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Abstract 33], previously known (or partially known) attack scenar-
ios [13,14], and prerequisites and consequences of known
This paper presents techniques to integrate and rea- attacks [9, 24]. However, most of these correlation meth-
son about complementary intrusion evidence such asods focus on IDS alerts, overlooking other intrusion evi-
intrusion alerts generated by intrusion detection sys- dence provided by system monitoring tools (e.g., antisviru
tems (IDSs) and reports by system monitoring or vul- software) and vulnerability scanning tools (e.g., Nes8{lis
nerability scanning tools. To facilitate the modeling of SATAN [16], Nmap [17]). Since none of the above methods
intrusion evidence, this paper classifies intrusion evi- can perfectly construct attack scenarios due to the imperfe
dence into eitheevent-based evidena® state-based evi-  tion of the IDSs, it is desirable to include additional, com-
dence Event-based evidence refers to observations (or de-plementary intrusion evidence to further improve the per-
tections) of intrusiveactions (e.g., IDS alerts), while  formance of intrusion analysis.

state-based evidence refers to observations of ehe Several researchers recently investigated ways to con-
fects of intrusions on system states. Based on the inter- sider multiple information sources during intrusion arsigy
dependency between event-based and state-based evj23 26]. Aformal model named M2D2 was proposed to rep-
dence, this paper develops techniques to automaticallyresent data relevant to alert correlation, including ctizra
integrate complementary evidence into Bayesian net-jstics of monitored systems, properties of security toats|
works, and reason about uncertain or unknown intrusion gpserved events [23]. Though quite useful for alert cofrela
evidence based on verified evidence. The experimention, M2D2 does not provide a specific mechanism to au-
tal results in this paper demonstrate the potential of the tomatically reason about information provided by multiple
proposed techniques. In particular, additional observa- sources. Another mission-impact-based method [26] rea-
tions by system monitoring or vulnerability scanning sons about the relevance of alerts by fusing alerts with the
tools can potentially reduce the false alert rate and in- targets’ topology and vulnerabilities, and ranks alertselia
crease the confidence in alerts corresponding to successfubn their relationships with critical resources and users’ i
attacks. terests. Though the mission-impact based method can auto-
mate the analysis of intrusion alerts, the construction of a
mission-impact based model requires substantial human in-
tervention, and the constructed model is highly dependent
on the monitored systems. Thus, it is desirable to seek other
It is well-known that current intrusion detection systems €fféctive mechanisms that can handle complementary intru-

(IDSs) produce large numbers of alerts, including both ac- Sion évidence automatically.

tual and false alerts. The high volume and the low quality ~ In this paper, we develop techniques to automatically in-

of intrusion alerts (i.e., missed attacks and false alertle ~ tegrate and reason about complementary intrusion evigence

it a very challenging task for human users or intrusion re- including IDS alerts, reports from system monitoring or-vul

sponse systems to understand the alerts and take approprierability scanning tools, and human observations.

ate actions. Our approach is based on the interdependency between
Several alert correlation techniques have been proposedttacks and system states. That is, an attack may need cer-

to facilitate the analysis of intrusion alerts, includitgpse tain system states to be successful, and will modify the sys-

based on the similarity between alert attributes [8, 12, 30, tem states as a result. However, IDS alerts, which represent

1. Introduction



detected attacks, are uncertain due to the imperfection ofing that the machine has been compromised.
current IDSs. To reason about uncertain IDS alerts, our ap-

roach automatically builds Bayesian networks that consis .
P y y follow [6, 29] to represent system states (e.g., vulnerabil

of variables representing IDS alerts and system states. Wit i ttack il d network tivi
additional, complementary evidence about system state%.'es’ attac ter aC(t:te-sbs tp”V' eges,lantt 'nbet or corrl]ne;: a
provided by system monitoring tools, vulnerability scan- les) assystem attributegor simply attributey, each o

ning tools, and human observations, we can then make fur_whlch is a boolean variable representing whether the sys-

ther inference about uncertain IDS alerts. As a result, we €M RIS |{1kz_;\tclerta£[|n Isltatz (1r _:_mt. F:)r examplei :/r\:etmay
can increase our confidence in alerts corresponding to sycUserootkitinstal i ed = irue to represent that a

cessful attacks, and at the same time reduce the confidencEzOOtklt is installed on_the sygtem of concern. Notatlgnemls
in false alerts. we use a system attribute directly to represent that itig,Tru

