes that reduce the evaluation costs of current frequent and important queries. (2) We
present a theoretical study of the problem of designing materialized views subject to input restrictions on
design time. (3) We present a parameterized algorithm for designing and using materialized views subject

4 Similarly, evaluation costs of the other workload query, Q2, can be reduced by using rewritings with V1 or V2.
5 These are a referential-integrity constraint on CustID from Sales to Customer and key constraints on the stored relations.
6 Or just the relations Sales and Customer in case of { V2 }.

to input restrictions on design time. Our algorithm uses algorithms such as BPUS [7] as a subroutine but is
applicable to a more general class of aggregate queries than just queries on star-schema data warehouses.
(Our approach can be extended in a straightforward manner to designing materialized views and indexes,
by using, instead of BPUS, its extension described in [8]. In addition, the approach can be used to design
derived data that satisfy varying maintenance-cost requirements.) (4) We validate the approach using
experimental results in our QPET implementation of the proposed system architecture.

Related Work

Designing and using derived data to improve the evaluation performance of complex queries has long been a
direction of research and practical efforts in data-intensive systems. Over time, a wealth of theoretical results
(see [11] for a survey) and some practical solutions [12–14] have been accumulated on using materialized
views and indexes in query answering. The problem of answering aggregate queries using views has been
considered in relation to data warehouses and data cubes [15–18]; results on answering each query using a
single view are presented in [19, 20]. Recent work [10, 21] has considered the problem of rewriting aggregate
queries using multiple views; each rewriting format can be used in the results we present in this paper.

Considerable work has been done on efficiently selecting views and indexes for general SQL queries [6,
22] and in particular for aggregate queries (e.g., [7–10]). [6, 14] have introduced an end-to-end approach
and a system architecture for designing and using materialized views and indexes to answer queries. That
end-to-end architecture involves optimizer-based choice of best sets of views and indexes for given queries,
thereby increasing the likelihood of using the resulting materialized derived data by the optimizer to answer
the queries. In our framework we extend the architecture of [6]; to the best of our knowledge, we are the first
to specifically address architectural issues in periodic redesign of derived data. In addition, we demonstrate
that to design derived data under a design-time constraint, one has to consider the design and use (i.e.,
rewriting) problems together.

2 Preliminaries and Problem Specification

We consider select-project-join queries with equality-based joins and with aggregation sum, count, max,
or min. Our approach is applicable to queries with inequality comparisons with constants, including the
important class of range-aggregate queries. We study workloads of parameterized queries: For any query
with constants, the parameterized version of the query has placeholders instead of the constants. (As an
illustration, the parameterized version of query Q1 in Example 1 can be obtained from Q1 by replacing its
three constants, 2004, 4, and 6, by placeholders $year, $month1, and $month2 respectively.)

To measure query-evaluation performance, our cost model is as follows. We assume that the size of a
database relation is the number of bytes in it, and that the cost of computing a join of two relations is
the sum of the sizes of the input relations and of the output relation; this faithfully models the cost of,
for instance, hash joins.7 The results in this paper can be extended in a straightforward way to the model
where the cost of a join is proportional to N log N for relations of size N , as in sort-merge joins.

For select-project-join queries, we measure the cost of evaluating the query on a database as the sum of
the costs of all the (binary) joins in the evaluation [5]. (We assume that all selections are pushed down as far
as they go, projection is the last operator in the query plan, and only left-linear-join query plans are used.)
To estimate the cost of evaluating a parameterized select-project-join query with inequality comparisons,
we use the cost of evaluating an instance of the query with a “typical number” of values in the range. For
an aggregate query, we say that the FROM and WHERE clauses of the query define its select-project-join core
relation. Let N be the number of tuples in the core relation of a query Q; then the cost of evaluating Q is
the sum of (1) the cost of computing the core relation of Q, and of (2) the cost N log N of applying the
grouping and aggregation operators to the core relation.8 Finally, the total cost of evaluating a finite query
workload Q on a database D is the sum of the costs of evaluating all individual queries in the workload on
D. The sum can be weighted to reflect the relative frequency or importance of individual workload queries.

7 We use a variation of this join-cost model for the case of index joins under a referential-integrity constraint, where the cost
of a join is proportional to the sum of the sizes of the output relation and of the unindexed input relation.

8 The cost of grouping the tuples in a relation is the same as the cost of sorting the relation, and one can compute sum,
count, max or min aggregation on a sorted relation in a single pass.

We consider the problem of improving the evaluation performance of workloads of SQL queries on
relational databases, by using precomputed stored derived data such as materialized views or indexes.
Our problem inputs are of the form I = (D,Q, C1, C2), where D is a database and Q is a workload of
parameterized queries. C1 is a constraint on the time available for the design stage; C2 is a constraint on the
derived data to be materialized, such as a storage limit or an upper bound on the maintenance costs for
the stored data. Our goal is to define, within time C1, a set V of derived data, such that V satisfies C2 and
reduces as much as possible the total cost of evaluating Q on the database D. (We consider only equivalent
rewritings of the queries in Q using the set V, i.e., we require that exact answers to all the queries in Q
can be computed using V.) For data-management systems that periodically redesign their derived stored
data, we explore the tradeoff between the value of C1 (i.e., the maximal runtime of algorithms that design
derived data) and the costs of evaluating the prevalent queries using the resulting stored derived data.

In this paper, we focus on designing and using materialized views, rather than indexes. For any param-
eterized query in the given query workload, our goal is to design views that can be used in evaluating any
instance of the query. Thus, similarly to [7, 8] we consider only views without comparisons with constants.
We use the following definitions of admissible and optimal viewsets, or solutions:

Definition 1. (Admissible viewset) Let I = (D,Q, C1, C2) be a problem input. A set of views V is said to
be an admissible viewset for the problem input I, if the following four conditions hold:
(1) V gives equivalent rewritings of all the queries in Q,
(2) for every view V ∈ V, there exists an equivalent rewriting of a query in Q that uses V ,
(3) the time required to generate V does not exceed C1, and
(4) V satisfies the constraint C2.

Definition 2. (Optimal viewset) For a problem input I = (D,Q, C1, C2), an optimal viewset is a set of
views V defined on D, such that:
(1) V is an admissible viewset for I, and
(2) V minimizes the total cost of evaluating the queries in Q on the database DV , among all admissible sets
of views for I; here, DV is the database that results from adding, to the stored data in D, the relations for
all the views in V computed on D.

In our QPET framework, the focus is on using specialized algorithms for designing and using derived
data to reduce the evaluation costs for each specific class of queries. In this paper we discuss algorithms
that are applicable to three classes of queries with aggregation and without self-joins9:

1. Workload of queries that aggregate the same table. All queries in a query workload aggregate the same
table, T, if the aggregated arguments of each workload query come from T. In this case, we refer to the
table that provides the arguments of aggregation for all the workload queries as the central table for
the workload.

2. Workload of queries that have the same join conditions. A workload of queries that have the same join
conditions is a workload of queries that aggregate the same table, such that an additional condition is
satisfied: For any pair of queries in the workload, if the queries share the same tables in the FROM clause
then they share, in the WHERE clause, all the join conditions between the tables. As an illustration, the
same-join condition is satisfied in workloads of queries where all joins are natural joins. (Note that,
similarly to workloads of queries that aggregate the same table, workload queries in this case are not
required to all have the same FROM clause.)

3. Workload of star-schema queries. A workload of star-schema queries is a workload of queries that have
the same join conditions, such that two additional conditions are satisfied. First, the database schema
is a star schema [23], with a designated fact table and dimension tables, such that each join of the
fact table with a dimension table is on attributes that satisfy a referential-integrity constraint from the
fact table to the dimension table. Second, the fact table is the central table for the workload (i.e., each
query aggregates an argument of the fact table).

9 A query has a self-join if some stored relation is mentioned in the query’s FROM clause at least twice.

3 The QPET Framework for Designing and Using Derived Data

In this section we describe our system architecture, QPET. We use the architecture of Figure 1 to imple-
ment and validate our work in designing and using derived data to improve the evaluation performance of
frequent and important queries. Our concentration and contributions in the system architecture are three-
fold. First, we use specialized algorithms for defining and using views and indexes for specific practically
important classes of queries, such as the star-schema queries we discuss in this paper. Thus, our framework
for designing and using derived data is extensible. We argue that specialized algorithms are required to
ensure a guaranteed degree of improvement in query-evaluation performance, with respect to the best pos-
sible performance for the queries. In addition, different specialized algorithms are needed under different
constraints on derived data materialized in the system, such as a storage limit on materialized views.

Second, as discussed in Section 1, we look in particular into developing a system architecture for
periodic online (re)design of materialized views and other derived data in data-management systems. In
that context, it is imperative that algorithms for designing and using derived data be lightweight, efficient,
and scalable. Third, we argue the need to consider the interaction and interdependence of techniques for
generating materialized views and other derived data with techniques for rewriting the given queries using
the data that end up being materialized. For instance, while simple rewriting techniques can be used for
star-schema query workloads, see Section 4, they would not be sufficient for workloads of more general
queries with aggregation [10].

Further, as we discuss in Section 4, different requirements (e.g., on query-evaluation time or on the
runtime of view-design algorithms) could influence the choice of different FROM clauses of — and thus
of other requirements on — aggregate views that could be materialized for star-schema queries. As an
illustration, Example 1 in Section 1 shows two views, V1 and V2, whose different “formats” stem from
the different FROM clauses, { Sales } for V1 and { Sales, Customer } for V2. The preference for the
FROM clause of the view V1 could result from, for instance, the requirement of better view-maintenance
costs, whereas the choice of the FROM clause of the view V2 could arise due to a stronger restriction on
the evaluation costs of the resulting rewriting R2. Different choices of FROM clauses determine different
requirements on the view definitions — such as the presence of certain grouping arguments in some but
not all view definitions — at the view-design stage, to ensure that it is possible to use the designed views
to construct an equivalent rewriting of the input queries, such as Q1 and Q2 in Example 1, at the query-
rewriting stage in QPET.

