
Reasoning about Complementary Intrusion Evidence

Yan Zhai, Peng Ning, Purush Iyer, Douglas S. Reeves
Cyber Defense Laboratory

Department of Computer Science
North Carolina State University

Raleigh, NC 29695-8207
yzhai, pning, purush, reeves@ncsu.edu

Abstract

This paper presents techniques to integrate and rea-
son about complementary intrusion evidence such as
intrusion alerts generated by intrusion detection sys-
tems (IDSs) and reports by system monitoring or vul-
nerability scanning tools. To facilitate the modeling of
intrusion evidence, this paper classifies intrusion evi-
dence into eitherevent-based evidenceor state-based evi-
dence. Event-based evidence refers to observations (or de-
tections) of intrusiveactions (e.g., IDS alerts), while
state-based evidence refers to observations of theef-
fects of intrusions on system states. Based on the inter-
dependency between event-based and state-based evi-
dence, this paper develops techniques to automatically
integrate complementary evidence into Bayesian net-
works, and reason about uncertain or unknown intrusion
evidence based on verified evidence. The experimen-
tal results in this paper demonstrate the potential of the
proposed techniques. In particular, additional observa-
tions by system monitoring or vulnerability scanning
tools can potentially reduce the false alert rate and in-
crease the confidence in alerts corresponding to successful
attacks.

1. Introduction

It is well-known that current intrusion detection systems
(IDSs) produce large numbers of alerts, including both ac-
tual and false alerts. The high volume and the low quality
of intrusion alerts (i.e., missed attacks and false alerts)make
it a very challenging task for human users or intrusion re-
sponse systems to understand the alerts and take appropri-
ate actions.

Several alert correlation techniques have been proposed
to facilitate the analysis of intrusion alerts, including those
based on the similarity between alert attributes [8, 12, 30,

33], previously known (or partially known) attack scenar-
ios [13, 14], and prerequisites and consequences of known
attacks [9, 24]. However, most of these correlation meth-
ods focus on IDS alerts, overlooking other intrusion evi-
dence provided by system monitoring tools (e.g., anti-virus
software) and vulnerability scanning tools (e.g., Nessus [3],
SATAN [16], Nmap [17]). Since none of the above methods
can perfectly construct attack scenarios due to the imperfec-
tion of the IDSs, it is desirable to include additional, com-
plementary intrusion evidence to further improve the per-
formance of intrusion analysis.

Several researchers recently investigated ways to con-
sider multiple information sources during intrusion analysis
[23,26]. A formal model named M2D2 was proposed to rep-
resent data relevant to alert correlation, including character-
istics of monitored systems, properties of security tools,and
observed events [23]. Though quite useful for alert correla-
tion, M2D2 does not provide a specific mechanism to au-
tomatically reason about information provided by multiple
sources. Another mission-impact-based method [26] rea-
sons about the relevance of alerts by fusing alerts with the
targets’ topology and vulnerabilities, and ranks alerts based
on their relationships with critical resources and users’ in-
terests. Though the mission-impact based method can auto-
mate the analysis of intrusion alerts, the construction of a
mission-impact based model requires substantial human in-
tervention, and the constructed model is highly dependent
on the monitored systems. Thus, it is desirable to seek other
effective mechanisms that can handle complementary intru-
sion evidence automatically.

In this paper, we develop techniques to automatically in-
tegrate and reason about complementary intrusion evidence,
including IDS alerts, reports from system monitoring or vul-
nerability scanning tools, and human observations.

Our approach is based on the interdependency between
attacks and system states. That is, an attack may need cer-
tain system states to be successful, and will modify the sys-
tem states as a result. However, IDS alerts, which represent

detected attacks, are uncertain due to the imperfection of
current IDSs. To reason about uncertain IDS alerts, our ap-
proach automatically builds Bayesian networks that consist
of variables representing IDS alerts and system states. With
additional, complementary evidence about system states
provided by system monitoring tools, vulnerability scan-
ning tools, and human observations, we can then make fur-
ther inference about uncertain IDS alerts. As a result, we
can increase our confidence in alerts corresponding to suc-
cessful attacks, and at the same time reduce the confidence
in false alerts.

The main contribution of this paper is a reasoning frame-
work for complementary intrusion evidence. To our best
knowledge, this is the first attempt toautomaticallyinte-
grate and reason about complementary intrusion evidence
such as IDS alerts and vulnerability scanning reports. In
addition, we also perform a series of experiments to vali-
date our approach and gain further insights into the prob-
lem. The experimental results demonstrate the potential of
the proposed approach as well as the effectiveness of our
techniques.

The rest of this paper is organized as follows. The next
section describes our techniques to integrate and reason
about complementary intrusion evidence. Section 3 presents
the results of our initial experiments. Section 4 discussesre-
lated work. Section 5 concludes this paper and points out
some future research directions. The appendix includes ad-
ditional details about our experiments.

2. Reasoning Framework

In this section, we present our techniques to reason about
complementary intrusion evidence, including IDS alerts and
reports from system monitoring tools or vulnerability scan-
ning tools. In the following, we first describe our represen-
tation of intrusion evidence, and then present the frame-
work to reason about complementary intrusion evidence us-
ing Bayesian networks.

2.1. Modeling Intrusion Evidence

We classify intrusion evidence into two categories:
event-based evidenceand state-based evidence. Event-
based evidence refers to observations (or detections)
of attacks. For example, an IDS alert of a buffer over-
flow attack against a web server is event-based evidence.
State-based evidence refers to observations of theef-
fectof attacks on system states. For example, the existence
of a rootkit1 on a machine is state-based evidence indicat-

1 A rootkit is a collection of tools (programs) that a hacker uses to
mask intrusion and obtain administrator-level access to a computer or
computer network (http://searchsecurity.techtarget.
com).

ing that the machine has been compromised.

2.1.1. System Attributes and State-Based EvidenceWe
follow [6, 29] to represent system states (e.g., vulnerabil-
ities, attacker access privileges, and network connectivi-
ties) assystem attributes(or simply attributes), each of
which is a boolean variable representing whether the sys-
tem is in a certain state or not. For example, we may
useRootkitInstalled = True to represent that a
rootkit is installed on the system of concern. Notation-wise,
we use a system attribute directly to represent that it is True,
and use its negation to represent that it is False. For exam-
ple, we may useRootPrivilege to represent that an at-
tacker has acquired root privilege on the system, and use its
negation¬RootPrivilege if not. There may be implica-
tion relationships between attributes, which also come from
expert knowledge. For example,RootPrivilege im-
plies FileTransferPrivilege, which indicates that
an attacker having the root privilege also has the privilegeto
transfer files from/to the system. Note that such a represen-
tation can be extended to include variables to provide more
flexibility. For example, we may useRootPrivilege
(x) to represent the attacker has acquired root privilege on
hostx. However, for simplicity, we do not do so in this pa-
per.

State-based evidence consists of observations on sys-
tem attributes related to possible attacks. They may be col-
lected by vulnerability scanning tools (e.g., Nmap [17], XS-
can [34]), system monitoring tools (e.g., anti-virus soft-
ware), or through human observations. Such system state
information may be changed during running time, and such
changes may be detected by monitoring/scanning tools. We
refer to the change of an attribute as anattribute alteration.
Since these attribute alterations are potentially relatedto at-
tacks, the time information of them is also important for in-
trusion analysis. Thetimestampof an attribute alteration is
the time when the alteration is detected or inferred. Such a
timestamp can be stored together with each attribute alter-
ation.

For convenience, we refer to the probability for a system
attribute to be True as theconfidencein the attribute. When a
system attribute is in negation form, the confidence in the at-
tribute is the probability that the negation form is True. For
example, the confidence in¬sshd running is the prob-
ability that¬sshd running is True. Compared with IDS
alerts, reports by scanning/monitoring tools are more reli-
able due to the verifiable nature of most system attributes.
We can assume the confidence in a verifiable attribute is1.
However, some system attributes may not be verified be-
cause of the absence of an appropriate scanner. In addition,
some system attributes are difficult to check due to the se-
curity policy on the target system or performance reasons.
In such cases, unless we have any further knowledge or evi-
dence about the attribute, we assume the confidence in such

an attribute is0.5. Intuitively, this represents the lack of in-
formation about the state of the attribute.

2.1.2. Event-Based EvidenceTypical sources of event-
based evidence include event logs, IDS alerts, network traf-
fic logs, system call logs, etc. Different kinds of logs pro-
vide event-based evidence on the system in different gran-
ularities and toward different aspects of the system. In this
paper, the only event-based evidence we consider is IDS
alert, which is in a coarser granularity but more under-
standable by human compared with other types of system
logs. We will use IDS alerts and event-based evidence in-
terchangeably in the rest of the paper. Our representation of
IDS alerts is closely related to our model of attacks. Thus,
we first introduce our representation of attacks before dis-
cussing IDS alerts.

Similar to [6,29], we model an attack as an atomic trans-
formation that establishes a set of system attributes
calledpostcondition, given a logical condition calledpre-
condition over system attributes. Intuitively, if the pre-
condition of an attack is satisfied, the attack can then
transform the system into the state specified by its post-
condition. Given a certain privilege, an attacker may
exploit some vulnerabilities of a system to launch an at-
tack, which may introduce further vulnerabilities into
the system, or give more privileges to the attacker.
For example, an attacksshd buffer overflow
may have sshd running∧sshd vulnerable
as the precondition, and {root access,
¬sshd running} as the postcondition. In other words,
ansshd buffer overflow attack requires that the vic-
tim system runs a vulnerablesshd daemon, and as the
result of this attack, the attacker gains root access privi-
lege and thesshd daemon stops running.

IDS alerts represent potentially detected attacks. Thus,
we can model IDS alerts in a similar way to attacks. How-
ever, IDS alerts are not exactly the attacks launched toward
the target due to the imperfection of current IDSs. On the
one hand, an IDS may report a false alert when it mistakes
a normal operation for an attack. On the other hand, an IDS
may raise no alert about an actual attack if the IDS does
not recognize it. One goal of this paper is to use the ad-
ditional information provided by state-based intrusion evi-
dence to enhance our confidence in alerts representing suc-
cessful attacks and at the same time reduce our confidence
in false alerts. Moreover, we would like to make reason-
able hypotheses about attacks possibly missed by the IDSs
based on complementary evidence, and thus make the re-
constructed attack scenario more consistent and closer to
the reality.

To facilitate the reasoning about IDS alerts, we use the
prior confidence of each attack to represent its quantitative
property. Theprior confidence of an attack type T, denoted
Pr(T), is the prior belief we have about the probability for a

corresponding alert to represent an actual typeT attack. The
prior confidence of each type of attack can be gathered by
analyzing historical data. It represents our prior knowledge
about IDS alerts based on previous experience. One may
observe that prior confidences are not constant for each at-
tack type as they are dependant on not only the quality of
the IDSs, but also the attack frequency and background ac-
tivities in a specific system. However, in the later part of this
paper, we will see that our reasoning approach is still use-
ful despite the dynamic nature of the prior confidences, be-
cause it reduces the uncertainty of intrusion evidence when
additional verified evidence is considered. In some sense,
Pr(T) is thebelief that a typeT alert is a real instance of at-
tack, and our reasoning framework is to increase or decrease
our belief in alerts based on complementary instusion evi-
dence.