The main contribution of this paper is a reasoning frame- and use its negation to represent that it is False. For exam-

work for complementary intrusion evidence. To our best {olel,(wehmay USQO(:; Pr It V|_I_|ege o r;prese?t that ‘Zn at- i
knowledge, this is the first attempt sutomaticallyinte- ackernas acquired root privilege on the system, and use its

grate and reason about complementary intrusion evidenc%?egat'l()TRO%t_ Prt') th ! egeg né)t.tThererz]_mﬁylbe |mpl|ca]:-
such as IDS alerts and vulnerability scanning reports. In lon retall(lonsl 'gs e';/veen attri Iu es:[v; Ic .al SO COMRITO
addition, we also perform a series of experiments to vali- eifpe::_ lno_l\fve g?. ?Dr .ex‘f’“l“p &oo h'rrl1\'“d'egte ”I;]_ t
date our approach and gain further insights into the prob—p lesm i elranstererivi | ege, which indicates tha
lem. The experimental results demonstrate the potential ofan attack_e r having the root privilege also has the privilage
the proposed approach as well as the effectiveness of Ou;ransfer files from/to the system. Note that such a represen-
techniques tation can be extended to include variables to provide more

The rest of this paper is organized as follows. The next flexibility. For example, we may USRO.Ot Privil €ge
section describes our techniques to integrate and reasorgx) to represent the attacker has acquired root privilege on

about complementary intrusion evidence. Section 3 present hostx. However, for simplicity, we do not do so in this pa-
the results of our initial experiments. Section 4 discusses . . .
State-based evidence consists of observations on sys-

lated work. Section 5 concludes this paper and points outt tribut lated t ible attacks. Th b |
some future research directions. The appendix includes ag;em attrioutes related to possible attacks. 1hey may be col-

ditional details about our experiments. lected by vulnerability sqan_ning tools (e.g., ngp_[l?],—XS
can [34]), system monitoring tools (e.g., anti-virus soft-

ware), or through human observations. Such system state
information may be changed during running time, and such
Fhanges may be detected by monitoring/scanning tools. We
refer to the change of an attribute asadtribute alteration
Since these attribute alterations are potentially reltded-
tacks, the time information of them is also important for in-
trusion analysis. Thémestampof an attribute alteration is
the time when the alteration is detected or inferred. Such a
timestamp can be stored together with each attribute alter-
ation.

For convenience, we refer to the probability for a system
attribute to be True as tlenfidencén the attribute. When a
system attribute is in negation form, the confidence in the at

We classify Intrusion evidence into WO CaleQOres: yip i is the probability that the negation form is Truer Fo
event-based evidencand state-based evidenceéEvent- ! . . .
example, the confidence insshd_r unni ng is the prob-

based evidence refers to observations (or detections), .. . : ,
of attacks. For example, an IDS alert of a buffer over- ability that—-sshd_r unni ng is True. Compared with IDS

. . . alerts, reports by scanning/monitoring tools are more reli
flow attack against a web server is event-based evidence, P y g 9

. . able due to the verifiable nature of most system attributes.
State-based evidence refers to observations of éhe Y

2.1.1. System Attributes and State-Based Evidenc@/e

2. Reasoning Framework

In this section, we present our techniques to reason abou
complementary intrusion evidence, including IDS alert$ an
reports from system monitoring tools or vulnerability scan
ning tools. In the following, we first describe our represen-
tation of intrusion evidence, and then present the frame-
work to reason about complementary intrusion evidence us-
ing Bayesian networks.

2.1. Modeling Intrusion Evidence

cause of the absence of an appropriate scanner. In addition,
1 A rootkit is a collection of tools (programs) that a hackeesi to Some Sys_tem attributes are difficult to check due to the se-
mask intrusion and obtain administrator-level access mapmter or  CUrity policy on the target system or performance reasons.
computer network it t p: / / sear chsecurity.techtarget. In such cases, unless we have any further knowledge or evi-
com. dence about the attribute, we assume the confidence in such




an attribute i9.5. Intuitively, this represents the lack of in-  corresponding alert to represent an actual fpttack. The
formation about the state of the attribute. prior confidence of each type of attack can be gathered by
analyzing historical data. It represents our prior knogked

. . about IDS alerts based on previous experience. One may
based evidence include event logs, IDS alerts, network traf observe that prior confidences are not constant for each at-

f'f:dl()gs’ si/sbtem é:all .I((j)gs, etc. ItDr:fferentt k'n_(jsd(?]ff Iogstpro- tack type as they are dependant on not only the quality of
vide event-based evidence on he system In different gran-y, IDSs, but also the attack frequency and background ac-
ularities and toward different aspects of the system. Ia thi

th | t-based evid ider i IDStivities in a specific system. However, in the later part @ th
paper, tn€ only event-based evidence we consiaer 1S paper, we will see that our reasoning approach is still use-
alert, which is in a coarser granularity but more under-

tandable by h d with other t f svst ful despite the dynamic nature of the prior confidences, be-
standable by human compared With other types of SySteme,,, ¢q it reduces the uncertainty of intrusion evidence when