Workload

Final
Recommendation

Syntactic structure
selection

Candidate
Index

Selection

Candidate
Materialized

View Selection

Configuration
Enumeration

Configuration
Simulation
and Cost

Estimation
Module

Fig. 1. Overall system architecture [6, 14].

For these reasons, the third contribution of our ap-
proach is a component of the system architecture that de-
termines the “format” of views that should be material-
ized, based on the rewriting types considered for the given
queries. This component of the QPET framework is used
at the stage of designing derived data, to determine the
search space of views or other derived data considered for
materialization, see Section 3.1.

In the remainder of the section we describe in more
detail our approach to designing and using derived data to
improve the performance of given workload queries. While
this discussion centers on materialized views, we use the
same QPET framework (within the general architecture of
Figure 1) and the same overall approach in our ongoing
and future work on designing and using other types of derived data, especially indexes, for improving
query-evaluation performance.

3.1 Designing Derived Data in the QPET Framework

In Figure 2, shaded boxes with solid-line borders represent those modules in the QPET framework that are
active at the stage of designing materialized views to improve the evaluation performance of frequent and
important queries. We assume that we are given the definitions of workload queries. (The query workload

Data

View Generator

Enhanced Query
Optimizer

Materialization
Manager

Query WorkloadConstraints andRequirements

Metadata

Rewritt
en Q

uery

Data Statistics

View

Configuration

Best

Plan

View & Q
uery

Def

Data for
Materialized
Views

View-Format Manager

Configuration Manager

Rewriting Manager

Statistics Manager

Query Executor
Feedback

Fig. 2. Designing derived data in QPET.

Enhanced Query
Optimizer

Rewritt
en Q

uery

Data

View Generator

Materialization
Manager

QueryConstraints andRequirements

Metadata

Data Statistics

View

Configuration

Best

Plan

View & Q
uery

Def

Data for
Materialized
Views

View-Format Manager

Configuration Manager

Rewriting Manager

Statistics Manager

Query Executor
Feedback

Fig. 3. Using derived data in QPET.

can be assembled using, e.g., the query log [6].) We also assume that QPET has access to the relevant
constraints on the outputs of the design stage, such as the amount of disk space available for storing the
materialized views. Other things that can potentially be known in advance include requirements on possible
rewritings of the workload queries using the views, such as, for instance, runtime ranges for the rewritings.
Finally, for online redesign of materialized views, constraints on the amount of resources available for the
design stage can be specified. (One direction of our current work is developing algorithms for designing
derived data under hard resource constraints, with an emphasis on how the quality of the outputs depends
on the values of the constraints.)

Using our QPET framework, data-management systems could design and materialize derived data by
using specialized plug-and-play algorithms for each class of workload queries, such as star-schema queries.
For this reason, each module active at the data-design stage uses algorithms that are appropriate for
the given class of workload queries. In Section 4, we describe specific algorithms we use for workloads of
aggregate queries under certain restrictions, in particular for queries on the star schema.10

In the design stage, the first thing to do is to delineate the search space of views that will be considered
for materialization. This function is performed by the view-format manager, which determines the suggested
format of views and rewritings and the related search space of candidate views based on the type of
the workload queries and on other requirements. The view generator considers one by one the elements
of the resulting search space of candidate views and passes those of the views that satisfy the input
constraints (e.g., the given storage limit) on to the next module. The configuration manager puts together
some of the candidate views and tests the potential of the resulting view configurations to improve the
evaluation performance of the workload queries. The tests are performed by an enhanced query optimizer,
which estimates the costs of answering the workload queries using the configurations. (We use a statistics
manager and the architecture of [6] to obtain query-cost estimates without materializing the views in
the candidate configurations.) When obtaining query-cost estimates, the enhanced optimizer considers
potential rewritings of the workload queries by calling a rewriting manager, in the manner of [12].11 After a
quality threshold is reached, typically after several iterations of designing and testing view configurations,
the materialization manager materializes the views in the best configuration as new stored data.

3.2 Using Derived Data in the QPET Framework

In Figure 3, shaded boxes with solid-line borders represent those modules in the QPET framework that
are active at the stage of using derived data to answer customer queries. Suppose the system chooses to
minimize the evaluation costs of a given query using the currently stored derived data. In this case, QPET
first finds a “good” query plan while taking the materialized views into account, by using the enhanced
query optimizer and rewriting manager in essentially the same way the modules are used in the view-design
phase, see Section 3.1. (Depending on how appropriate the currently materialized views are for answering
the query, the resulting query plan may or may not refer to stored view relations.) The resulting plan is

10 If the given query workload has queries that correspond to several distinct query classes such that a general solution would
be too generic, one strategy to improve the quality of the solution could be to obtain separate specialized solutions for the
sub-workloads according to the query classes, and then to try to merge some of the views, as proposed in, e.g., [6].

11 The paper [12] describes an algorithm for select-project-join queries and views without aggregation. Using the results in [10],
we have designed a straightforward extension applicable to aggregate queries and views.

passed to the query executor, which obtains an answer to the query in a standard way using the stored
base or view relations.

Other than considering the stored derived data in generating query plans, using materialized views
in QPET to answer a given query is not different from standard query processing. What can, however,
make a difference in periodic online redesign of materialized views in our framework is which user queries
are answered by taking the stored derived data into account. One approach could be to evaluate all user
queries using the materialized views; the drawback here is the runtime penalty incurred by the optimizer
for all input queries. As the currently materialized views were designed to improve the evaluation costs
of some query workload that was fixed at the design stage, at the other extreme we could take the views
into account only when evaluating those user queries that are part of that workload.12 Between the two
extremes, multiple strategies are possible; those that we currently focus on in QPET make the decision for
each query based on whether it could help characterize changes in the prevalent query workload over time.
(For instance, QPET could use materialized views to evaluate frequent queries that are not in the fixed
query workload. This way, the system can accumulate, for the future design stage, useful statistics on how
the currently materialized views are used in answering important non-workload queries.) Other strategies
are possible, based on which changes over time are tracked in the given data-management system; possible
objects of interest include prevalent queries and stored data.

4 Complexity of the Problem and Parameterized Algorithm

We now discuss an approach we use within our QPET framework to improve the efficiency of evaluating
aggregate queries without self-joins, by computing the queries using specially designed aggregate views.
Recall that the BPUS approach of [7] evaluates aggregate star-schema queries using rewritings that have a
materialized aggregate view as the only relation in the FROM clause. Using the results in [10], we generalize
the approach of [7] into an approach that uses one or more views in each rewriting and that applies to a more
general class of aggregate queries — queries that aggregate the same table, see Section 2 for a definition.
In this framework, when looking for views that are potentially usable in computing given queries, we can
examine all the views considered in [7], as well as additional views (with or without aggregation) that are
defined on subsets of the set of relations in the FROM clause of the query. For instance, Examples 1 and 2
in Section 1 show an aggregate view V1 that is defined on just the fact table Sales and that can be used,
in joins with other relations, to evaluate aggregate queries Q1 through Q3.

The idea of our approach is to extract, from a workload of queries that aggregate the same table, view
templates, which serve as input queries to the view-selection algorithm that we use as a subroutine. (In
our current implementation of QPET, this subroutine is the BPUS algorithm of [7].) The views returned
by the subroutine are then materialized and used to automatically construct rewritings of the workload
queries; the rewritings have one or more relations in their FROM clause and may or may not be aggregate
queries. (That is, some of the rewritings of the given aggregate queries can be conjunctive queries without
aggregation, see [10] for details and examples.) This approach can be tuned to explore different subspaces
of the search space of views, depending on the input constraints such as the amount of system resources
available for designing derived data.

4.1 Dealing with Inequality Comparisons

We first show how to obtain materialized views and rewritings for aggregate queries with inequality compar-
isons with constants, including range-aggregate queries, without having to deal with the inequalities. (As
shown in [24], in general the presence of inequalities increases the complexity of the problem of rewriting
queries using views.) Recall that we consider only views without selection conditions, to maximize rewriting
benefits for parameterized queries. Intuitively, we reduce the problem of designing and using materialized
views for aggregate queries with inequalities to the problem for queries without inequalities, by allowing
rewritings with inequalities. Theorem 1 says that the procedure results in correct processing of aggregate
queries with inequality comparisons. More precisely, any set of views that is a solution for the modified
queries without inequalities is also a solution for the original queries with inequalities.

12 As we consider workloads of parameterized queries, the number of specific user queries that are “covered” by a given finite
workload is potentially infinite.

Theorem 1. On a database D, let Q be a workload of select-project-join queries without self-joins and
with aggregation sum, max, min, and count, such that at least one query in Q has inequality comparisons
with constants. Let C be either a storage limit or a view-maintenance-cost constraint. By Q ′ we denote
a workload of queries obtained by replacing inequality comparisons in Q with equalities on the same ar-
guments. Consider a set V of select-project-join views with aggregation and without constants. If V is an
admissible solution for a problem input (D,Q′, C), then V is also an admissible solution for a problem input
(D,Q, C),assuming select-project-join rewritings with inequalities and with or without aggregation.13

4.2 View Selection: Sources of Exponentiality

We now observe that, as in the case of queries and views without aggregation [25], the view-selection
problem for queries with aggregation has several sources of exponentiality, even under our restriction that
materialized aggregate views do not have inequality comparisons or selection conditions. In our setting, the
problem has four sources of exponentiality. First, even if we restrict ourselves to evaluating a single query
using aggregate views, potentially useful views could be defined using subsets or supersets of the relations
in the query’s FROM clause. (Workloads of select-project-join queries with aggregation and self-joins might
have useful aggregate views defined using exponentially more relations than used in any workload query [5,
10].) Second, useful views could be defined using various subsets of the join conditions in the query’s WHERE
clause. Third, the set of grouping arguments in a useful view could be a superset of the query’s grouping
arguments [7], or could even skip at least one grouping argument of the query [10]. The latter case holds
for rewritings whose FROM clause has more than one relation, such as rewriting R1 in Example 1. (There
exist central rewritings [10] in which the sets of grouping arguments of the aggregate view and of the query
can even be disjoint.)