Similar to the confidence in a system attribute, we refer
to the probability that an IDS alert corresponds to asuccess-
ful attackas theconfidencein the alert.

We summarize our prior knowledge about IDS alerts and
attacks below:

• An IDS alert e of attack typeT has the probability
Pr(T) to be a real attack;

• A real attackE has probability 1 to be successful when
its precondition is satisfied by the system attributes be-
fore the attack happens;

• A real attackE has probability 0 to be successful if
its precondition is not satisfied by the system attributes
before the attack happens;

• The attributes in the postcondition of a successful at-
tackE are True after the attack happens.

2.2. Basic Reasoning framework

In normal situations, a system should stay in a legitimate
state. Starting from a legitimate system state, an attacker
may launch a sequence of attacks to get the system into
some intermediate states, and finally into the attacker’s ob-
jective state. It is easy to see that there exist causal relation-
ships among attacks and system attributes. Our approach is
to use these causal relationships to reason about comple-
mentary IDS alerts and system attributes reported by scan-
ning/monitoring tools. Specifically, we organize IDS alerts
and system attributes into Bayesian networks [18] based on
those causal relationships, and use these Bayesian networks
to reason about complementary intrusion evidence.

2.2.1. Network Structure To identify and represent these
causal relationships, we integrate IDS alerts with system at-
tributes based on the preconditions and postconditions of at-
tacks. Specifically, we place IDS alerts, available system at-
tributes, and system attributes possibly modified by the cor-

responding attacks into a directed graph, which we call an
alert-attribute network.

Each node in such a graph is a binary variable represent-
ing either an IDS alert or a system attribute. For brevity,
we refer to a node representing an IDS alert (or a system
attribute) directly as an IDS alert (or a system attribute).
When a node represents a system attribute, it can denote ei-
ther a piece of state-based evidence (e.g., scan report), or
a hypothesized attribute alteration caused by an IDS alert.
A node denotes a hypothesized attribute when the attribute
is in the postcondition of the attack corresponding to an
IDS alert. Each node is timestamped. The timestamp of an
alert node is the time when the corresponding activities take
place, while the timestamp of an attribute node is the time
when the attribute alteration is observed or inferred.

All edges in the graph are directed. An edge from an alert
node to an attribute node represents that the correspond-
ing attack changes the system attribute into this new state.
An edge from an attribute node to an alert node represents
that the attribute is a part of the precondition of the corre-
sponding attack. An edge from an attribute node to another
attribute node represents that the first attribute implies the
second attribute. There are no edges that connect two alert
nodes together directly.

We construct such a graph starting with the initial sys-
tem state, which is represented in the graph as a set of at-
tribute nodes corresponding to the initial attributes. As time
goes by, new IDS alerts and system monitoring reports are
raised. When a new IDS alert is reported, a corresponding
alert node is added into the graph only if the alert’s pre-
condition is evaluated to be True given the attributes pre-
sented in the graph by the time. Also, edges are added from
the latest attribute nodes corresponding to the attributesin
the alert’s precondition to the newly generated alert node (to
represent the causal relationships). To serve the same pur-
pose, edges from the alert node to its postcondition attribute
nodes are also established when they are created. For each
attribute node in the alert’s postcondition, if nodes related
to the same attribute already exist in the graph, which could
either be caused by some previous alerts or reported by sys-
tem monitoring tools, an edge from the latest such node to
the new node is added to represent the implication relation-
ship. By doing so, each attribute node in the graph repre-
sents the accumulative effects on the attribute of all the prior
related alerts. Thus, when an attribute is part of the precon-
dition of an alert, only the latest attribute node before this
alert is connected to the alert node. Note that we represent
this construction process like it is done in real-time to em-
phasize the importance of the time sequence of intrusion ev-
idence, however, all the construction and analysis processes
can be done offline following the time sequence of the IDS
alert log and scan reports.

One may notice that an attack may affect many attributes,

and some of the attributes does not contribute to other alerts’
corresponding attacks. We are not cutting the attributes out
because we want to make the graph as close to the system
state history as possible. We will see in later sections thatthe
attribute information is very important in making hypothe-
ses about possible missed attacks, while including such non-
contribution attributes really does not increase the complex-
ity of the Bayesian inference computation in the next step.

�� ��� ����� �� 	
� �� �	�

�� ��� ��

�
�

�		�� � �����
�
��� ��� � �� �����

�	� ���

��� ��� ��

�
�

��	�� ���� 	
�
�
��� ��� �

 ��
� �� � ��� �� ��

Figure 1. A Bayesian network built from intru-
sion evidence

Figure 1 shows an example alert-attribute network,
which is constructed as discussed above. The gray nodes
represent initial or updated system attributes, and the
white nodes represent IDS alerts. Initially, both at-
tribute sshd running and vulnerable sshd are
set to True. For simplicity, we do not show the ini-
tial system attributes that are not involved in the pre-
condition or postcondition of the corresponding at-
tacks. Alert sshd buffer overflow indicates an
attempt to compromise the system through the vulnera-
ble sshd. The precondition ofsshd buffer overflow
is sshd running∧vulnerable sshd, and the post-
condition is {¬sshd running, root access}.
Thus, this attempt can be successful since its precondition
is satisfied in the system state. As a result, this attack in-
troduces two attribute alterations:¬sshd running and
root access. In other words, the attacker stops the sshd
daemon and gains root access to the system. As shown in
Figure 1, the attacker then installs a mstream zombie pro-
gram, changing the attributeDDoS daemon installed
from False to True.

2.2.2. Conditional Probabilities A Bayesian network is
a directed acyclic graph (DAG), where each directed edge
represents a causal relationship between the two ends of the
edge, and each node stores a conditional probability table
describing the statistical relationships between the nodeand
its parent nodes [18].

Based on the construction of the alert-attribute network,
it is easy to see that a graph constructed in that way is

acyclic. Indeed, all the edges are from previously existing
nodes to newly added nodes, and thus will not result in any
cycle. From our discussion above, the causal relationships
among the nodes in an alert-attribute network are obvious.
Now we discuss how to determine each node’s conditional
probability table so that the alert-attribute network becomes
a Bayesian network.

When an IDS alerte is reported, the probability
for the alert e to be a real attack isPr(e). The vari-
able e being True represents that the corresponding at-
tack is successful. We assume an attack will succeed if
its precondition is satisfied. Thus, the probability ofe be-
ing True is the prior confidence of the corresponding
IDS alert when its precondition is satisfied, or0 other-
wise. Since attack’s precondition is a logic formula of sys-
tem attributes, the conditional probability of an alert node
can be easily derived. The conditional probability ta-
ble associated with nodesshd buffer overflow
in Figure 2 shows such an example, where we as-
sumePr(sshd buffer overflow) = 0.6. Note that
the probability of an IDS alert variable being False un-
der these preconditions can be easily computed from the
above probabilities. Thus, we do not include them here.

�� � �� � � � � � �

� � !� " #$$ � �� � % � �$ &�'

� � !� % # &(� �� " &�

) � � !� �# ((*(+

� � !� �# ((*(+

sshd_
running

sshd_
vulnerable

P(sshd_buffer_
overflow=TRUE)

FALSE FALSE 0
FALSE TRUE 0
TRUE FALSE 0
TRUE TRUE 0.6

sshd_buffer
_overflow

P(root_access
=TRUE)

FALSE 0
TRUE 1

sshd_buffer
_overflow

P(¬sshd_running
=TRUE)

FALSE 0
TRUE 1

Figure 2. Conditional probability tables in an
alert-attribute network

Conditional probability tables associated with system at-
tributes are even simpler to compute. Indeed, if an IDS alert
e represents a successful attack, all the system attributes in
its postcondition should turn to True. Otherwise, the system
attributes that are False before the IDS alert should remain
False. If two attribute nodes of the same attribute are con-
nected together with an edge representing implication rela-
tionship, and the earlier one is True, the latter one should
also be True. Thus, the conditional probability of a system
attributea being True would be1 if at least one of its par-

ent variables (either alert nodes or attribute nodes) is True,
and 0 if all its parent variables are False (unless it is re-
ported by system scanning/monitoring tools). The tables as-
sociated withroot access and¬sshd running show
examples of such conditional probabilities. Similar to the
above example, we only show the probabilities for the at-
tributes to be True, from which the probabilities for the at-
tributes to be False can be easily computed.

2.2.3. Reasoning about Intrusion EvidenceThe
Bayesian networks constructed in this way offer an ex-
cellent opportunity to reason about the uncertain in-
trusion evidence, particularly the IDS alerts. We call
those attributes with a confidence value of1 the veri-
fied attributes. The report of such verified attributes are
observations of facts. When new verified attributes are re-
ported by system monitoring/scanning tools, we can use
these observations to re-compute the confidence val-
ues in the related previous objects in the network with
Bayesian inference. And for each node in the Bayesian net-
work, its final probability value is the combined result of
all the evidence and knowledge. Take the Bayesian net-
work shown in Figure 2 as an example. We may be
uncertain about an IDS alert reporting a buffer overflow at-
tack againstsshd, since the IDS has reported the same
type of alerts incorrectly in the past. However, if by scan-
ning the system we find thatsshd is not running properly
after the IDS reports this alert, we can then update the con-
fidence in¬sshd running to be 1. Thus, we are more
certain about the alert, which caused the attribute alter-
ation. Though human users would do the same reasoning,
placing these evidence into Bayesian networks offers addi-
tional benefits, since such a reasoning process can then be
performed automatically and systematically. Also such rea-
soning could become too difficult for human users when
dealing with very complicated scenarios.

It is easy to see that the more verified state-based evi-
dence we have, the better judgement we can make by rea-
soning about the uncertain IDS alerts and system states.
This suggests that we should monitor the system closer and
possibly scan the system more frequently, as system mon-
itoring tools and vulnerability scanning tools usually gen-
erate evidence with high confidence value. However, such
monitoring and scanning are often expensive and may hurt
the other applications by consuming resources. Thus, it is
important to determine the right balance for system moni-
toring and scanning activities. Nevertheless, this problem is
out of the scope of this paper. We leave it for future consid-
eration.

2.2.4. Merging Attribute Nodes As discussed ear-
lier, there may be edges between attribute nodes corre-
sponding to the same attribute, which represent implica-
tion relationships between them. We observe that in certain

cases, such attribute nodes can be merged without affect-
ing the reasoning about intrusion evidence in alert-attribute
networks. This observation is reflected by Lemma 1, which
is presented next. For the sake of presentation, if two at-
tribute nodesA andB are connected with edge(A, B),
we refer to the action of removing nodeA with all its out-
going edges and redirecting all its incoming edges to node
B asmergingA into B.