Finally, different queries in a query workload could use different aggregate functions (e.g., max and
sum) and could aggregate different arguments in base tables, as can be seen in, for instance, queries in the
TPC-H benchmark [26]. In our approach we eliminate this source of exponentiality in view selection by
having all views under consideration have all the aggregated arguments (i.e., all the combinations of the
attribute to be aggregated with the aggregate function) that occur in the input query workload.

4.3 Complexity Results

We now show that for the practically important class of queries that aggregate the same table, two more
of the four sources of exponentiality can be removed without removing any potentially useful aggregate
views. The last result, Theorem 4, shows how removing yet another source of exponentiality that arises
from varying subsets of relations in the FROM clauses of views, reduces the search space of views even
further while preserving useful views. As a result, in our approach we need to deal with only one source
of exponentiality, which arises from varying grouping arguments in the definitions of aggregate views. (All
the results in this section hold for workloads of star-schema queries.)

We first establish that in evaluating workloads of aggregate queries without self-joins using materialized
views, each optimal aggregate view can be defined using a low number of relations in the FROM clause. More
precisely, the number of base relations in each view’s FROM clause is at most the number of relations used to
define some workload query. Thus, for aggregate queries without self-joins, Theorem 2 removes the source
of exponentiality in view selection that comes from varying, in view definitions, up to exponentially-sized
combinations of relations in the FROM clauses of the input queries. As a result (Corollary 1), the problem
has lower complexity for this class of queries, NP-complete rather than exponential-time lower bound.

Theorem 2. (Restricted definitions of useful central views) On a database D, let Q be a workload of select-
project-join queries without self-joins and with aggregation sum, max, min, and count. Let the aggregated
arguments of all the queries come from a single base table in D. Let V be an optimal set of central aggregate
views for a problem input (D,Q, C), where C is a storage limit or a view-maintenance-cost constraint. Then
each view in V can be defined using a subset of the FROM clause of some query Q ε Q.

Corollary 1. For problem inputs as Theorem 2, the view-selection problem is NP-complete.

13 This and all other results in this section hold provided some admissible set of materialized views exists for the given problem
input. Note that when, for instance, the input storage limit is too low, no solution may exist.

The next result, Theorem 3, holds for query workloads that additionally have the same join conditions
(see Section 2). Intuitively, under this restriction we can generate all useful central aggregate views by
combining all meaningful subsets of the FROM clause of the input queries (each such subset determines
all join conditions in the WHERE clause) with all possible sets of useful grouping arguments. That is, the
same-join condition removes the source of exponentiality that comes from varying join conditions in the
WHERE clauses of the views.

Theorem 3. (Restricted search space of central views) For problem inputs as in Theorem 2, and if the
queries in the workload Q additionally have the same join conditions, then the search space of optimal
central aggregate views is at most doubly exponential in the size of the input query workload Q.

Thus, for workloads of aggregate queries that have the same join conditions we need to deal with just two
sources of exponentiality in view definitions instead of the four that are discussed in Section 4.2.

So far, we have shown that for a practically important class of aggregate queries, some of the sources of
exponentiality (Section 4.2) can be removed without removing any potentially useful views from consider-
ation. Our last result in this section says that focusing on a certain important subclass of views (views that
all share the same FROM clause) removes an additional exponent from the complexity of the view-selection
problem.14

Theorem 4. For problem inputs as in Theorem 3, and if in addition all views under consideration have
the same FROM clause, then the search space of optimal central aggregate views is at most singly exponential
in the size of the input query workload Q.

We will see in Section 4.4 how this restriction to views that share the same FROM clause allows us to use a
view-selection method for just star-schema queries (such as BPUS [7]) as a subroutine in our approach to
view selection for a more general class of queries that aggregate the same table, such as the query workload
of Example 2 in Section 1.

4.4 Outline of the Algorithm

We now discuss our parameterized algorithm for selecting and using aggregate views to reduce the eval-
uation costs of workloads of aggregate queries. Suppose we are given a database D and a workload Q of
aggregate select-project-join queries that aggregate the same table, for instance the fact table in the star-
schema setting. In addition, we are given (1) a constraint C1 on the runtime of the view-design algorithm,
and (2) a constraint C2 on the materialized views — either a storage limit or a view-maintenance-cost
constraint. To reduce the costs of evaluating the workload Q on D under the constraint C2, we select, under
the time constraint C1, views with aggregation (all the views will share the same FROM clause) and construct
rewritings of the queries using the views as follows:

Algorithm Composite-Aggregate-Rewritings (database D, query workload Q, constraints C1 and C2).

Output: set R of rewritings of Q using aggregate views V.

1 Begin

2 Initialize Q̂,R to empty sets;

3 F := Nonempty-Overlap(Q,C1); /* Set F to relations that occur in all queries in Q */ /* (1) */

4 /* Determine input queries Q̂ to the Lattice-Select-Views subroutine: */ /* (2) */

5 For each query Q ε Q do: Begin Q̂ := Input-Lattice-Select(Q,F); Q̂ := Q̂ ∪ {Q̂}; End

6 /* Collect into a set A the aggregated arguments in all the queries in Q */ /* (3) */

7 V := Lattice-Select-Views({Q̂,F ,D, C2,A); /* Generate central aggregate views V */ /* (4) */

8 /* Construct rewritings R of the queries in Q using the aggregate views V: */ /* (5) */

9 For each query Q ε Q do: Begin R := Build-Rewriting(Q, V, F); R := R∪ R; End

10 Output R;

11 End.

14 Recall that all the queries we consider take their aggregate arguments from a single table. In the simplest case, all the views
in the subclass can be defined on just that central table.

Conceptually, the algorithm finds central aggregate views V for the queries Q using a view-selection
algorithm for star-schema queries (such as BPUS [7]) as a subroutine Lattice-Select-Views, see step (4),
and then uses the views V to build equivalent rewritings R of the queries Q. In the rewritings R, the
views V “cover” all or some subgoals of the queries: In each rewriting, F are the subgoals “covered” by a
view from V. As the size of the set F determines the runtime of the view-design subroutine of step (4),
lower values of the design-time constraint C1 result in choosing smaller sets F , see step (1). In the overall
algorithm (steps (1) through (5)), the subroutines for generating input queries Q̂ for Lattice-Select-Views,
step (2), and for constructing the rewritings R of Q, step (5), ensure the equivalence of the rewritings
to the queries, while Lattice-Select-Views, step (4), produces views V that are guaranteed to reduce the
evaluation costs w.r.t. the subgoals F in each query on the database D, subject to the constaint C2.

Theorem 5. Algorithm Composite-Aggregate-Rewritings is sound for problem inputs as in Theorem 2
whenever all the queries in the workload Q have the same join condition w.r.t. the set F .15 That is, in this
case the algorithm returns equivalent rewritings of the queries in Q using central aggregate views.

Different choices of the FROM clause F of the views determine different search spaces of views with
aggregation for the input query workload. (For each such choice, note the performance guarantees of the
algorithm induced by the use of the Lattice-Select-Views subroutine, e.g., BPUS of [7], in case the algorithm
is applied to queries on the star schema with the associated integrity constraints.) Varying the value of
the overlap set F results in different degrees of “goodness” of the output of the algorithm Composite-

Aggregate-Rewritings along several metrics: As the number of base relations in F increases,

– the evaluation costs of the workload queries Q using the output rewritings R tend to decrease;
– the runtime of the Lattice-Select-Views subroutine tends to increase;
– the total size (and thus disk-space requirement) for the output materialized views V tends to increase;
– the total maintenance costs for the output materialized views V tend to increase.

Intuitively, all these trends are caused by the “degree of coverage” of the evaluation plans for the workload
queries by the evaluation plans for the views. (The sizes of evaluation plans for the views are determined
by the number of base relations in the definitions of the views V.) As an illustration, view V1 in Example 1
has just the Sales table in its FROM clause and thus “covers less” of the query Q1 than the view V2, which
is defined using tables Sales and Customer.

5 Implementation and Preliminary Experimental Evaluation

Our implementation of the QPET framework is written in C and is based on an open-source relational
data-management system PostgreSQL [27] version 7.3.4. The current version of QPET is available on-
line [4]; it incorporates support for answering SQL queries using materialized views, as described in [12],
and for generating aggregate views using the BPUS algorithm of [7]. Implementing other view-generation
algorithms, including that of [9], and implementing automated evaluation of arbitrary select-project-join
queries with aggregation using materialized views and indexes [8] is part of our ongoing work.

Region
Nation2
Nation1
Orders
Customer
PartSupp
Supplier
Part

Lineitem

396
2,103
2,103

482,877,440
244,883,456

5,830,541
14,188,544

1,193,906
2,147,483,647
Size (bytes)Name

TPC-H Tables

Fig. 4. Sizes of base
TPC-H tables (in
bytes).

We have conducted preliminary experiments to evaluate the system archi-
tecture and techniques presented in Sections 3 and 4. All experiments were run
on a machine with a 2.8GHz Intel P4 processor, 512MB RAM, and an internal
80GB hard drive running Linux RedHat 9 with kernel version 2.4.20-8 and our
implementation of QPET [4]. The experimental results show the following. (1)
Using materialized views designed by our approach results in query runtimes
comparable to runtimes of the queries using views output by the BPUS algo-
rithm, which we used for comparison purposes. (2) Disk-space requirements for
storing materialized views in our approach are acceptable, compared to the re-
quirements for storing views produced by BPUS. (In addition, by design of views
in our approach, the view relations require less system resources for maintenance

15 This condition determines a more general class of queries than queries that have the same join conditions.

than the relations for BPUS views, see Section 4.4.) (3) Finally, the time required to design views in our
approach can be drastically lower than the time required to design BPUS views for the same queries.

We give here just a brief summary of the experiments; a detailed account of the experimental setup
and results can be found in Appendix B. The goal of the experiments was to compare evaluation costs for
a workload of aggregate star-schema queries in three settings:

– using just the stored relations in the original database;
– using materialized views obtained by our approach; and
– using materialized views obtained by an approach in the literature.

922,962,047500843,995,5261750510

77,529,5773074192,158,34839752,9169

761,573,4747936192,158,3483938

127,090,3536496219,496,36210117

1,461,9581201,461,95812016

4,938,2676656141,452,410555

410,344,4475105199,699,3341131,2813

121,758112121,75811211

View SizeView IDView SizeView ID
Rows ReturnedQuery ID

BPUS Views UsedFact-Table Views Used

Fig. 5. Answer sizes for workload queries
and views; view sizes are in bytes. Fact-
table views are the same for Q8 and Q9.

As an approach in the literature, we chose the BPUS al-
gorithm of [7] because it gives strong performance guarantees
when applied to a wide range of types of view lattices. (The
approach of [9] achieves the same guarantees as BPUS for
a more restricted set of view lattices.) For our approach in
the experiments, we chose to design and materialize fact-table
views, that is, views whose FROM clause has just the fact table
in the star schema. Recall that query rewritings with fact-
table views have at least as many joins as rewritings of the
same query using other view types, and are thus the “least
efficient” rewritings in our approach. Thus, by choosing fact-
table views for the experiments, we were interested in seeing how much worse query-evaluation costs can be
when using our approach than when using the BPUS approach. In the remainder of this section, by “BPUS
views or rewritings” (“fact-table views or rewritings,” respectively) we refer to the views or rewritings based
on the BPUS approach (based on our approach, respectively).

We did the experiments on a TPC-H database benchmark [26]; the sizes of the stored tables are shown
in Figure 4. (We used the scale factor of one for the stored data.) The query workload for the experiments
had eight aggregate queries, with between one and eight tables in the FROM clause and with aggregation
on the Lineitem table, which is the fact table in the experiments.16 The queries can be used as an input
to the BPUS algorithm because the referential-integrity constraints on the stored TPC-H data guarantee
that the views produced by BPUS, with all eight tables in the FROM clause, can be used to equivalently
rewrite even those queries whose FROM clause has fewer tables.

BPUS Lattice
Fact-Table Lattice 40 128

Number of Nodes
In the Lattice

1,920 8,192

Time to Generate
Views (seconds)

Fig. 6. View-generation runtimes and lat-
tice sizes, for fact-table and BPUS views.

We used the BPUS algorithm to design views for both
fact-table rewritings (as a subroutine in our algorithm, see
Section 4.4) and BPUS rewritings of the workload queries.
In both cases, size estimates for relations in the view lat-
tices were obtained by running the queries for all possible
lattice views on TPC-H stored data with scale factor of 0.1
and by extrapolating the sizes of the answers to the queries to the size of the stored data used to evaluate
the workload queries and their rewritings.

0

20

40

60

80

100

120

140

160

1 3 5 6 7 8 10

Query ID

T
im

e
in

 m
ill

is
ec

o
n

d
s

No Views

Fact- Table Views

BPUS Views

Fig. 7. Runtimes of the workload queries.

To design views for BPUS rewritings of the workload
queries, we ran the BPUS algorithms using the workload
queries as inputs. As explained in Section 4, in our ap-
proach the FROM clause of the views we design determines
automatically the rewriting of each query before we design
the actual views. (The BPUS approach also determines the
rewritings automatically based on which views can be used
to evaluate the input queries.) Thus, once we settled on
fact-table views for the rewritings in our approach, the
rewritings we obtained determined automatically the in-
put queries to the BPUS subroutine, which then designed

16 Appendix B has definitions of all the queries.

fact-table views for the workload. Note that by design of BPUS, in each case we obtained a set of views for
the entire query workload, rather than for its individual queries. In addition, recall that by design of BPUS,
views produced by the algorithm have no comparisons with constants and can thus be used to evaluate
any instantiation of the parameterized versions of the workload queries.

The fact-table and BPUS rewritings of the workload queries determined view lattices in the BPUS
algorithm for seven and thirteen grouping attributes respectively. (The grouping arguments in a view
lattice are a union of the grouping arguments of all the input queries for BPUS.) Figure 6 shows the
number of nodes in view lattices and the runtimes for BPUS when called to generate views for fact-table
rewritings and for BPUS rewritings. Increasing the number of tables in the FROM clause of views in our
approach would tend to cause an increase in the number of required output arguments in the views. (These
required arguments include those attributes of the tables in each view’s FROM clause that participate in
join and selection conditions in the rewritings, as well as those attributes of the tables in the FROM clause
that are grouping arguments of the query.) Accordingly, the size of the view lattice explored by the BPUS
subroutine would tend to increase exponentially with each table added to the FROM clause of views designed
in our approach. The reason is, the size of a view lattice in the BPUS algorithm is exponential in the number
of grouping attributes in the algorithm input.

Figure 5 has information on views produced by the BPUS subroutine for fact-table rewritings (seven
views; note that the same view was produced for queries Q8 and Q9) and for BPUS rewritings (eight views)
for our query workload. Intuitively, storing materialized fact-table views should require more disk space
than storing BPUS views, because a grouping argument of a fact-table view is a key argument of a dimension
table whenever the corresponding grouping argument of a BPUS view (for the same workload query) is
a nonkey argument of the same dimension table. When the views were materialized on the database for
the experiments, storing the relations for the fact-table views did not require significantly more disk space
than storing the relations for the BPUS views.

As discussed in Section 4, once the view-design subroutine returns aggregate views in our approach,
the most appropriate materialized views (i.e., views that have a minimal-size relation among the views
that have all the required grouping arguments for the rewriting) are selected automatically into query
rewritings that were designed before calling the subroutine. Similarly, selecting the most appropriate views
to rewrite workload queries is straightforward in the BPUS approach, which we use for comparison in the
experiments. (In fact, building rewritings in the BPUS approach is a special case of building rewritings in
our approach.)

Figure 5 shows which views were used to evaluate which queries using fact-table and BPUS rewritings.
To measure the evaluation costs of the workload queries with and without materialized views, we ran the
original workload queries and their fact-table and BPUS rewritings on the test database; each runtime
measurement is the average based on ten runs on the database. Figure 7 shows the resulting averaged
runtimes for seven of the eight workload queries. (The runtimes of the modified TPC-H query Q9 are not
shown in the diagram, as those runtimes were over 5000ms, both for the original query formulation and
for the fact-table rewriting. This effect seems to be linked to the number of rows in the answer to the
query, see Figure 5.) The dotted line at the top of Figure 7 shows runtimes for the original queries; at
the bottom, the dashed line shows runtimes for fact-table rewritings, and the solid line shows runtimes for
BPUS rewritings of the queries. As can be seen from Figure 7, using materialized views designed in our
approach resulted in query runtimes comparable to runtimes of the queries using views produced by the
BPUS algorithm; both runtimes were markedly lower than those for the same queries without views. Note
that for the class of queries we study in this paper, building rewritings in the optimizer, once the views are
materialized, is just a matter of replacing the fact table by a suitable view and thus takes negligible time.

The experiments described above were run for a workload of point queries, that is, queries without
inequality selection conditions. By design, views and rewritings in our approach can be used to evaluate ei-
ther point queries or queries with inequality comparisons on the same arguments, including range-aggregate
queries. (That is, if a point query has equality selection conditions on arguments A1,...,Ak, all compar-
isons in the corresponding query with inequality must be on the same arguments.) Our experiments with
range-aggregate versions of some of the point queries in the test workload show that the runtimes for the

rewritings of the range-aggregate queries are comparable with the runtimes of the rewritings (both fact-
table and BPUS) of the corresponding point queries and are significantly lower than the runtimes of the
queries when evaluated without views.

Acknowledgments

We are grateful to Kyoung-hwa Kim and Simran Sandhu who have been part of the implementation team.

References

1. Shasha, D., Bonnet, P. Database Tuning: Principles, Experiments, and Troubleshooting Techniques. Morgan Kaufmann
(2002) http://www.distlab.dk/dbtune/.

2. Microsoft Research AutoAdmin Project: Self-Tuning and Self-Administering Databases. (http://research.microsoft.
com/dmx/autoadmin/default.asp)

3. IBM Autonomic Computing. (http://www.research.ibm.com/autonomic/)
4. Chirkova, R., Gupta, S., Kim, K.H., Sandhu, S. Extensible framework for query-performance enhancement by tuning.