Lemma 1 Consider two attribute nodesA and B corre-
sponding to the same attribute and connected by an edge
(A, B). If either there is no other outgoing edge from node
A or A is instantiated (verified), mergingA into B does not
change the probability of any other node when reasoning
about intrusion evidence.

proof: The proof is divided into two steps. The first step
is to prove that merging the two nodes will not affect other
nodes in the downward reasoning in the Bayesian network.
The second step is to prove that such a merge will not af-
fect the posterior probability values of other nodes in the up-
ward reasoning (belief updating) in the Bayesian network.

As shown in Figure 3, we assum nodeA’s par-
ent nodes areX1, X2, . . . , Xm, node B’s parent nodes
are Y1, Y2, . . . , Yn andA, and(A,B) is the only outgo-
ing edge fromA.

,-

./

0

1

,/ 222

.3222

,-

./

0

,/ 222

.3222

Figure 3. Merging two attribute nodes

SinceA andB are both attribute nodes,A is True if any
of X1, X2, . . ., Xm is True, andB is True if any ofA, Y1,
Y2, . . ., Yn is True. Thus,B is True if any ofA, X1, X2, . . .,
Xm, Y1, Y2, . . ., Yn is True. After mergingA intoB,B’s par-
ent nodes areX1, X2, . . ., Xm, Y1, Y2,. . ., Yn, andB is True
if any of these nodes is True, which is exactly the same logic
equation as before the merging. Thus, in the downward rea-
soning process, the probability value of any node other than
A in the network remains the same as before mergingA into
B.

When computing the posterior probability value of a
nodeM in the network after there is additional verified evi-
denceE, the posterior probability can be computed as

P (M |E) =
P (M, E)

P (E)
.

In this equation,P (E) and P (M, E) are derived from
margining out all the other variables in the joint probabil-

ity density functionProb(S), whereS is the set of all the
nodes (X1, X2, · · ·, Y1, · · ·, M , · · ·) in the Bayesian net-
work.

BecauseA andB’s probability values solely depend on
Xi and Yj , given a set of input(A, B, {Xi}, {Yi}, · · ·),
the probability valueProb(A, B, {Xi}, {Yj}, · · ·) either
equals to0 asA andB cannot beTrue given({Xi}, {Yj}),
or equals toProb({Xi}, {Yj}, · · ·) asA andB are deter-
mined to beTrue given({Xi}, {Yj}). Thus, the result of
margining outA andB from Prob(S) before mergingA
into B ∑

B

∑

A

Prob(A, B, {Xi}, {Yj}, · · ·)

equals to
∑

B=True

Prob({Xi}, {Yj}, · · ·). (1)

Similarly, margining outB from the joint probability den-
sity function of all nodes after the merge can also be repre-
sented as

∑

B=True

Prob′({Xi}, {Yj}, · · ·), (2)

whereProb′({Xi}, {Yj}, · · ·) is the joint probability den-
sity function of the rest of the nodes in the merged network.
BecauseA andB are solely dependant on{Xi} and{Yj},
andB’s conditional probablity table over({Xi}, {Yj}) does
not change after the merge, formula 1 equals to formula 2.
Thus, the posterior probability of any other node in the net-
work remains the same as before mergingA intoB. 2

With Lemma 1, we can recursively merge attribute nodes
that satisfy the condition specified in Lemma 1 to reduce the
complexity of the network structure without affecting the
reasoning result.

2.3. Alert Aggregation and Abstraction

The reasoning framework can greatly reduce the num-
ber of false alerts, and provides a method to combine mul-
tiple observations in intrusion analysis. However, in real-
ity, IDSs often generate a large number of alerts for the
same attack during a short period of time. Such alerts may
be due to repeated attack attempts, or false alerts triggered
by similar and repeated normal operations. For example,
Snort [28] generated 24 “SNMP public access udp”
alerts in our experiment without raising any other alert dur-
ing a period of 10 minutes. As a result, these alerts share the
same parent nodes and child nodes in the Bayesian network.
This introduces two problems. First, a child node of the 24
“SNMP public access UDP” alerts has a conditional
probability table with224 entries. Having so many entries
makes it difficult to take advantage of existing Bayesian net-
work tools, though it is possible to reduce the storage over-
head by computing the conditional probability table on the

fly. Second, when we use verified evidence discovered later
to reason about these 24 alerts, the effect of the additional
evidence will spread over these 24 alerts, since we do not
know which of the 24 alerts indeed contributes to the mod-
ification of system attributes or later attacks.

In practice, when there are multiple consecutive alerts of
the same type of attack, we usually do not care which one is
the actual successful attack, but whether at least one of them
is successful and changes the system state. Thus, a natural
approach to addressing the above problem is to aggregate
such alerts together into one single node, which represents
“at least one of the component alerts corresponds to a suc-
cessful attack”. Specifically, we aggregate the alert nodes
that have the same attack type, parent nodes, and children
nodes into one aggregated alert node.

The conditional probability table of an aggregated alert
node can still be computed similarly. However, we need to
use aggregated prior confidence valuePra, which repre-
sents the probability that at least one of its component alerts
corresponds to an actual attack. Givenn component alerts
for attack typeT that are merged into one aggregated alert,
the aggregated prior confidencePra(T) can be computed
as

Pra(T) = 1 − (1 − Pr(T))n.

IDSs usually raise different alerts for similar attacks, or
variations of the same attack. For example, Snort has more
than 100 WEB-IIS related alerts, and many of them are ex-
ploiting the same unicode vulnerability and have the same
impact. In many cases we do not care about the subtle differ-
ence between these alert variations, but only want to know
if any of them is a successful attack. Thus, we may consider
these alerts as the same type of alerts in a coarser granu-
larity. To do so, we abstract alert variations into one com-
mon alert and apply alert aggregation. Specifically, we re-
place the attack type of each IDS alert with an abstract at-
tack type, and follow the same procedure as for alert ag-
gregation. Note that this abstraction requires human knowl-
edge about the alerts and attack types.

Since different variations of the alerts being aggregated
may have different prior confidence values, we need to ad-
just the computation of the aggregated prior confidence
slightly. The prior confidence is computed as below:

Pra(T) = 1 −

n∏

i=1

(1 − Pr(Typeai
)),

wherea1, a2, ..., an are the alerts to be aggregated,Typeai

is the attack type of alertai, andT is the aggregated attack
type.

2.4. Hypothesizing about Missed Attacks

With alert aggregation and abstraction, our model can
handle a larger number of alerts generated by IDSs. How-

ever, the model still cannot deal with missed attacks. When
there is a missed attack, the effect of the attack on the sys-
tem will not be reflected in the alert-attribute network, and
some later alerts corresponding to successful attacks may
be considered False. Thus, the alert-attribute network gen-
erated by the model may not reflect the reality when there
are missed attacks. In other words, the current model only
works when there are no missed attacks. (Note that this is
a common problem shared by almost all alert correlation
methods.) Because none of the current IDSs can guaran-
tee to detect all attacks, it is necessary to improve the rea-
son framework to deal with missed attacks.

We observe that when successful attacks are missed by
IDSs, it is still possible for the system monitoring tools to
catch the impact of the attacks on the system states. In other
words, we may observe “unexpected” attribute alterations
caused by the missed attacks. Such cases essentially cause
inconsistencyin the alert-attribute networks, where an at-
tribute alteration is reported by system monitoring tools but
there are no alert nodes in the network leading to the alter-
ation.

Considering the defectiveness of current IDS technol-
ogy, we can expect that suchinconsistenciesare bond
to happen in practice. Thus, we propose to hypothesize
about missed attacks based on the above inconsistencies
in alert-attribute networks. Inconsistencies are almost al-
ways caused by missed attacks: An “unexpected” attribute
alteration causing the inconsistencies can either be di-
rectly caused by some successful attack missed by IDSs, or
by a detected attack that does not appear in the network be-
cause its precondition is not satisfied in the network with-
out the missed successful attacks. The only exception is that
it could be caused by false alerts if the monotonicity prop-
erty of attacks does not hold for some particular types
of attacks, that is, a successful attack disables other at-
tacks’ preconditions. According to [29], this kind of
attacks are very rare. We can always recognize such at-
tacks and pay additional attention in the investigation when
they are involved.

Figure 4 shows an example to hypothesize about possi-
bly missed attacks to resolve such inconsistency. As we can
see in the figure, when the system monitoring tool reports
the fact that the backdoor “BackOrifice” was found in the
local system, the system adds node “BACKDOOR BackO-
rifice installed” to the graph immediately, which activates
the precondition of the later alert “BACKDOOR BackOri-
fice access”. However, there is no previous node possibly
causing the “BackOrifice installed” attribute set to True. To
fill in this gap, we look up the graph structure for estab-
lished attributes and attacks, the knowledge base for possi-
ble attacks that can cause this attribute alteration, and the
log of previously dropped alerts for possible related attacks.
According to the above information, we make a hypothesis

4 5 5 6 7 8 8 9 : :

; < = > ? @ @ 4
; 7 8 A @ B C D C 8 9 C E : 6 7 F F 9 G

; < = > ? @ @ 4
; 7 8 A @ B C D C 8 9 7 8 8 9 : :

H E : 6 7 F F
; 7 8 A @ B C D C 8 9

Figure 4. An example of hypothesized attack

of a possibly missed attack “Install BackOrifice” linking the
attribute nodes “Root access” and “BackOrifice installed”.
The hypothesized node and edges are presented with dot-
ted lines in the figure.

A hypothesis upon a possibly missed attack infers that

• the attack has happened,

• the attack has been missed by IDSs, and

• the attack is successful.

Thus, as the three properties are independant from each
other, the probability of a hypothesized attack being a cor-
rect hypothesis isPhypothesis = Phappened · Pmissed ·
Psuccessful, wherePhappened is the probability for the at-
tack to have happened,Pmissed is the probability for the
IDS to miss the attack, andPsuccessful is the probabil-
ity for the attack to succeed if it happens. From our pre-
vious discussion, the successfulness of an attack is deter-
mined by whether its precondition is satisfied by the sys-
tem attributes. Thus, a hypothesis will have a probability of
Phappened ·Pmissed if its precondition is satisfied by the sys-
tem attributes. Then, the conditional probabilty table of a
hypothesis node over the attributes in the attack’s precondi-
tion is similar as a normal alert node’s probability table ex-
cept that the non-zero value of the node in the conditional
probability table isPhappened · Pmissed instead ofPr.