Code downloads and documentation are available from http://research.csc.ncsu.edu/selftune/ (2004)
5. Chirkova, R., Halevy, A., Suciu, D. A formal perspective on the view selection problem. VLDB Journal 11 (2002) 216–237
6. Agrawal, S., Chaudhuri, S., Narasayya, V. Automated selection of materialized views and indexes in SQL databases. In:

Proceedings of VLDB (2000) 496–505
7. Harinarayan, V., Rajaraman, A., Ullman, J. Implementing data cubes efficiently. In: Proc. SIGMOD (1996) 205–216
8. Gupta, H., Harinarayan, V., Rajaraman, A., Ullman, J. Index selection for OLAP. In: Proceedings of ICDE (1997) 208–219
9. Shukla, A., Deshpande, P., Naughton, J. Materialized view selection for multidimensional datasets. In: Proceedings of

VLDB (1998) 488–499
10. Afrati, F., Chirkova, R. Selecting and using views to compute aggregate queries. Submitted for publication; earlier version

available at http://dbgroup.ncsu.edu/aggregAquv.pdf (2004)
11. Halevy, A.Y. Answering queries using views: A survey. VLDB Journal 10 (2001) 270–294
12. Chaudhuri, S., Krishnamurthy, R., Potamianos, S., Shim, K. Optimizing queries with materialized views. In: Proceedings

of the Eleventh International Conference on Data Engineering (ICDE) (1995) 190–200
13. Chaudhuri, S., Narasayya, V. AutoAdmin ’What-if’ index analysis utility. In: Proc. SIGMOD (1998) 367–378
14. Agrawal, S., Chaudhuri, S., Narasayya, V. Materialized view and index selection tool for Microsoft SQL Server 2000. In:

Proceedings of ACM SIGMOD (2001)
15. Widom, J. Research problems in data warehousing. In: Proceedings of CIKM (1995)
16. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M. Data cube: A relational aggregation

operator generalizing Group-by, Cross-Tab, and Sub Totals. Data Mining and Knowledge Discovery 1 (1997) 29–53
17. Chaudhuri, S., Dayal, U. An overview of data warehousing and OLAP technology. SIGMOD Record 26 (1997) 65–74
18. Agarwal, S., Agrawal, R., Deshpande, P., Gupta, A., Naughton, J., Ramakrishnan, R., Sarawagi, S. On the computation

of multidimensional aggregates. In: Proceedings of VLDB (1996) 506–521
19. Gupta, A., Harinarayan, V., Quass, D. Aggregate-query processing in data warehousing environments. In: Proceedings of

VLDB (1995) 358–369
20. Srivastava, D., Dar, S., Jagadish, H., Levy, A. Answering queries with aggregation using views. In: Proc. VLDB (1996)

318–329
21. Cohen, S., Nutt, W., Serebrenik, A. Rewriting aggregate queries using views. In: Proceedings of PODS (1999) 155–166
22. Chaudhuri, S., Narasayya, V. An efficient cost-driven index selection tool for Microsoft SQL server. In: Proceedings of

VLDB (1997) 146–155
23. Kimball, R., Ross, M. The Data Warehouse Toolkit (second edition). Wiley Computer Publishing (2002)
24. Afrati, F., Li, C., Mitra, P. Answering queries using views with arithmetic comparisons. In: Proc. PODS (2002) 209–220
25. Levy, A., Mendelzon, A., Sagiv, Y., Srivastava, D. Answering queries using views. In: Proceedings of PODS (1995) 95–104
26. TPC-H: TPC Benchmark H (Decision Support). (Available from http://www.tpc.org/tpch/spec/tpch2.1.0.pdf)
27. PostgreSQL (Open source database-management system) http://www.postgresql.org/.
28. TPC-H (TPC Benchmark H (Decision Support).) Available from http://www.tpc.org/tpch/ spec/tpch2.1.0.pdf.

A Example: Materialized Views Explored by the BPUS Algorithm of [7]

This example shows the format of materialized views explored by the greedy algorithm BPUS of [7] for the
query workload { Q1, Q2 } in Example 1 of Section 1.

Example 3. Queries Q1 and Q2 in Example 1 are defined using a fact table Sales and two dimension tables,
Customer and Time. Depending on the data in these three tables and on the amount of disk space available
for storing materialized views, the approach BPUS of [7] could let us evaluate both queries using a set of
two views, { W1, W2 }, with the following definitions:

W1: SELECT c.CustID AS CID1, Year, Month, W2: SELECT t.Year AS Year2, State,

SUM(QuantitySold) AS SQS1 SUM(QuantitySold) AS SQS2

FROM Sales s, Time t, Customer c FROM Sales s, Time t, Customer c

WHERE s.DateID = t.DateID WHERE s.DateID = t.DateID

AND s.CustID = c.CustID AND s.CustID = c.CustID

GROUP BY c.CustID, Year, Month; GROUP BY t.Year, State;

Query Q1 (Q2, respectively) can be answered using selection, grouping, and aggregation on the view W1

(W2, respectively). Finding the grouping arguments of the views W1 and W2 using BPUS requires considering
all subsets of the set of four attributes { CustID, Year, Month, State } of the stored tables.

Another BPUS solution for the workload { Q1, Q2 } could comprise a single aggregate view, W. For
instance, query Q1 could be evaluated using this rewriting R:

R: SELECT CustID, CustName,Addr, sum(SumQS)

FROM W WHERE Year = 2004 AND Month >= 4 AND Month <= 6

GROUP BY CustID, CustName, Addr;

That is, suppose we have a materialized aggregate view W that has all “necessary” arguments; we
will elaborate shortly on which arguments are necessary in W for evaluating Q1 and Q2. Let W have an
attribute SumQS whose value is the sum of QuantitySold (see the schema of Sales in Example 1) for each
combination of the grouping arguments of W. Then the answer to Q1 is computed using the rewriting R by
doing Q1’s grouping and aggregation on those rows in the answer to W that satisfy the conditions Year =

2004 AND Month >= 4 AND Month <= 6. The answer to Q2 could be computed using W in a similar way.

Here is one possible definition for W:

W: SELECT s.CustID, Year, Month, State, SUM(QuantitySold) AS SumQS

FROM Sales s, Time t, Customer c

WHERE s.DateID = t.DateID AND s.CustID = c.CustID

GROUP BY s.CustID, Year, Month, State;

That is, W returns total sales per customer ID, year, month, and customer state.

BPUS [7] considers all sets of views — including { W1, W2 } and { W } — that (1) can be used to
evaluate the query Q1 using the rewriting R above, and (2) can be used to evaluate the query Q2 using the
same approach. All such sets W of views need to satisfy several requirements. First, each view in the set
of views W “covers” the body of each workload query, by using all the relations in the FROM clause and all
the join conditions of each query. Second, for each workload query, at least one view in W needs to have in
its GROUP BY clause at least all the grouping arguments of the query and the arguments in all the query’s
selection conditions. (In this sense, the above SQL definition of W is “minimal” for the queries Q1 and Q2,
because all the arguments in the SELECT clause of W are used in rewritings of the two queries.) Finally, each
view in W should have an attribute (SumQS in our example) whose value is the result of aggregating the
selected argument (QuantitySold in our example) for each combination of the grouping arguments of the
view.

B Experimental Setup and Results

We have used the TPC-H [28] database with scale factor of one and a query workload based on TPC-H
queries.

B.1 The Modified TPC-H Schema

The only modification of the schema concerns the Nation table: To create a workload of queries without
self-joins (i.e., without duplicate occurrences of the same table in the FROM clause), we used two copies
of the Nation table, named Nation1 and Nation2. In addition, we do not show here the schema of the
Partsupp relation, as Partsupp is not in definitions of the queries we used to define our query workload.

Argument names in boldface denote key attributes.

Part(PARTKEY,NAME,MFGR,BRAND,TYPE,SIZE,CONTAINER,RETAILPRICE,COMMENT)
Table size: ScaleFactor × 200,000

Supplier(SUPPKEY,NAME,ADDRESS,NATIONKEY,PHONE,ACCTBAL,COMMENT)
Table size: ScaleFactor × 10,000

Customer(CUSTKEY,NAME,ADDRESS,NATIONKEY,PHONE,ACCTBAL,MKTSEGMENT,COMMENT)
Table size: ScaleFactor × 150,000

Nation1(NATIONKEY,NAME,REGIONKEY,COMMENT)
Table size: 25

Nation2(NATIONKEY,NAME,REGIONKEY,COMMENT)
Table size: 25

Lineitem(ORDERKEY,PARTKEY,SUPPKEY,LINENUMBER,QUANTITY,
EXTENDEDPRICE,DISCOUNT,TAX,RETURNFLAG,LINESTATUS,SHIPDATE,
COMMITDATE,RECEIPTDATE,SHIPINSTRUCT,SHIPMODE,COMMENT)

Table size: ScaleFactor × 6,000,000

Orders(ORDERKEY,CUSTKEY,ORDERSTATUS,TOTALPRICE,ORDERDATE,
ORDERPRIORITY,CLERK,SHIPPRIORITY,COMMENT)

Table size: ScaleFactor × 1,500,000

Region(REGIONKEY,NAME,COMMENT)
Table size: 5

Referential-integrity constraints on the schema:

From Lineitem(PARTKEY) to Part(PARTKEY)
From Lineitem(SUPPKEY) to Supplier(SUPPKEY)
From Customer(NATIONKEY) to Nation2(NATIONKEY)
From Supplier(NATIONKEY) to Nation1(NATIONKEY)
From Nation2(REGIONKEY) to Region(REGIONKEY)
From Orders(CUSTKEY) to Customer(CUSTKEY)
From Lineitem(ORDERKEY) to Orders(ORDERKEY)

B.2 The Product-of-Dimensions Views

For the experiments, each product-of-dimensions (POD) view is defined as follows:

– the FROM and WHERE clauses of the query represent a join of all the relations in Section B.1, as given in
queries in [28];

– for each query, the GROUP BY and SELECT clauses of the query is as specified (in Datalog) in Section B.3.

B.3 The Query Workload: Modified TPC-H Queries

In this section, the IDs of the modified queries are the IDs of the corresponding original TPC-H queries
in [28]. In the experiments, all the placeholders for constants in the queries below were replaced by constant
values occurring in the TPC stored data. The query workload for the experiments consists of the modified
queries Q1, Q3, Q5, Q6, Q7, Q8, Q9, Q10.

In the Datalog formulations, the naming of stored relations is as follows: Nat1 refers to Nation1, Nat2
refers to Nation2, and the remaining tables are referred to by the first letter of their name.

Pricing Summary Report Query (Q1)

1. Objective: Reports the amount of business that was billed, shipped, and returned.
2. Modified query Q1 for the experiments, in SQL:

SELECT

l_returnflag,

l_linestatus,

SUM(l_extendedprice),

COUNT(*)

FROM

lineitem

WHERE

l_shipdate = date ‘[DATE]’

GROUP BY

l_returnflag,

l_linestatus;

3. Modified query Q1 for the experiments, in Datalog:

q1(RF,LS, sum(EX), count) :-
L(OK,PK,SK,LN,QT,EX,DS, TX,RF,LS, ‘date′ , CD,RD,SI, SM,C8).

4. Input for product-of-dimensions lattice:

qP
1

(RF,LS, SD)

That is, to be answered using the outputs of the BPUS algorithm of [7] on the product-of-dimensions lat-
tice, this query needs a view whose grouping arguments include arguments Returnflag, Linestatus,

and Shipdate of the relation Lineitem.
In general, the rule for forming qP

i
for a query qi is as follows: take all grouping arguments of qi and all

the arguments of qi that are involved in (in)equality comparisons with constants.
5. Definition of product-of-dimension view for the query: on prodOfDims, see Section B.2.

In SQL:

SELECT returnflag, linestatus, shipdate,

SUM(extendedprice) AS sumex, count(*) AS totalcount

INTO _0112

FROM prodOfDims

GROUP BY returnflag, linestatus, shipdate;

In Datalog:

V 0112(RF,LS, SD, sum(EX), count(∗)) : −
prodOfDims.

6. Rewriting of the query using the product-of-dimension view:
In SQL:

SELECT returnflag, linestatus, SUM(sumex), SUM(totalcount) AS count

FROM _0112

WHERE shipdate = date ’1998-12-01’

GROUP BY returnflag, linestatus;

In Datalog:

Q1(RF,LS, SUM(sumex), SUM(totalcount)) : −
V 0112(RF,LS,′ 1998 − 12 − 01′, sumex, totalcount).

7. Input for fact-table lattice17:

qF

1
(RF,LS, SD)

That is, to be answered using the outputs of the BPUS algorithm of [7] on the fact-table lattice,
this query needs a view whose grouping arguments include arguments Returnflag, Linestatus, and
Shipdate of the relation Lineitem. (Inputs qP

1
and qF

1
are the same because the body of q1 has just

one table. See below that whenever the body of a query has at least two tables, qP and qF for the query
will be different.)
In general, the rule for forming qF

i
for a query qi is as follows: take all arguments A of Lineitem (in the

body of the query qi), such that: (1) A is a grouping argument in the head of qi, or (2) A is involved
in (in)equality comparisons with constants in the body of qi, or (3) A is needed for joins with other
relations in the body of qi.

8. Definition of fact-table view for the query:
In SQL:

SELECT returnflag, linestatus, shipdate,

SUM(extendedprice) AS sumex, count(*) AS totalcount

INTO _112

FROM lineitem

GROUP BY returnflag, linestatus, shipdate;

In Datalog:

V 112(RF,LS, SD, sum(EX), count(∗)) : −
L(OK,PK,SK,LN,QT,EX,DS, TX,RF,LS, SD,CD,RD,SI, SM, C8).

9. Rewriting of the query using the fact-table view:
In SQL:

SELECT returnflag, linestatus, SUM(sumex), SUM(totalcount) AS count

FROM _112

WHERE shipdate = date ’1998-12-01’

GROUP BY returnflag, linestatus;

In Datalog:

Q1(RF,LS, SUM(sumex), SUM(totalcount)) : −
V 112(RF,LS,′ 1998 − 12 − 01′, sumex, totalcount).

Shipping Priority Query (Q3)

1. Objective: Retrieves the ten unshipped orders with the highest value.
2. Modified query Q3 for the experiments, in SQL:

SELECT

l_orderkey,

sum(l_extendedprice),

o_orderdate,

o_shippriority

FROM

customer,

orders,

lineitem

17 In our experiments, Lineitem was the designated fact table; we treated the remaining tables as dimension tables.

WHERE

l_returnflag = ‘[RETURNFLAG]’

AND c_custkey = o_custkey

AND l_orderkey = o_orderkey

AND l_shipdate = date ‘[DATE]’

GROUP BY

l_orderkey,

o_orderdate,

o_shippriority;

3. Modified query Q3 for the experiments, in Datalog:

q3(OK,OD,SP, sum(EX)) :-
C(CK,N4, A4, NK,P4, B4,MS,C4),
O(OK,CK,OS, TR,OD,OP,CL, SP,C7),
L(OK,PK,SK,LN,QT,EX,DS, TX, ‘r′ , LS, ‘date′, CD,RD,SI, SM,C8).

4. Input for product-of-dimensions lattice:

qP
3

(OK,OD,SP, SD,RF)

5. Definition of product-of-dimension view for the query: on prodOfDims, see Section B.2.
In SQL:

SELECT orderkey, returnflag, linestatus, shipdate,

custkey, mktsegment, nationkey2, orderdate, shippriority,

regionkey, SUM(extendedprice) AS sumex, count(*) AS totalcount

INTO _5105

FROM prodOfDims

GROUP BY orderkey, returnflag, linestatus, shipdate, custkey,

mktsegment, nationkey2, orderdate, shippriority, regionkey;

In Datalog:

V 5105(OK,RF,LS, SD,CK,MS,NK2, OD, SP,RK, SUM(ex), count(∗)) : −
prodOfDims.

6. Rewriting of the query using the product-of-dimension view:

In SQL:

SELECT orderkey, SUM(sumex), orderdate, shippriority

FROM _5105

WHERE returnflag = ’R’

AND shipdate = ’1995-04-16’

GROUP BY orderkey, orderdate, shippriority;

In Datalog:

Q3(OK,SUM(sumex), OD, SP) : −
V 5105(OK,′ R′, LS,′ 1995 − 04 − 16′, CK,MS,NK2, OD, SP,RK,SUMEX, totalcount).

7. Input for fact-table lattice:

qF
3

(OK,SD,RF)

8. Definition of fact-table view for the query:

In SQL:

SELECT orderkey, returnflag, linestatus, shipdate,

SUM(extendedprice) AS sumex, count(*) AS totalcount

INTO _113

FROM lineitem

GROUP BY orderkey, returnflag, linestatus, shipdate;

In Datalog:

V 113(OK,RF,LS, SD, SUM(ex), COUNT (∗)) : −
L(OK,PK,SK,LN,QT,EX,DS, TX,RF,LS, SD,CD,RD,SI, SM, C8).

9. Rewriting of the query using the fact-table view:
In SQL:

SELECT l.orderkey, SUM(sumex), orderdate, shippriority

FROM customer c, orders o, _113 l

WHERE returnflag = ’R’

AND o.custkey = c.custkey

AND l.orderkey = o.orderkey

AND shipdate = date ’1995-04-16’

GROUP BY l.orderkey, orderdate, shippriority;

In Datalog:

Q3(OK,SUM(sumex), OD, SP) : −
V 113(OK,′ R′, LS,′ 1995 − 04 − 16′, sumex, totalcount),
C(CK,N4, A4, NK,P4, B4,MS,C4), O(OK,CK, OS, TR,OD,OP,CL, SP,C7).

Local Supplier Volume Query (Q5)

1. Objective: Lists the revenue volume done through local suppliers.
2. Modified query Q5 for the experiments, in SQL:

SELECT

n_name,

SUM(l_extendedprice)

FROM

customer,

orders,

lineitem,

supplier,

nation1,

region

WHERE

c_custkey = o_custkey

AND l_orderkey = o_orderkey

AND l_suppkey = s_suppkey

AND s_nationkey = n_nationkey

AND n_regionkey = r_regionkey

AND r_name = ‘[REGION]’

AND o_orderdate = date ‘[DATE]’

GROUP BY

n_name;

3. Modified query Q5 for the experiments, in Datalog:

q5(N51, sum(EX)) :-
C(CK,N4, A4, NK2, P4, B4,MS,C4),
O(OK,CK,OS, TR, ‘date′, OP,CL, SP,C7),
L(OK,PK,SK,LN,QT,EX,DS, TX,RF,LS, SD,CD,RD,SI, SM,C8),
S(SK,N2, A2, NK1, P2, B2, C2),
Nat1(NK1, N51, RK,C51),
R(RK, ‘region′, C6).

4. Input for product-of-dimensions lattice:

qP

5
(N51, OD,N6)

5. Definition of product-of-dimension view for the query: on prodOfDims, see Section B.2.
In SQL:

SELECT orderdate, nationkey1, n1_name, regionkey, name,

SUM(extendedprice) AS sumex, count(*) AS totalcount

INTO _6656

FROM prodOfDims

GROUP BY orderdate, nationkey1, n1_name, regionkey, name

In Datalog:

V 6656(OD,NK1, N1.name,RK,R.name, SUM(ex), count(∗)) : −
prodOfDims.

6. Rewriting of the query using the product-of-dimension view:
In SQL:

SELECT n1_name, SUM(sumex)

FROM _6656

WHERE name=’AFRICA’

AND orderdate= ’1993-07-01’

GROUP BY n1_name;

In Datalog:

Q5(N1.name, SUM(sumex)) : −
V 6656(′1993 − 07 − 01′, NK1, N1.name,RK,′ AFRICA′, SUMEX, totalcount).

7. Input for fact-table lattice:

qF

5
(OK,SK)

8. Definition of fact-table view for the query:
In SQL:

SELECT orderkey, suppkey, SUM(extendedprice) AS sumex, count(*) AS totalcount

INTO _005

FROM lineitem

GROUP BY orderkey, suppkey;

In Datalog:

V 5(OK,SK,SUM(EX), count(∗)) : −
L(OK,PK,SK,LN,QT,EX,DS, TX,RF,LS, SD,CD,RD,SI, SM, C8).