Pmissed is the prior knowledge (or the belief) of hu-
man experts about known attack types, which can be
collected from historical data and experience. How-
ever, Phappen solely depends on the attacker’s knowl-
edge and personal preference, which is unpredictable.
There is no way that we can have a fixed value of this prob-
ability. Thus, we use the valuePmissed instead in the
conditional probability table, which represents the proba-
bility for the hypothesis to beTrue given the condition
that it has actually happened and its precondition is sat-
isfied. Accordingly, we refer to the probability computed

from the Bayesian network with this conditional prob-
ability table the confidence in the hypothesized attack.
Although this confidence value has a different mean-
ing from that in those normal alert nodes, it still shows
which hypothesis is more expectable given the available ev-
idence.

We add the the hypothesized attacks with the corre-
sponding conditional probability tables into the alert-
attribute network. From the earlier discussion, we can
see that such a hypothesis is made and placed into the
alert-attribute network only if the attack is possible given
the system state at the time. However, there may be later ev-
idence showing that some attribute in the pre/post-condition
of the hypothesized attack is not valid, and such evidence
will affect the belief of the hypothesized attacks via be-
lief update process in Bayesian inference. Thus, with the
Bayesian network inference, we can always keep the hy-
potheses consistent with our observations in the system.
For example, we may find negative evidence against a hy-
pothesis, and the Bayesian inference process may update
the probability of the hypothesized attack to0, imply-
ing that the hypothesis cannot be a successful attack.

Validation is necessary for all hypotheses. From the
above discussion about Bayesian inference about the hy-
potheses, we can see that the validation process is already
embedded in the Bayesian inference process. Our belief in
hypotheses is always consistent to the latest evidence of the
system. Further details with examples about making and
validating hypotheses are discussed in section 3.

2.5. Scaling Up

The reader may have observed that as more IDS alerts are
reported, the Bayesian network will grow larger and larger.
Though by periodically scanning the system and gathering
evidence about attacks, we may verify earlier alerts to be ei-
ther successful or not, there will still be a number of unver-
ifiable alerts. This has a severe impact on intrusion anal-
ysis. Indeed, both exact and approximate inferences in a
Bayesian network upon partially observed evidence have
been proved to be NP-hard [7,11]. It is very expensive, and
even infeasible, to make inferences upon new evidence if
the Bayesian network is very large and complex.

One possible solution is to rebuild Bayesian networks
when the previous ones grow too large. This can avoid in-
tractable Bayesian networks. However, the effect of the ev-
idence accumulated in the previous Bayesian networks will
be lost, especially the system attributes that have been rea-
soned about using other evidence but not yet verified. As a
result, information collected in an earlier Bayesian network
cannot be carried over to the new one.

To make a trade-off between the accumulated informa-
tion and the network size, we propose to use a sliding win-

dow to process and reduce the Bayesian networks. Specif-
ically, we use a time window to decide what evidence to
keep in the Bayesian network as well as what to remove.
When new alerts or scanning results are reported, we slide
the window so that the front of the window advances to the
most recent evidence. Some old evidence may move out of
the window, and be removed from the Bayesian network.
IDS alerts can be simply removed from the network. How-
ever, for system attributes, the last version before the endof
the window will be used as the initial system state in the up-
dated Bayesian network.

Note that the effect of the removed evidence is still kept
in the Bayesian network. When a Bayesian network is first
constructed, all the probabilities of the nodes are computed
from the prior probabilities. As old nodes are removed, pre-
viously internal nodes become the root nodes of the updated
Bayesian network. These new root nodes use the previously
updated probabilities as their prior probabilities for later in-
ferences. As a result, the effect of earlier evidence is re-
tained by the updated Bayesian network.

One may point out that sliding windows give attackers an
opportunity to defeat our technique. That is, an attacker may
slow down his/her attacks so that the related attacks are not
effectively considered since they do not appear in the same
Bayesian network. However, even if an attacker slows down
the attacks, the effect of each successful attack step is still
captured by its postcondition in a Bayesian network, if the
attack is detected. Thus, we can still reason about an indi-
vidual alert if its postcondition is verified. Moreover, if an
attacker has to slow down his/her actions to avoid being de-
tected, our technique has already deterred attacks.

The size of the sliding window is critical to the effec-
tiveness of the Bayesian networks. If the window size is too
small (e.g., shorter than the time interval between two con-
secutive system scans), some IDS alerts may be discarded
before we can use related evidence to reason about them.
Certainly, such a Bayesian network cannot be too large due
to the difficulty in computing with large Bayesian networks.
Thus, we should balance the computational cost and the
risk of losing information The computational cost of cor-
relation and Bayesian inference is highly dependent on the
amount of alerts and the amount of real attacks among those
alerts. More frequent, deeper, wider system scans can de-
crease the size of the Bayesian network, while the compu-
tational cost of such scans also increases as its frequency,
depth, and width increases. All those considerations make
the problem even more complex. Those issues are already
out of the scope of this paper, we will leave them to our fu-
ture study.

3. Experimental Results

We have performed a series of experiments to evaluate
the effectiveness of the proposed techniques. In our experi-
ments, we connected three PCs through a hub in an isolated
network. For convenience, we refer to them asattacker, vic-
tim, andIDS. We launched attacks from the attacker against
the victim, while monitoring the attacks on the IDS.

We use Snort version 1.9.1 [28] as the IDS sensor. We
also use Nessus [3] and XScan [34] as the vulnerability
scanning tools. We evaluate our techniques with five at-
tack scenarios, which we refer to as Scenario 0 to Scenario
4. The goals of these attack scenarios vary from modify-
ing the target’s web page to converting the target machine
into a part of attacker’s own distributed network. Some at-
tack scenarios target MS Windows systems, while the oth-
ers target Linux systems. Accordingly, the victim runs either
Windows or Linux, depending on the attack scenarios. We
run TripWire [5] (for MS Windows) and Samhain [4] (for
Linux) on the victim as the file system integrity monitoring
tools. We also run Trojan horse scanning tools Tauscan [31]
(for MS Windows) and chkrootkit 0.43 [1] (for Linux) on
the victim as additional system scanning tools. We devel-
oped a program to automatically generate alert-attribute net-
works from the IDS alerts and the reports of these scanning
tools, and then use JavaBayes [2] to make inference using
these networks.

To simulate the realworld system administration, we
configure the file system integrity monitoring tools (Trip-
wire and Samhain) to monitor important files and directo-
ries only, i.e., system configurations files, service configu-
ration files, and the main webpage files.

To mimic an operational network, we also inject back-
ground traffic into the network during our experiments. We
randomly select one of the training datasets (the training
dataset on Monday in the third week) in the 1999 DARPA
intrusion detection evaluation datasets [22] as the back-
ground traffic in the experiments, as it is attack free. This
background traffic triggers 325 alerts in Snort, which are all
false alerts. All the other alerts reported by Snort are real
alerts.

In the rest of this section, we first present the analysis of
Scenario 0 in detail, and then summarize the results of all
five attack scenarios. Additional details of the other four at-
tack scenarios are included in the Appendix.

3.1. Analysis of Scenario 0

3.1.1. Details of Scenario 0In this attack scenario, the at-
tacker exploits the remote buffer overflow vulnerability in
some old versions of Serv-U ftp server to get administra-
tive access. The victim machine is a Windows box running a
vulnerable Serv-U 5.0 ftp server with default public anony-

mous access. At the same time, the victim also runs Nor-
ton antivirus with file system real-time protection. When
the system attemps to access a file containing known virus
or backdoor, the file system real-time protection will quar-
antine the file.

The attack scenario includes five steps:

1. remote buffer overflow attack against the Serv-U,

2. attempt to install BackOrifice on the victim, which was
quarantined by Norton antivirus,

3. kill the Norton antivirus process with system process
tools through the remote administrative shell,

4. install the BackOrifice again (successful), and

5. changing the web page through BackOrifice.

The initial system attributes include

• Serv-U 5.0 on port 21,

• anonymous ftp access,

• Norton Antivirus with file system real-time protection,
and

• http on port 80.

During the attack process, Snort reported the following
2 alerts:

• OneFTP command overflow attempt alert

• OneBACKDOOR BackOrifice access alert

Norton also logged that BackOrifice was found in the file
system and quarantined successfully during the attack pe-
riod. In the end, Tripwire logged and reported the modifica-
tion to the web page file and the system logged that Norton
antivirus was shut down.

3.1.2. Reasoning about Intrusion EvidenceOur alert-
attribute network generation tool generated the network
shown in Figure 5 based on the above information and the
prior probabilities and attack type information, which are
included in the appendix,.

To distinguish between different types of nodes in a
Bayesian network, we use white nodes to denote IDS alerts,
gray nodes to denote unverified system attributes, and black
nodes to denote verified system attributes. The relative ver-
tical position of nodes in the graph represents the relative
time order among nodes.

Note that Figure 5 includes 156 “SNMP public
access udp” alerts, which results in2156 entries
in the conditional probability table ofgain public
information. Computing with such a conditional prob-
ability table is out of JavaBayes’ handling capacity. How-
ever, after alert aggregation, the 156 nodes are aggregated
into a single node and thus can be handled easily by Jav-
aBayes.

IJ KL MN O PQKRSSTSU V S WV KXY Z [\] ^_ TST`X KaXV K

bcd eV__aS^ VL J KfgVha XXJ_ WX

i_^ PJj J KV VX `kJ g g a eeJ ``

] SVS\ _V R` fXWa eeJ ``

ZOl I mnd WR[gTeR^W a gJ KX`

U a TS WR[gTe kV `XTSfV K_a X TV S

Imn d WR[g Tea eeJ``

o]ipqrrsoaetr KTfTeJ a eeJ``uSV X XV a WWJ a K TSX kJ SJ Xh V Ktv

mV KXV S] SXTL TKR` KJ a gX T_JWKV XJ eX TV S KRSS TSU

wmV KXV S] SXTL TKR` KJ a gX T_JWKV XJ eX TV S KRSS TSU

x TKR` oaetr KTfTeJ fV RS^ y
zRa Ka SX TSJ ^

{J [WaUJ fTgJ _ V^ TfTJ ^

|

}XX W V S WV KX ~ Q

Figure 5. Initial alert-attribute network

Now let us look at possible missed attacks. There
are several obvious inconsistencies in Figure 5.
There are no detected alerts causing the verified at-
tributes “Norton Antivirus not running”,
“Virus BackOrifice found & quarantined”,
and “Webpage file modified”. Based on our
knowledge about attacks, “Shut down Norton
Antivirus via cmd.exe shell” and “Install
BackOrifice” are the only possible hypotheses that
can fill in the first two gaps. For the attribute “Webpage
file modified”, it could be done through remote con-
trol via either cmd.exe shell or BackOrifice access. The
first option implies hypothesized remote control via
cmd.exe, while the second one implies hypothesized instal-
lation of BackOrifice after Norton was shut down. These
hypotheses lead to a new alert-attribute network in Fig-
ure 6.

In Figure 6, the dotted nodes and edges denote hypothe-
sized attacks and corresponding causal relationships. Con-
ditional probability table of each node can be generated au-
tomatically given the network structure and prior probabil-
ity values. Then JavaBayes generates updated confidence
values of each node in this Bayesian network. The confi-
dence values of the related alerts before and after reason-
ing are shown in Table 1. We can see significant increases
in the confidence values of successful attacks; however, all
the false alerts have either decreased or unchanged confi-
dence.