9. Rewriting of the query using the fact-table view:
In SQL:

SELECT n.name, SUM(sumex)

FROM customer c, orders o, _005 l, supplier s, nation1 n, region r

WHERE c.custkey=o.custkey

AND l.orderkey=o.orderkey

AND l.suppkey = s.suppkey

AND s.nationkey= n.nationkey

AND n.regionkey=r.regionkey

AND r.name=’AFRICA’

AND orderdate= ’1993-07-01’

GROUP BY n.name;

In Datalog:

Q5(N5, SUM(sumex)) : −
C(CK,N4, A4, NK,P4, B4,MS,C4), O(OK,CK, OS, TR,′ 1993 − 07 − 01′, OP,CL, SP,C7),
V 5(OK,SK,SUMEX, totalcount), S(SK,N2, A2, NK,P 2, B2, C2),
Nat1(NK,N5, RK,C5), R(RK,′ AFRICA′, C6).

Forecasting Revenue Change Query (Q6)

1. Objective: Quantifies the amount of revenue increase that would have resulted from eliminating certain
companywide discounts in a given percentage range in a given year. Asking this type of “what if” query
can be used to look for ways to increase revenues.

2. Modified query Q6 for the experiments, in SQL:

SELECT

SUM(l_extendedprice)

FROM

lineitem

WHERE

l_shipdate = date ‘[DATE]’

AND l_discount = ‘[DISCOUNT]’

AND l_returnflag = ‘[RETURNFLAG]’;

3. Modified query Q6 for the experiments, in Datalog:

q6(sum(EX)) :-
L(OK,PK,SK,LN,QT,EX, ‘discount′ , TX, ‘r′, LS, ‘date′, CD,RD,SI, SM,C8).

4. Input for product-of-dimensions lattice:

qP

6
(DS,SD,RF)

5. Definition of product-of-dimension view for the query: on prodOfDims, see Section B.2.
In SQL:

SELECT discount, returnflag, linestatus, shipdate,

SUM(extendedprice) AS sumex, count(*) AS totalcount

INTO _0120

FROM prodOfDims

GROUP BY discount, returnflag, linestatus, shipdate;

In Datalog:

V 120(DS,RF,LS, SD, SUM(ex), count(∗)) : −
prodOfDims.

6. Rewriting of the query using the product-of-dimension view:
In SQL:

SELECT SUM(sumex)

FROM _0120

WHERE shipdate = date ’1994-09-01’

AND discount = 0.06

AND returnflag = ’R’;

In Datalog:

Q6(SUM(sumex)) : −
V 120(0.06,′ R′, LS,′ 1994 − 09 − 01′, SUMEX, totalcount).

7. Input for fact-table lattice:

qF
6

(DS,SD,RF)

8. Definition of fact-table view for the query:
In SQL:

SELECT discount, returnflag, linestatus, shipdate,

SUM(extendedprice) AS sumex, count(*) AS totalcount

INTO _120

FROM lineitem

GROUP BY discount, returnflag, linestatus, shipdate;

In Datalog:

V 120(DS,RF,LS, SD, SUM(EX), count(∗)) : −
L(OK,PK,SK,LN,QT,EX,DS, TX,RF,LS, SD,CD,RD,SI, SM, C8).

9. Rewriting of the query using the fact-table view:
In SQL:

SELECT SUM(sumex)

FROM _120

WHERE shipdate =’1994-09-01’

AND discount = 0.06

AND returnflag = ’R’;

In Datalog:

Q6(SUM(sumex)) : −
V 120(0.06,′ R′, LS,′ 1994 − 09 − 01′, SUMEX, totalcount).

Volume Shipping Query (Q7)

1. Objective: Determines the value of goods shipped between certain nations to help in the renegotiation
of shipping contracts.

2. Modified query Q7 for the experiments, in SQL:

SELECT

n1.n_nationkey AS supp_nation,

n2.n_nationkey AS cust_nation,

SUM(l_extendedprice) AS revenue

FROM

supplier,

lineitem

orders,

customer,

nation n1,

nation n2

WHERE

s_suppkey = l_suppkey

AND o_orderkey = l_orderkey

AND c_custkey = o_custkey

AND s_nationkey = n1.n_nationkey

AND c_nationkey = n2.n_nationkey

AND n1.n_name = ‘[NATION1]’

AND n2.n_name = ‘[NATION2]’

AND l_shipdate = date ‘1995-01-01’

GROUP BY

supp_nation,

cust_nation;

3. Modified query Q7 for the experiments, in Datalog:

q7(NK1, NK2, sum(EX)) :-
S(SK,N2, A2, NK1, P2, B2, C2),
L(OK,PK,SK,LN,QT,EX,DS, TX,RF,LS, ‘1995 − 01 − 01′, CD,RD,SI, SM,C8),
O(OK,CK,OS, TR,OD,OP,CL, SP,C7),
C(CK,N4, A4, NK2, P4, B4,MS,C4),
Nat1(NK1, ‘nation1′, RK1, C51),
Nat2(NK2, ‘nation2′, RK,C52).

4. Input for product-of-dimensions lattice:

qP
7

(NK1, NK2, N51, N52, SD)

5. Definition of product-of-dimension view for the query: on prodOfDims, see Section B.2.
In SQL:

SELECT linestatus, shipdate, nationkey2, n2_name, nationkey1,

n1_name, regionkey, SUM(extendedprice) AS sumex,

count(*) AS totalcount

INTO _6496

FROM prodOfDims

GROUP BY linestatus, shipdate, nationkey2, n2_name, nationkey1,

n1_name, regionkey;

In Datalog:

V 6496(LS, SD,NK2, N2.name,NK1, N1.name,RK,SUM (ex), count(∗)) : −
prodOfDims.

6. Rewriting of the query using the product-of-dimension view:
In SQL:

SELECT nationkey1 AS supp_nation, nationkey2 AS cust_nation,

SUM(sumex) AS revenue

FROM _6496

WHERE n1_name = ’CHINA’

AND n2_name = ’GERMANY’

AND shipdate = ’1995-03-31’

GROUP BY supp_nation, cust_nation;

In Datalog:

Q7(NK1, NK2, SUM(sumex)) : −
V 6496(LS,′ 1995 − 03 − 31′, NK2,′ GERMANY ′, NK1,′ CHINA′, RK, sumex, totalcount).

7. Input for fact-table lattice:

qF
7

(OK,SK,SD)

8. Definition of fact-table view for the query:
In SQL:

SELECT orderkey, suppkey, linestatus, shipdate,

SUM(extendedprice) AS sumex, count(*) AS totalcount

INTO _101

FROM lineitem

GROUP BY orderkey, suppkey, linestatus, shipdate;

In Datalog:

V 101(OK,SK,LS, SD, SUM(EX), count(∗)) : −
L(OK,PK,SK,LN,QT,EX,DS, TX,RF,LS, SD,CD,RD,SI, SM, C8).

9. Rewriting of the query using the fact-table view:
In SQL:

SELECT n1.nationkey AS supp_nation, n2.nationkey AS cust_nation, SUM(sumex) AS revenue

FROM supplier s, _101 l, orders o, customer c, nation1 n1, nation2 n2

WHERE l.suppkey = s.suppkey

AND l.orderkey = o.orderkey

AND o.custkey = c.custkey

AND s.nationkey = n1.nationkey

AND c.nationkey = n2.nationkey

AND n1.name = ’CHINA’

AND n2.name = ’GERMANY’

AND shipdate = date ’1995-03-31’

GROUP BY supp_nation, cust_nation;

In Datalog:

Q7(N1.NK1, N2.NK2, SUM(sumex)) : −
S(SK,N2, A2, NK1, P2, B2, C2), V 101(OK,SK,LS,′ 1995 − 03 − 31′, SUMEX, totalcount),
O(OK,CK,OS, TR,OD,OP,CL, SP,C7), C(CK,N4, A4, NK2, P4, B4,MS, C4),
Nat1(NK1,′ CHINA′, RK1, C51), Nat2(NK2,′ GERMANY ′, RK2, C52).

National Market Share Query (Q8)

1. Objective: Determines how the market share of a given nation within a given region has changed over
two years for a given part type.

2. Modified query Q8 for the experiments, in SQL:

SELECT

n1.n_name,

n2.n_name,

SUM(l_extendedprice)

FROM

part,

supplier,

lineitem

orders,

customer,

nation n1,

nation n2,

region

WHERE

p_partkey = l_partkey

AND s_suppkey = l_suppkey

AND l_orderkey = o_orderkey

AND o_custkey = c_custkey

AND c_nationkey = n2.n_nationkey

AND n1.n_regionkey = r_regionkey

AND r_name = ‘[REGION]’

AND s_nationkey = n1.n_nationkey

AND o_orderdate = date ‘1995-01-01’

AND p_type = ‘[TYPE]’

GROUP BY

n1.n_name,

n2.n_name;

3. Modified query Q8 for the experiments, in Datalog:

q8(N52, N51, sum(EX)) :-
P (PK,N1,MF,BR, ‘type′, SZ,CN,RT,C1),
S(SK,N2, A2, NK1, P2, B2, C2),
L(OK,PK,SK,LN,QT,EX,DS, TX,RF,LS, SD,CD,RD,SI, SM, C8),
O(OK,CK,OS, TR, ‘1995 − 01 − 01′, OP,CL, SP,C7),
C(CK,N4, A4, NK2, P4, B4,MS,C4),
Nat2(NK2, N52, RK1, C52),
Nat1(NK1, N51, RK,C51),
R(RK, ‘region′, C6).