We also find some interesting observations in Table 1.
The confidence values in three of the hypothesized nodes
turned into1, and two of them are the two options to re-
solve the same inconsistency. As we have discussed in Sec-
tion 2.2.2, unless a hypothesis is the only option to solve
the inconsistency, a confidence value of1 for a hypothe-

� � �� � � � ��
�� � � �� � � � �� ��

� � � �
� � � �� ��� �� � � �

�� � � � � � � � � � � � �� �� �
� ��� � ��

� � � �� � �� � � � ¡ � � � � � � � ��

� � � � � � � � � �� �
� � �� � �

¢� � �� � � £ � � ¤ ¥ � �� �� � �� � � � � �� �

� ¦§ � � � � � �� � � �

� � �� � � � � �� ¡ � � �
�� �� �� � � �� �

£� � ¤¥ � �� �� � �� � � � � �� �

� ¦§ � � � � � ��
� � �� � �

£� � ¨ ©¥ ¥ ª
£ � � ¤ ¥ � �� �� � � �� � ��

¦ � �� � � � � � �� �� � � �� � �� �� �� �� � � � � �� � �� � � �� �

� ¡ � � � � � � ¦� �� � �
� � � �� �� � � � �� � � � �� � � ¡� � �

« ¦� �� � � � � � �� �� � � �� � �� �� �� �� �� � � �� � �� � � �� �

¢� � �� � � £ � � ¤ ¥ � �� �� � �� � � � �� � �

¬ ��� � £� � ¤ ¥ � �� �� � �� � �� ­
® � � �� � � �� � �

§ � � �� �� � � � � � � � � �� �� � �� �
� ¡ � � �

¯ � � �� � � �� �� � � � �� �� �

Figure 6. Updated alert-attribute network

sized attack does not mean that the attack must have hap-
pened. Instead, it implies thatif that attack has happened,
it must be successful. Thus, although the confidence val-
ues for the two hypothesized nodes are both1, it does not
mean that both attacks must have happened. However, com-
paring the probability of the path from the initial verified
attributes to the later verified attribute (by multiplying the
probabilities of all the intermediate nodes along the path),
we find that the one through “Modify web page via
cmd.exe” has a greater probability than the other one. Al-
though it is not what exactly happened in our experiment, it
shows that both methods can achieve the goal of modifying
web page without being detected, and modifying through
established remote cmd.exe shell is simpler and easier com-
pared to the other option, which requires several extra attack
steps. Also, the probability of a hypothesized node being0
means either it is not missed by the IDS, or it is a failed at-
tack attempt.

3.1.3. Using Confidence for Intrusion DetectionWith
the reasoning framework for intrusion evidence, we are able
to associate a quantitative measure (i.e., confidence) with
each IDS alert. It is natural to think about using the alert
confidence values to improve the performance of intrusion
detection. In addition, we want to see how additional com-
plementary evidence (e.g., verified system attributes) helps

alert name before after relative
in-
crease

FTP command overflow
attempts

0.3 1 233.3%

BACKDOOR BackOri-
fice access

0.3 0.6 100%

Shut down Norton An-
tivirus via cmd.exe shell
(Hypothesized)

N/A 1 N/A

Install BackOrifice In-
stance 1 (Hypothesized)

N/A 0 N/A

Install BackOrifice In-
stance 2 (Hypothesized)

N/A 1 N/A

Modify web page via
cmd.exe shell (Hypothe-
sized)

N/A 1 N/A

156 individual SNMP
public access udp

0.075 0.075 0%

aggregated SNMP public
access udp

0.5 0.5 0%

other 169 alerts 0.25 0 −100%

Table 1. Confidence values before and after
the reasoning

in this process.
In our experiments, we used a confidence threshold to

determine whether an IDS alert is a successful attack or not.
Specifically, if the confidence in an alert is greater than or
equal to the threshold, we accept the alert. Otherwise, we
simply drop it. We change the threshold value between 0
and 1, and collect the detection rates and false alert rates.
To compare the results in different situations, we repeated
the above process in two cases: (1) without alert aggrega-
tion and abstraction, (2) with alert aggregation and abstrac-
tion. The performance graphs for the five attack scenarios
are very similar.

In our evaluation, we abuse the notions of detection rate
and false alert rate to represent thedetection rate of suc-
cessful attacksandfalse alert and failed attack rate, respec-
tively. Figure 7 and 8 show the detection rate curves and
false alert rate curves w.r.t. different thresholds in all cases
for one of our scenarios. Since the meaning of the confi-
dence in a hypothesized attack is different from that in an
IDS alert, we do not consider hypothesized attacks in this
evaluation.

From the two figures, we can see that the Bayesian rea-
soning with verified evidence can significantly increase the
detection rates and decrease the false alert rates in a large
threshold space by adjusting the confidence values of the

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Threshold (0.01)

D
et

ec
tio

n
R

at
e

(%
)

raw alerts

verification without aggregation

verification with aggregation

Figure 7. Detection rate vs threshold (Sce-
nario 0)

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Threshold (0.01)

F
al

se
 a

le
rt

 r
at

e
(%

)

raw alerts

verification without aggregation

verification with aggregation

Figure 8. False alert rate vs threshold (Sce-
nario 0)

alerts based on complementary evidence. Please note that
because the largest confidence value of alerts before rea-
soning is0.3, the curve of raw alerts only continues to0.3
on thex axis in Figure 8. No alerts can be detected with a
threshold larger than0.3 before the reasoning. After the rea-
soning, the detection range is also greatly increased, which
provides more flexity for making security policies. If we
further consider the fact that after the reasoning, we know
for sure that three of the four hypothesized attacks must
have happened, the framework’s ability to improve detec-
tion performance is actually more than what is shown in the
figure. The reason the result with aggregation has a higher
false alert rate when the probability threshold is over0.3
is because that the 156 false “SNMP public access
UDP” alerts are aggregated into one single alert and its prob-
ability is greatly increased. Also, the detection rate shown in
the figure does not consider the hypothesized attacks, where

2 out of the 4 hypothesized attacks are actual successful at-
tacks missed by the IDS, and 1 of the other 2 hypothesized
attacks is an actual failed attack attempt.

3.2. Summary of Experimental Results

In the following, we summarize the results obtained from
all the five attack scenarios. We first discuss the impact of
the proposed techniques on alerts, and then describe the re-
sults about hypothesized attacks.

We use a simple metric named confidence ratio to exam-
ine the usefulness of the proposed techniques in reasoning
about IDS alerts. Specifically, aconfidence ratiois the ra-
tio between the average confidence of alerts corresponding
to successful attacks and the average confidence of the other
alerts (i.e., false alerts and alerts corresponding to failed at-
tack attempts).

1.807 1.807 1.508 1.807 1.807

22.222

27.778

14

19.833

24.51

0

5

10

15

20

25

30

Scenario 0 Scenario 1 Scenario 2 Scenario 3 Scenario 4

C
on

fid
en

ce
 R

at
io

Before reasoning
After reasoning

Figure 9. Confidence ratio before and after
the reasoning

Figure 9 shows the confidence ratios in all five attack sce-
narios before and after using the proposed techniques. (We
have discussed Scenario 0 in the previous subsection; de-
tails of the other scenarios can be found in the appendix.)
These results indicate that with the proposed techniques,
the average confidence in alerts of successful attacks are
greatly increased compared with the average confidence in
the other alerts (false alerts and alerts for failed attack at-
tempts). In fact, the average confidence in the other alerts
either remain the same or decrease.

We totally made ten hypotheses during the reasoning in
the analysis of the five attack scenarios. Table 2 shows the
accuracy of these hypotheses in these attack scenarios, re-
spectively.

In the experiments, six out of the ten hypothesized at-
tacks are actual successful attacks missed by Snort, and one

Scenario Accuracy
0 75%
1 100%
2 50%
3 100%
4 50%

Table 2. Accuracy of hypotheses in the exper-
iments

out of the other 4 hypotheses is an actual failed attack at-
tempt. Among the seven real attacks, we have definite con-
fidence that four of them must have happened from the alert-
attribute network. The result shows that with sufficient local
system evidence, our model is efficient and effective in dis-
covering some missed attacks.

4. Related Work

The techniques closest to ours are M2D2 [23] and the
mission-impact-based correlation method [26], which have
been briefly discussed in the introduction. All these meth-
ods, including the techniques proposed in this paper, at-
tempt to correlate intrusion evidence from multiple sources.
However, M2D2 is intended to provide a formal model to
represent intrusion related information, while the mission-
impact-based method requires substantial human involve-
ment in the specification of correlation models. In con-
trast, our method can automatically construct Bayesian net-
works of IDS alerts and other complementary intrusion ev-
idence based on the knowledge of individual attacks, and
harness the rich results developed for reasoning about un-
certain events.

Another approach was proposed in [25] to make hy-
potheses about missed attacks based on the pre/post-
conditions of known attacks. Our approach differs in that
the hypotheses made in our model is based on not only the
pre/post-conditions of known attacks but also the avail-
able system states.

The techniques proposed in [9, 24, 32] are also based
on modeling individual attacks, similar to ours. However,
these approaches only focus on IDS alerts, but do not take
advantage of other information sources. Our approach can
potentially get more concrete analysis results due to the
additional, complementary information considered in our
model.

There are other alert correlation techniques. The tech-
niques in [8, 12, 30, 33] correlate alerts on the basis of the
similarities between the alert attributes. The Tivoli approach
correlates alerts based on the observation that some alerts
usually occur in sequence [14]. The alert clustering tech-

niques in [20, 21] use conceptual clustering and general-
ization hierarchy to aggregate alerts into clusters. It is pro-
posed in [27] to use time series analysis to discover potential
causality between alerts without specifically modeling at-
tacks. Alert correlation may also be performed by matching
attack scenarios specified by attack languages. Examples
of such languages include STATL [15], LAMBDA [10],
and JIGSAW [32]. These methods use mechanisms differ-
ent from ours to correlate alerts, and are potentially com-
plementary to our approach. It may be possible to improve
some of these approaches to support complementary intru-
sion evidence. However, we do not consider it in this pa-
per.

Our approach is also related to the recent results on vul-
nerability analysis (e.g., [6,19,29]). In particular, themeth-
ods in [6, 29] also model system state as system attributes,
and attacks atomic transformation that establish postcon-
ditions given the attacks’ preconditions. However, our ap-
proach is aimed at reasoning about intrusion evidence rather
than finding out possible sequences of attacks.