4. Input for product-of-dimensions lattice:

qP
8

(N51, N52, TP,OD,N6)

5. Definition of product-of-dimension view for the query: on prodOfDims, see Section B.2.
In SQL:

SELECT nationkey2, n2_name, orderdate, type, nationkey1,

n1_name, regionkey, name, SUM(extendedprice) AS sumex,

count(*) AS totalcount

INTO _7936

FROM prodOfDims

GROUP BY nationkey2, n2_name, orderdate, type, nationkey1,

n1_name, regionkey, name;

In Datalog:

V 7936(NK2, N2.name,OD, TP,NK1, RK,R.name, SUM(ex), count(∗)) : −
prodOfDims.

6. Rewriting of the query using the product-of-dimension view:
In SQL:

SELECT n1_name, n2_name, SUM(sumex)

FROM _7936

WHERE orderdate= ’1996-11-30’

AND name=’ASIA’

AND type= ’ECONOMY BURNISHED TIN’

GROUP BY n1_name, n2_name;

In Datalog:

Q8(N1.name,N2.name, SUM(sumex)) : −
V 7936(NK2, N2.name,′ 1996 − 11 − 30′, TP,NK1, RK,′ ASIA′, sumex, totalcount).

7. Input for fact-table lattice:

qF
8

(PK,SK,OK)

8. Definition of fact-table view for the query:

In SQL:

SELECT orderkey, partkey, suppkey, linestatus,

SUM(extendedprice) AS sumex, count(*) AS totalcount

INTO _039

FROM lineitem

GROUP BY orderkey, partkey, suppkey, linestatus;

In Datalog:

V 039(OK,PK,SK,LS, SUM(EX), count(∗)) : −
L(OK,PK,SK,LN,QT,EX,DS, TX,RF,LS, SD,CD,RD,SI, SM, C8).

9. Rewriting of the query using the fact-table view:

In SQL:

SELECT n1.name, n2.name, SUM(sumex)

FROM part p, supplier s, _039 l, orders o, customer c,

nation1 n1, nation2 n2, region r

WHERE p.partkey = l.partkey

AND s.suppkey = l.suppkey

AND l.orderkey = o.orderkey

AND o.custkey = c.custkey

AND c.nationkey = n2.nationkey

AND n1.regionkey = r.regionkey

AND r.name=’ASIA’

AND s.nationkey = n1.nationkey

AND o.orderdate= ’1996-11-30’

AND p.type= ’ECONOMY BURNISHED TIN’

GROUP BY n1.name, n2.name;

In Datalog:

Q8(N51, N52, SUM(sumex)) : −
P (PK,N1,MF,BR,′ ECONOMY BURNISHEDTIN ′, SZ,CN,RT,C1),
S(SK,N2, A2, NK1, P2, B2, C2), V 039(OK,PK,SK,SD, SUMEX, totalcount),
O(OK,CK,OS, TR,′ 1996 − 11 − 30′, OP,CL, SP,C7), C(CK,N4, A4, NK2, P4, B4,MS,C4),
Nat1(NK1, N51, RK,C51), Nat2(NK2, N51, RK1, C52), R(RK,′ ASIA′, C6).

Product Type Profit Measure Query (Q9)

1. Objective: Determies how much profit is made on a given line of parts, broken out by supplier nation
and year.

2. Modified query Q9 for the experiments, in SQL:

SELECT

n_name,

p_name,

SUM(l_extendedprice)

FROM

part,

supplier,

lineitem,

orders,

nation

WHERE

s_suppkey = l_suppkey

AND p_partkey = l_partkey

AND o_orderkey = l_orderkey

AND s_nationkey = n_nationkey

GROUP BY

n_name,

p_name;

3. Modified query Q9 for the experiments, in Datalog:

q9(N51, N1, sum(EX)) :-
P (PK,N1,MF,BR, TP, SZ,CN,RT,C1),
S(SK,N2, A2, NK1, P2, B2, C2),
L(OK,PK,SK,LN,QT,EX,DS, TX,RF,LS, SD,CD,RD,SI, SM, C8),
O(OK,CK,OS, TR,OD,OP,CL, SP,C7),
Nat1(NK1, N51, RK1, C51).

4. Input for product-of-dimensions lattice:

qP
9

(N51, N1)

5. Definition of product-of-dimension view for the query: on prodOfDims, see Section B.2.
In SQL:

SELECT partkey, type, p_name, nationkey1, n1_name,

SUM(extendedprice) AS sumex, count(*) AS totalcount

INTO _3074

FROM prodOfDims

GROUP BY partkey, type, p_name, nationkey1, n1_name;

In Datalog:

V 3074(PK, TP, P.name,NK1, N1.name, SUM(ex), count(∗)) : −
prodOfDims.

6. Rewriting of the query using the product-of-dimension view:
In SQL:

SELECT n1_name, p_name, SUM(sumex)

FROM _3074

GROUP BY n1_name, p_name;

In Datalog:

Q9(N1name, Pname, SUM(sumex)) : −
V 3074(PK, TP, Pname,NK1, N1name, SUMEX, totalcount).

7. Input for fact-table lattice:

qF
9

(OK,PK,SK)

8. Definition of fact-table view for the query: same as for Q8.
9. Rewriting of the query using the fact-table view:

In SQL:

SELECT n.name, p.name, SUM(sumex)

FROM part p, supplier s, _039 l, orders o, nation1 n

WHERE s.suppkey = l.suppkey

AND p.partkey = l.partkey

AND o.orderkey = l.orderkey

AND s.nationkey = n.nationkey

GROUP BY n.name, p.name;

In Datalog:

Q9(N51, N1, SUM(sumex)) : −
P (PK,N1,MF,BR, TP, SZ,CN,RT,C1), S(SK,N2, A2, NK,P 2, B2, C2),
V 039(OK,PK,SK,SUMEX, totalcount), O(OK,CK, OS, TR,OD,OP,CL, SP,C7),
Nat1(NK,N51, RK,C5).

Returned Item Reporting Query (Q10)

1. Objective: Identifies customers who might be having problems with the parts that are shipped to them.
2. Modified query Q10 for the experiments, in SQL:

SELECT

c_custkey,

c_name,

SUM(l_extendedprice),

c_acctbal,

n_name,

c_address,

c_phone,

c_comment

FROM

customer,

orders,

lineitem,

nation

WHERE

c_custkey = o_custkey

AND l_orderkey = o_orderkey

AND o_orderdate = date ‘[DATE]’

AND l_returnflag = ‘R’

AND c_nationkey = n_nationkey

GROUP BY

c_custkey,

c_name,

c_acctbal,

c_phone,

n_name,

c_address,

c_comment;

3. Modified query Q10 for the experiments, in Datalog:

q10(CK,N4, B4, N52, A4, P4, C4, sum(EX)):-
C(CK,N4, A4, NK2, P4, B4,MS,C4),
O(OK,CK,OS, TR, ‘date′, OP,CL, SP,C7),
L(OK,PK,SK,LN,QT,EX,DS, TX, ‘r′ , LS, SD,CD,RD,SI, SM,C8),
Nat2(NK2, N52, RK,C52).

4. Input for product-of-dimensions lattice:

qP
10

(CK,N4, B4, N52, A4, P4, C4, OD,RF)

5. Definition of product-of-dimension view for the query: on prodOfDims, see Section B.2.
In SQL:

SELECT returnflag, custkey, c_name, acctbal, address,

phone, comment, nationkey2, n2_name, orderdate, regionkey,

SUM(extendedprice) AS sumex, count(*) AS totalcount

INTO _5008

FROM prodOfDims

GROUP BY returnflag, custkey, c_name, acctbal, address,

phone, comment, nationkey2, n2_name, orderdate, regionkey;

In Datalog:

V 5008(RF,CK,C.name,C.B4, C.A4, C.P 4, C.C4, NK2, N2.name,OD,RK, SUM(ex), count(∗)) : −
prodOfDims.

6. Rewriting of the query using the product-of-dimension view:
In SQL:

SELECT custkey, c_name, SUM(sumex), acctbal, n2_name,

address, phone, comment

FROM _5008

WHERE orderdate= ’1993-07-01’

AND returnflag= ’R’

GROUP BY custkey, c_name, acctbal, phone, n2_name,

address, comment;

In Datalog:

Q10(CK,C.name, SUM(sumex), C.B4, N2.name,C.A4, C.P4, C.C4) : −
V 5008(′R′, CK,C.name,C.B4, C.A4, C.P4, C.C4, NK2, N2.name,′ 1993 − 07 − 01′, RK,

sumex, totalcount).

7. Input for fact-table lattice:

qF
10

(RF,OK)

8. Definition of fact-table view for the query:
In SQL:

SELECT orderkey, returnflag, SUM(extendedprice) AS sumex,

count(*) AS totalcount

INTO _017

FROM lineitem

GROUP BY orderkey, returnflag;

In Datalog:

V 017(OK,RF, SUM(EX), count(∗)) : −
L(OK,PK,SK,LN,QT,EX,DS, TX,RF,LS, SD,CD,RD,SI, SM, C8).

9. Rewriting of the query using the fact-table view:
In SQL:

SELECT c.custkey, c.name, SUM(sumex), c.acctbal,

n.name, c.address, c.phone, c.comment

FROM customer c, orders o, _017 l, nation2 n

WHERE c.custkey = o.custkey

AND l.orderkey = o.orderkey

AND o.orderdate= ’1993-07-01’

AND l.returnflag= ’R’

AND c.nationkey = n.nationkey

GROUP BY c.custkey, c.name, c.acctbal,

c.phone, n.name, c.address, c.comment;

In Datalog:

Q10(CCK,CN4, SUM(sumex), CB4, NN5, CA4, CP4, CC4) : −
C(CCK,CN4, CA4, NK,CP4, CB4,MS,CC4), V 017(OK,′ R′, LS, SUMEX, totalcount),
O(OK,CK,OS, TR,′ 1993 − 07 − 01′, OP,CL, SP,C7), Nat2(NK,NN5, RK,C5).