5. Conclusion and Future Work

In this paper, we developed a method to integrate and
reason about complementary intrusion evidence, including
IDS alerts, reports of system monitoring or vulnerability
scanning tools, and even human observations. By using
the interdependency between attacks and system states, we
combine IDS alerts and attributes representing modifica-
tions of system states into Bayesian networks, which are
then used to infer about uncertain IDS alerts based on addi-
tional observations of system states. We further proposed
to refine these Bayesian networks through alert aggrega-
tion and abstraction, so that we can focus on the reason-
ing about existences of successful attacks and use comple-
mentary intrusion evidence more effectively. We also pro-
posed to use sliding windows to provide a trade-off be-
tween the intractability of reasoning with large Bayesian
networks and the ability to integrate and reason about IDS
alerts and other evidence. Our initial experimental results
have demonstrated the potential of the proposed techniques.

A limitation of our approach is that it reasons about suc-
cessful attacks, but cannot handle attack attempts in the
same way. In other words, with additional evidence such
as a verified attribute, our approach will increase the confi-
dence in alerts corresponding to successful attacks, but de-
crease the confidence in those representing failed attack at-
tempts. This feature certainly restricts the applicability of
our approach. Another limitation is that our model cannot
reason about attacks which has no effect on the local sys-
tem, i.e., probes and scans. Indeed, most attackers need to
gather certain information via network to launch attacks.
For example, a probe to some specific ports may be neces-

sary for attackers to gain related information to launch some
corresponding expolits. However, the effect of such infor-
mation gathering activities is on the remote attackers’ side,
which cannot be predicted and be used as preconditions of
attacks. Information can be gathered in multiple ways other
than network scans, e.g., chatting with a careless adminis-
trator or wiretapping the telephone. Thus, such attacks will
not appear in the alert-attribute Bayesian network so that the
reasoning will not affect and be affected by such alerts. In-
formation of such alerts is usually useful for human admin-
istrators in analyzing the attacker’s intentions and strategies
in realworld. For example, people may have a higher be-
lief on alerts of follow-up attacks after monitored probes
on some special ports. However, modeling this observation
brings risk of being distracted by forged traffic from attack-
ers.

This paper is only the starting point of our effort to inte-
grate and reason about complementary intrusion evidence.
In our future work, we will investigate additional techniques
to improve the performance. In particular, we will study the
use of dynamical Bayesian networks in processing streams
of IDS alerts and other intrusion evidence, investigate ap-
proaches to handling attacks missed by IDSs, and perform
experiments with large sets of intrusion evidence.

References

[1] checkrootkit.http://www.checkrootkit.org. Ac-
cessed on Feb. 4, 2004.

[2] Javabayes. http://www-2.cs.cmu.edu/
∼javabayes/Home/. Accessed on Oct 10, 2003.

[3] Nessus.http://www.nessus.org. Accessed on Feb.
4, 2004.

[4] Samhain. http://la-samhna.de/samhain/. Ac-
cessed on April 4, 2004.

[5] Tripwire. http://www.tripwire.com. Accessed on
Feb. 4, 2004.

[6] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-
based network vulnerability analysis. InProceedings of the
9th ACM Conference on Computer and Communications Se-
curity, pages 217–224, November 2002.

[7] G. F. Cooper. The computational complexity of probabilis-
tic inference using bayesian belief networks.Artificial Intel-
ligence, 42:393–405, 1990.

[8] F. Cuppens. Managing alerts in a multi-intrusion detection
environment. InProceedings of the 17th Annual Computer
Security Applications Conference, December 2001.

[9] F. Cuppens and A. Miege. Alert correlation in a cooperative
intrusion detection framework. InProceedings of the 2002
IEEE Symposium on Security and Privacy, May 2002.

[10] F. Cuppens and R. Ortalo. LAMBDA: A language to model
a database for detection of attacks. InProc. of Recent Ad-
vances in Intrusion Detection (RAID 2000), pages 197–216,
September 2000.

[11] P. Dagum and M. Luby. Approximating probabilistic infer-
ence in bayesian belief networks is NP-hard.Artificial Intel-
ligence, 60:141–153, 1993.

[12] O. Dain and R.K. Cunningham. Building scenarios from a
heterogeneous alert stream. InProceedings of the 2001 IEEE
Workshop on Information Assurance and Security, pages
231–235, June 2001.

[13] O. Dain and R.K. Cunningham. Fusing a heterogeneous
alert stream into scenarios. InProceedings of the 2001 ACM
Workshop on Data Mining for Security Applications, pages
1–13, November 2001.

[14] H. Debar and A. Wespi. Aggregation and correlation of
intrusion-detection alerts. InRecent Advances in Intrusion
Detection, LNCS 2212, pages 85 – 103, 2001.

[15] S.T. Eckmann, G. Vigna, and R.A. Kemmerer. STATL: An
Attack Language for State-based Intrusion Detection.Jour-
nal of Computer Security, 10(1/2):71–104, 2002.

[16] D. Farmer and W. Venema. SATAN: Security administrator
tool for analyzing networks.http://142.3.223.54/
∼short/SECURITY/satan.html.

[17] Fyodor. Nmap free security scanner.http://www.
insecure.org/nmap, 2003.

[18] F.V. Jensen. Bayesian Networks and Decision Graphs.
Statistics for Engineering and Information Science. Springer,
2001.

[19] S. Jha, O. Sheyner, and J.M. Wing. Two formal analyses of
attack graphs. InProceedings of the 15th Computer Security
Foundation Workshop, June 2002.

[20] K. Julisch. Mining alarm clusters to improve alarm handling
efficiency. InProceedings of the 17th Annual Computer Se-
curity Applications Conference (ACSAC), pages 12–21, De-
cember 2001.

[21] K. Julisch and M. Dacier. Mining intrusion detection alarms
for actionable knowledge. InThe 8th ACM International
Conference on Knowledge Discovery and Data Mining, July
2002.

[22] MIT Lincoln Lab. 1999 DARPA intrusion detection scenario
specific datasets. http://www.ll.mit.edu/IST/
ideval/data/1999/1999 data index.html,
1999.

[23] B. Morin, L. Mé, H. Debar, and M. Ducassé. M2D2: A for-
mal data model for IDS alert correlation. InProceedings of
the 5th International Symposium on Recent Advances in In-
trusion Detection (RAID 2002), pages 115–137, 2002.

[24] P. Ning, Y. Cui, and D. S Reeves. Constructing attack sce-
narios through correlation of intrusion alerts. InProceedings
of the 9th ACM Conference on Computer and Communica-
tions Security, pages 245–254, Washington, D.C., November
2002.

[25] P. Ning, D. Xu, C. Healey, and R. St. Amant. Building at-
tack scenarios through integration of complementary alert
correlation methods. InProceedings of the 11th Annual
Network and Distributed System Security Symposium (NDSS
’04), pages 97–111, February 2004.

[26] P.A. Porras, M.W. Fong, and A. Valdes. A mission-impact-
based approach to INFOSEC alarm correlation. InProceed-
ings of the 5th International Symposium on Recent Advances
in Intrusion Detection (RAID 2002), pages 95–114, 2002.

[27] X. Qin and W. Lee. Statistical causality analysis of infosec
alert data. InProceedings of The 6th International Sym-
posium on Recent Advances in Intrusion Detection (RAID
2003), Pittsburgh, PA, September 2003.

[28] M. Roesch. Snort - lightweight intrusion detection fornet-
works. In Proceedings of the 1999 USENIX LISA confer-
ence, 1999.

[29] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J.M. Wing.
Automated generation and analysis of attack graphs. InPro-
ceedings of IEEE Symposium on Security and Privacy, May
2002.

[30] S. Staniford, J.A. Hoagland, and J.M. McAlerney. Practical
automated detection of stealthy portscans.Journal of Com-
puter Security, 10(1/2):105–136, 2002.

[31] Tauscan. http://www.agnitum.com/products/
tauscan/.

[32] S. Templeton and K. Levitt. A requires/provides model for
computer attacks. InProceedings of New Security Paradigms
Workshop, pages 31 – 38. ACM Press, September 2000.

[33] A. Valdes and K. Skinner. Probabilistic alert correlation. In
Proceedings of the 4th International Symposium on Recent
Advances in Intrusion Detection (RAID 2001), pages 54–68,
2001.

[34] X-scan.http://www.xfocus.org.

Additional Attack Scenarios Used in Our Ex-
periments

Results about Scenario 0 has been discussed in the main
text. Here we give further detaisl about the experimental re-
sults for the remaining scenarios.

.1. Scenario 1

This scenario is fairly simple. We simulated a common
scriptkid’s activity, which exploits a common vulnerabil-
ity to get certain privilege, and modify the remote server’s
web page. In this particular scenario, we exploited the for-
mat string vulnerability of wu-ftpd 2.6.0 on a RedHat linux
6.2 server to get remote root access. The attack scenario in-
cludes two steps:

1. A remote format string attack toward the wu-ftpd, and

2. replacing the remote server’s web page with a
“Gotcha” web page via the remote root shell ac-
cess gained after the previous attack.

Snort raised the following alert(s):

• 1 FTP EXPLOIT wu-ftpd 2.6.0 site exec format string
overflow Linux

Note that no alerts were raised for the remote root shell
access. The file system monitoring tool (Samhain) gener-
ated alert for the web page modification since we config-
ured the threshold on the times of modifications on those
files to be1.

° ± ² ³ ´ µ ¶ · ¸¹ ¸º
» ± ¼ ¼ ½ ¼ ¾ ± ¼ ¶ ¿ »

» À À ´

Á Â Ã Ä Å Ã Æ Ç ÈÂ É ± ² ³ ´ µ ¶ · ¸¹ ¸º
Ê ½´ ¿ ¿ Ë ¿ Ì ³ À » Í Î ´ Ê ´ » ½ ¼ ¾

À Ï ¿ » ³ Ð À É Æ ½ ¼ ± Ë

Ñ À À ´ Ê Ò ¿ Ð Ð Î Ì Ì ¿ Ê Ê

° ¿ Ó µ Î ¾ ¿ ³ ½ Ð ¿ Í À ¶ ½ ³ ½ ¿ ¶

Ô ¼ À ¼ Õ Í À ± Ê ³ ´ µ
Î Ì Ì ¿ Ê Ê

Ö × ¹ Ø Ù Ú Ã µ ± Ó Ð ½Ì
± ¶ µ Î Ð ¿ » ´ Ê

¾ Î ½ ¼ µ ± Ó Ð ½Ì Ò À Ê ´
½ ¼ ³ À » Í Î ´ ½ À ¼

Ø Ù Ú Ã µ ± Ó Ð ½ Ì
Î Ì Ì ¿ Ê Ê

Û Û Û

Figure 10. Initial alert-attribute network

Initial vulnerability scan showed that the system was
running a vulnerable wu-ftpd 2.6.0 on port 21 with anony-
mous access open. However, we are not sure about whether
the SNMP public access is turned off because we did not
check the SNMP options in Nessus.

The result alert-attribute network before making hy-
potheses is as shown in Figure 10.

Based on the observation of the inconsistency in the
alert-attribute network shown in Figure /reffig:wuattack0,
together with the attack type knowledge, the only possi-
ble hypothesis to fill in the inconsistency is that some re-
mote control via the root shell caused the web page modifi-
cation. Thus, the complete alert-attribute network is shown
as in Figure 11.

We use dotted nodes and edges to denote hypothesized
nodes and relationships in this new figure of alert-attribute
network.

According to the prior probability values and attack type
information included in appendix B, our program generated
the Bayesian network from the evidence log automatically
and the reasoning result using JavaBayes is shown in table
3. Table 3 also shows the relative increase of the confidence
values of the alerts.

The confidence in the only hypothesized attack “Remote
control via root shell” turned to1 after the inference, which
indicates that it would be successful and missed by the snort
if it happened.

When using probability threshold to decide whether an
alert denotes a successful attack, the experiment yields the
detection rate and false alert rate curves as shown in Figure
12 and Figure 13.

Ü Ý Þ ß à á â ã äå äæ
ç Ý è è é è ê Ý è â ë ç

ç ì ì à

í î ï ð ñ ï ò ó ôî õ Ý Þ ß à á â ã äå äæ
ö é à ë ë ÷ ë ø ß ì ç ù ú à ö à ç é è ê

ì û ë ç ß ü ì õ ò é è Ý ÷

ý ì ì à ö þ ë ü ü ú ø ø ë ö ö

Ü ë ÿ á ú ê ë ß é ü ë ù ì â é ß é ë â

� è ì è � ù ì Ý ö ß à á
ú ø ø ë ö ö

� ì â é ß � õ ë ÿ á ú ê ë û é ú ç ì ì à
ö þ ë ü ü

� � å � � � ï á Ý ÿ ü é ø
ú ø ø ë ö ö Ý â á

� ú é è á Ý ÿ ü é ø þ ì ö à
é è ß ì ç ù ú à é ì è

� � � ï á Ý ÿ ü é ø
ú ø ø ë ö ö

Figure 11. Alert-attribute network after hy-
potheses

alert name before
rea-
son-
ing

after rea-
soning

relative
in-
crease

156 SNMP public
access udp(156)

0.075 0.075 0

Aggregated
SNMP public ac-
cess udp

0.5 0.5 0

FTP SITE EXEC
format string at-
tempt linux

0.3 1.0 333.33%

Remote con-
trol via root
shell (hypothe-
sized)

N/A 1.0 N/A

Other alerts 0.25 0 −100%

Table 3. Confidence values before and after
the reasoning

.2. Scenario 2

This attack scenario exploits the unicode vulnerability of
MS IIS 5.0. The victim machine was a windows box con-
figured to be running a vulnerable IIS 5.0. The initial sys-
tem vulnerability scan showed that there existedIIS 5.0
unicode vulnerability on the victim. The attacks scenario

DR

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Threshold (%)

D
et

ec
tio

n
R

at
e

(%
)

raw alerts

verification without aggregation

verification with aggregation

Figure 12. Detection rate VS. threshold (Sce-
nario 1)

FAR

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Threshold (%)

F
al

se
 a

le
rt

 r
at

e
(%

) raw alerts

verification without aggregation

verification with aggregation

Figure 13. False alert rate VS. threshold (Sce-
nario 1)

includes two steps:

1. Exploiting the unicode vulnerability to download and
install a Trojan horse namedGlacier to the victim

2. Monitoring/controlling the victim file system remotely
through the Trojan horse. The activities include replac-
ing the web page

When the above attacks were launched without back-
ground traffic, Snort generated the following 6 alerts:

• 2 WEB-IIS unicode directory traversal attemp alerts,
and

• 4 WEB-IIS cmd.exe access alerts.

Both the WEB-IIS unicode directory traversal and the
WEB-IIS cmd.exe access alerts indicate web attacks ex-
ploiting IIS 5.0’s unicode vulnerability, thorough which

the attacker can execute commands remotely thorough lo-
cal host’s cmd.exe program and cause various system
modifications. They can actually be taken as Snort’s re-
ports on the same type of attacks. Thus, in the later anal-
ysis we aggregate them together into a single node.
The postconditions of such attacks are highly depen-
dent on the detailed content of the message sent by the
attacker. As snort does not detect and distinguish those de-
tails, we define for this type of attacks a general postcon-
dition “Various system modifications done
through cmd.exe”, which could imply any sys-
tem modifications possibly done through cmd.exe.

Snort failed to detect the attempts of installing
the Glacier backdoor and the remote control accesses
through the Glacier backdoor. However, on the local sys-
tem side, Tauscan did report in real time that Trojan
horse Glacier was found in the system immediately af-
ter the IDS reported WEB-IIS alerts. Then Tripwire logged
the modifications to the files in the IIS’s web page directo-
ries a few minutes later after that.

Again, before aggregation and making any hypotheses
about missed attacks, we have an alert-attribute network
with inconsistencies as shown in Figure 14.

� �	
 � �
� ��
�
 ��� �� � �� ���

� � ���
 � �� ��� �
� � � �� �
� � �� � � �� �� � � ��
� �

� � �� � �

	 � ! "
� � �
 �

� ��

#$% 	 � ! "
� ��

�

� ��
� " � �� �� �

� � �� "
� ��
 �� ��
�� �� �� � � �� �

& � �� � � � ���� � �� ' () � �)***)

+ ��, � � �� �� � - ��
 �� �

* . /0 ��	
� � �� � � �

� �� 1

* ./0 ��	
� � �� � � �

��� %

* ./0 ��	
� � �� � � �

��� $

* ./0 ��	
� � �� � � �

��� 2

* ./0 ��	
� �
� �� � ���
�� ��
� �� 3 � ��� � � ��� � "� #

* ./0 ��	
� �
 �� � � ���
�� ��
� �� 3 � �� � � � ��� � "� 4

555

Figure 14. Initial alert-attribute network

For the Tauscan’s report of Trojan horse Glacier found,
this attribute may only be implied by the “Various
system modification done” caused by the IIS
unicode exploits, thus we can have a hypothesized im-
plication relationship between them, which is denoted
by a dotted empty arrow in the figure. For the modifi-
cations in web page files, according to the system state
and knowledge base (attack type info) we have, there
are two options to achieve it on the victim: It could ei-
ther be caused by some missed WEB-IIS unicode ex-
ploit, or by the remote control via the Glacier Trojan horse.
Due to the first option, a hypothesized IIS unicode ex-
ploit alert node is added to the network to link the initial

“IIS unicode vulnerability” node and the web
page file modified node. Due to the second option, a hypoth-
esized alert node “Remote control via Glacier
Trojan horse” is added to link the “Trojan horse
Glacier found” and the “File modified in
c:/IIS/WWW/” node. With all these hypotheses and nec-
essary alert aggregations/abstractions the complete network
is shown in Figure 15.

667 89:;<=>
?8 @9> AB C: @:DE

6 67 89:;<=> >F G@< :D

?B A:< 8H HEHD>I
I<= :J:;B D :< 9H =< 9> DK A< 8LK

;I= M>F >

7NOP G8C @:; B ;;>HH

QRS 7NOP G8C@ :;
B ;;>HH 8=G B @> ADH

LB :9 G8C @:; K<HD
:9J< AIBD:<9

TA<U B 9 K< AH> V@B; :> A

W:@> I<= :J:> = :9 X YZ 667Z[[[Z

\>I<D> ;< 9D A< @] :B TA<U B 9
K<AH> V@B ;:> A ^S

_E G< DK>H :` >= [abc 667
89:;<=> >F G @< :D

Figure 15. Updated alert-attribute network

The probabilistic confidence values of alerts before and
after the analysis are shown in table 4.

In the reasoning, we assumed the remote control via Tro-
jan horse Glacier to have a much larger probability to be
missed by snort, compared with the IIS unicode exploit.
This results in a higher confidence that the remote con-
trol via Glacier actually succeeded and was missed by snort,
compared with the other hypothesis.

When using probability threshold to decide whether an
alert denotes a successful attack, the experiment yields the
detection rate and false alert rate curves as shown in Figure
16 and Figure 17.

Note that the reason for the rate after alert aggregation
and abstraction being smaller than before aggregation is that
the true alerts are aggregated into one single alert. Thus, the
total numbers of alerts are different for the two sets of re-
sults.

.3. Scenario 3

This attack scenario was a popular one on the Internet
in the fall 2002, cause we have read a number of victim re-
ports on the Internet and one of the machines in our lab
was unfortunately one of them. The attack exploits the re-
mote buffer overflow vulnerability of several older versions
of Serv-U ftp server to get administrative access, and in-
stalls IRC DCC bot on the victim server to make it part of
the attacker’s public distribution network.

alert name before
rea-
son-
ing

after rea-
soning

relative
in-
crease

2 individual
WEB-IIS direc-
tory traversal at-
tempts

0.25 0.50394 101.58%

4 individ-
ual WEB-IIS
cmd.exe ac-
cess

0.25 0.50394 101.58%

Aggregated
WEB-IIS uni-
code exploit

0.822 1 21.6%

Remote con-
trol via Trojan
horse Glacier (hy-
pothesized)

N/A 0.8 N/A

IIS unicode ex-
ploit (hypothe-
sized)

N/A 0.4 N/A

156 individ-
ual SNMP public
access udp

0.075 0.075 0

Aggregated
SNMP public ac-
cess udp

0.5 0.5 0

Other 169 alerts 0.25 0 −100%

Table 4. Confidence values before and after
the reasoning

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120

Threshold (0.01)

D
et

ec
tio

n
R

at
e

(%
)

raw alerts

verification with aggregation

verification without aggregation

Figure 16. Detection rate VS. threshold (Sce-
nario 2)

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Threshold (0.01)

F
al

se
 a

le
rt

 r
at

e
(%

)

raw alerts

verification without aggregation

verification with aggregation

Figure 17. False alert rate VS. threshold (Sce-
nario 2)

We configured the victim machine to be a Windows box
running a vulnerable Serv-U 5.0 ftp server with default pub-
lic anonymous access. At the same time, the victim was
also running snort to log intrusion activities, and Tripwire
to monitor the local file system.

The attack scenario includes four steps:

1. Two remote buffer overflow attack attempts toward the
Serv-U 5.0 server, one of which failed while the other
succeeded.

2. Downloading and installing the IRC DCC bot on the
victim through the remote root shell.

3. Cleaning the attack trace logged by snort after noticing
the existance of snort in the system process list..

4. Starting another ftp server on port 28021.

The initial system scan reported finding vulnerable Serv-
U 5.0 ftp server running on port 21 with public anonymous
access.

When the attacks were launched without background
traffic, snort reported two “FTP command overflow at-
tempt” alerts and the system monitoring tools reported the
following two observations:

• File modifications found on “c:/snort/log/alerts.ids”
and “c:/servu/ServUDaemon.ini” reported by Trip-
wire.

• IRC DCC bot running on port 6666 and Serv-U 5.0 ftp
server running on port 28021 reported by later system
port scan.

Thus, when combined with the false alerts generated by
the background traffic, we have the alert-attribute network
shown as in Figure 18.

After aggregation and making hypotheses, the final alert-
attribute network is shown in Figure 19.

The confidence values of the related alerts before and af-
ter reasoning is shown in table 5.

d e fg h i j kl f m n n on p
q n r q fs t u v w
x y z on o{ s f| s q f

}~ � � q z z | n y q g e f� �q �
| s s e z r s u

� z y ke � e fq q s { � e � � | � � e { {

� { n q fs � �q p � | �e fs { k oy { � o �e
z q y o� oe y

x n q n w z q m { �s r
| � � e { {

u j � d � � � r m v � o�
m y r | �e fs {

p | on r m v � o� � q { s
on �q fz | s oq n

d � � � r m v � o�
| � � e { {

� � �

} ~ � � q z z | n y q g e f � �q �
| s s e z r s t

�� � � � � v q s f m n n on p
q n r q fs � � � �

d e fg i � | e z q n kon o
z q y o � oe y

} s r d e fg h i j kl q n r q fs
t � l t u v w x y z on o{ s f| s q f

Figure 18. Initial alert-attribute network

�� �� �� � ��
��� � ��� � � �� ��

 ¡ ¢£
¤ ¥¦ �� �§� �¨ �� �

© ¦¥ �� ª � �� � � § «� ¬¬ ¨ ­ ­ �§§

®§ �� �� ® ¬� � ® ¨ ¬� ��§ ��¥ § ¯ � ¬�
¦ � ¥ �¯�� ¥

¤ �� �£ ¦ � �§ ¯� �
¨ ­­� §§

¡� ° � ±² ³ � �¢ ¬�­
�¥ � ¨ � � �� �¨ �� ¥

� ¨ �� � �¢ ¬�­ «� §�
��¯� �¦ ¨ � �� �

�� �� � ´¨ � ¦ � � ��� � ¦ � ¥ �¯ �� ¥

�±² ³ �� ¢ ¬ �­
¨ ­ ­� §§

µ¶© ´©© ¢� � �� �� �� � � � �� ��
° °° °

·� � §� �� �� � �� � �
�� �� ¸ � ¡ ¢£
¤ ¥¦ �� �§� �¨ �� �

¶�¦ � � ­� � � �� ¬§ � �¨
­¦ ¥ �� ª � �� � � §«� ¬ ¬

 ·¹³ ­� ¦ ¦¨ �¥ � � � �¯¬�º
¨ � �� ¦ �� ¨ �� �� �¨ �� ¥

Figure 19. Updated alert-attribute network

When using probability threshold to decide whether an
alert denotes a successful attack, the experiment yields the
detection rate and false alert rate curves as shown in Figure
20 and Figure 21.

.4. Scenario 4

This attack scenario studies the attacks on a target with
multiple vulnerabilities. The victim machine was config-
ured to be running both a vulnerable Serv-U ftp service and
a vulnerable IIS 5.0. Initial system scan showed that vulner-
able Serv-U 5.0 is running on port 21 with public anony-
mous access, and IIS is vulnerable to unicode attacks.

We exploited the ftp vulnerability to attack the victim
machine. The attack scenario includes 2 steps:

1. Remote buffer overflow attack to the Serv-U ftp and
get remote root shell.

alert name before
rea-
son-
ing

after rea-
soning

relative
in-
crease

2 individual FTP
command over-
flow attempts

0.3 0.714 40.06%

Aggregated FTP
command over-
flow attack

0.51 1 96.08%

Remote con-
trol via cmd.exe
root shell (hy-
pothesized)

N/A 1 N/A

156 individ-
ual SNMP public
access udp

0.075 0.075 0

Aggregated
SNMP public ac-
cess udp

0.5 0.5 0

other 169 alerts 0.25 0 −100%

Table 5. Confidence values before and after
the reasoning

DR

0

5

10

15

20

25

0 20 40 60 80 100 120

Threshold (%)

D
et

ec
tio

n
R

at
e

(%
)

raw alerts

verification without aggregation

verification with aggregation

Figure 20. Detection rate VS. threshold (Sce-
nario 3)

2. Modifying the web page file on the remote system.

During the attack, snort reported one “FTP command
overflow attempt” alert, while Tripwire logged and reported
the modification of web page file.

Thus, when combined with the false alerts generated by
the background traffic, we have the alert-attribute network

FAR

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Threshold (%)

F
al

se
 a

le
rt

 r
at

e
(%

)

raw alerts

verification without aggregation

verification with aggregation

Figure 21. False alert rate VS. threshold (Sce-
nario 3)

shown as in Figure 22.

» ¼ ½¾ ¿ À Á ÂÃ
½Ä Å Å ÆÅ Ç È Å É È ½Ê

Ë Ì Í Î
Ï Ð Ñ ÆÅ ÆÒ Ê ½ Ó Ê È ½

ÔÕ Ö × È Ñ Ñ Ó Å Ð È ¾ ¼ ½Ø ÙÈ Ú
Ó ÊÊ ¼ Ñ É Ê

Û Ñ Ð Â¼ Ü ¼ ½È È Ê Ò Ý ¼ Ù Ù Ó × × ¼ Ò Ò

Ï ÅÈ Å Î Ñ È Ä Ò ØÊ É
Ó × × ¼ Ò Ò

ÌÁ Þ » ßà Ö É Ä Í ÙÆ×
Ä Ð É Ó Ù¼ ½Ê Ò

Ç Ó ÆÅ É Ä Í ÙÆ× Ý È ÒÊ
ÆÅ ØÈ ½Ñ Ó Ê ÆÈ Å

» ßà Ö É Ä Í Ù Æ×
Ó × ×¼ Ò Ò

á ¼ Í ÉÓ Ç ¼ Ø Æ Ù¼ Ñ È Ð ÆØ Æ¼ Ð

ââ» Ä Å Æ× È Ð ¼ ¾ Ä ÙÅ ¼ ½Ó Í Æ Ù ÆÊÎ

ã ã ã

Figure 22. Initial alert-attribute network

After aggregation and making hypotheses, the final alert-
attribute network is shown in Figure 23.

The confidence values of the related alerts before and af-
ter reasoning are shown in table 6.

From the comparison in table 6, we can see that al-
though multiple vulnerabilities introduce multiple choices
when making hypotheses and we can not have definite con-
fidence in the hypotheses. The comparison result of the hy-
pothesized attacks shows that when both preconditions are
satisfied, the attack with a higher missing rate gains a higher
confidence from the reasoning, which means that they are
more expectable in reality.

When using probability threshold to decide whether an
alert denotes a successful attack, the experiment yields the
detection rate and false alert rate curves as shown in Figure
24 and Figure 25.

ä å æç èé ê ëì
æí î î ïîð ñ î òñ æó

ô õ ö ÷
ø ùú ïî ïûó æü óñ æ

ýþ ÿ �ñ ú ú ü îù ñ ç å æ� �ñ�
ü óóå ú ò ó

�ú ù ëå � å æñ ñ ó û�å � � ü ��å ûû

ø îñ î÷ ú ñ íû �ó ò
ü ��å ûû

ä�� ÿ ò íö �ï� í ù ò

ð ü ïî ò íö �ï� �ñ ûó
ïî �ñ æú ü ó ïñ î

ä�� ÿ òí ö � ï�
ü ��å ûû

	 å öò ü ðå � ï �å ú ñ ù ï�ïå ù

ä í î ï�ñ ù å ç í �î å æü ö ï �ïó÷

ä í î ï�ñ ù å å � ò �ñ ïó�å ú ñ óå �ñ î ó æñ � ç ïü æñ ñ ó
û� å ��

Figure 23. Updated alert-attribute network

alert name before
rea-
son-
ing

after rea-
soning

relative
in-
crease

FTP command
overflow at-
tempts

0.3 0.88235 194.12%

Remote con-
trol via cmd.exe
root shell (hy-
pothesized)

N/A 0.88235 N/A

IIS unicode ex-
ploit

N/A 0.29412 N/A

156 individ-
ual SNMP public
access udp

0.075 0.075 0

Aggregated
SNMP public ac-
cess udp

0.5 0.5 0

other 169 alerts 0.25 0 −100%

Table 6. Confidence values before and after
the reasoning

A. Attacks in the Experiments

Table 7 specifies the preconditions and postcondition of
the attacks used in our experiments.

Table 8 shows the prior probabilities about the attacks
we used in our experiments.

DR

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Threshold (%)

D
et

ec
tio

n
R

at
e

(%
)

raw alerts

verification without aggregation

verification with aggregation

Figure 24. Detection rate VS. threshold (Sce-
nario 4)

FAR

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Threshold (%)

F
al

se
 a

le
rt

 r
at

e
(%

) raw alerts

verification without aggregation

verification with aggregation

Figure 25. False alert rate VS. threshold (Sce-
nario 4)

attack precondition postcondition
WEB-IIS cmd.exe
access

IIS unicode vul-
nerability

{gain cmd.exe
access}

WEB-IIS directory
traversal attempt

IIS unicode vul-
nerability

{gain cmd.exe
access}

FTP command
overflow attempt

(Serv-U 5.0)
∧(anonymous
access)

{cmd.exe
root shell ac-
cess}

Modify web page
/ shutdown Norton
Antivirus

root access {web page
modified /
¬Norton An-
tivirus run-
ning}

Install BackOrifice (user access∧
¬Norton An-
tivirus run-
ning)

{BackOrifice
installed}

Install BackOrifice (Norton An-
tivirus run-
ning)

{Virus BackO-
rifice quaran-
tined}

FTP SITE EXEC
format string at-
tempt

(vulnerable
wu-ftpd ver-
sion ≤ 2.6.2)∧
(anonymous ftp
access)

{Root shell ac-
cess}

SNMP public ac-
cess udp

SNMP pub-
lic access

{gain pub-
lic host infor-
mation}

WEB-CGI redirect
access

vulnerable
ColdFusion
/ Cluster-
CATS

{gain ac-
count informa-
tion}

ATTACK RE-
SPONSE Invalid
URL

{}

Table 7. Preconditions and postconditions of
the attacks in our experiments

attack prior confi-
dence

missing rate

WEB-IIS cmd.exe
access

0.5 0.2

WEB-IIS directory
traversal attempt

0.5 0.2

BACKDOOR
BackOrifice ac-
cess

0.6 0.5

FTP command
overflow attempt

0.6 0.5

FTP SITE EXEC
format string at-
tempt

0.6 0.5

Remote control via
cmd.exe root shell

N/A 1

Install BackOrifice N/A 1
Modify web page
via cmd.exe shell

N/A 1

Remote con-
trol via Trojan
horse Glacier

N/A 1

Remote control via
root shell

N/A 1

SNMP public ac-
cess udp

0.15 0.5

Table 8. Prior probabilities of the attack types
in our experiments