Itogsr.] We W|g|u§etLDS alter:cstr?nd eventc-)based ewdetr;;:_e IN- additional verified evidence is considered. In some sense,
erchangeably in the rest o the paper. Lurrepresentation OPr(T) is thebeliefthat a typeT alert is a real instance of at-

IDSf_aI?r_tstlsOcl:Ioser related to ‘t’“t'f mo?celt?f e:(ttagk?. Th(;J_S’ tack, and our reasoning framework is to increase or decrease
we Tirst introduce our representation of attacks beIore dis- - helief in alerts based on complementary instusion evi-

cussing IDS alerts. dence
Similar to [6,29], we model an attack as an atomic rans- ;121 6 the confidence in a system attribute, we refer

forlzngtlonttha;.tgstatl)llshesl a Seit ofd_iystem” attnbutesto the probability that an IDS alert corresponds Buacess-
calledpostcondition given a logical condition callegre- ful attackas theconfidencén the alert.

cond!t!on over system ?t”'b“t_es.- Intuitively, if the pre- We summarize our prior knowledge about IDS alerts and
condition of an attack is satisfied, the attack can then .

) " . attacks below:
transform the system into the state specified by its post-
condition. Given a certain privilege, an attacker may e An IDS alerte of attack typeT has the probability
exploit some vulnerabilities of a system to launch an at- Pr(T) to be a real attack;
tack, which may introduce further vulnerabilities into
the system, or give more privileges to the attacker.
For example, an attacksshd_buffer _overfl ow
may have sshd_runni ngAasshd_vul nerabl e

2.1.2. Event-Based Evidencdypical sources of event-

e Areal attackE has probability 1 to be successful when
its precondition is satisfied by the system attributes be-
fore the attack happens;

as the precondition, and {root _access, e A real attackE has probability O to be successful if
—-sshd_runni ng} as the postcondition. In other words, its precondition is not satisfied by the system attributes
ansshd_buf f er _over f | owattack requires that the vic- before the attack happens;

tim system runs a vulnerableshd daemon, and as the

_ _ - e The attributes in the postcondition of a successful at-
result of this attack, the attacker gains root access privi- tackE are True after the attack happens.

lege and theshd daemon stops running.

IDS alerts represent potentially detected attacks. Thus
we can model IDS alerts in a similar way to attacks. How-
ever, IDS alerts are not exactly the attacks launched toward
the target due to the imperfection of current IDSs. On the
one hand, an IDS may report a false alert when it mistakes
a normal operation for an attack. On the other hand, an IDS
may raise no alert about an actual attack if the IDS doe

S?t reclo_gplze Itt.' One gqgl é)fbthlst gapber 'Sdt(.) tuse_the aOI'ships among attacks and system attributes. Our approach is
tionalintormation provided by state-based INUSIOR eV, ;0 these causal relationships to reason about comple-

dence to enhance our conﬂdence_ in alerts representhg sucr’nentary IDS alerts and system attributes reported by scan-
cessful attacks and at the same time reduce our confidenc

fing/monitoring tools. Specifically, we organize IDS adert
in false alerts. Moreover, we would like to make reason- g 9 P Y, g

ble hvooth bout attack iblv missed by the IDS and system attributes into Bayesian networks [18] based on
able nypotheses about attacks possibly missed by the Those causal relationships, and use these Bayesian nstwork
based on complementary evidence, and thus make the re;:

: ; to reason about complementary intrusion evidence.
constructed attack scenario more consistent and closer to
the reality. 2.2.1. Network Structure To identify and represent these
To facilitate the reasoning about IDS alerts, we use the causal relationships, we integrate IDS alerts with system a
prior confidence of each attack to represent its quantéativ tributes based on the preconditions and postconditionis of a
property. Theprior confidence of an attack type @enoted  tacks. Specifically, we place IDS alerts, available system a

Pr(T), is the prior belief we have about the probability for a tributes, and system attributes possibly modified by the cor

'2.2. Basic Reasoning framework

In normal situations, a system should stay in a legitimate
state. Starting from a legitimate system state, an attacker
may launch a sequence of attacks to get the system into
some intermediate states, and finally into the attacker's ob
Sjective state. It is easy to see that there exist causalorlat



responding attacks into a directed graph, which we call anand some of the attributes does not contribute to othesalert
alert-attribute network corresponding attacks. We are not cutting the attributés ou

Each node in such a graph is a binary variable representbecause we want to make the graph as close to the system
ing either an IDS alert or a system attribute. For brevity, State history as possible. We will see in later sectionstheat
we refer to a node representing an IDS alert (or a systemattribute information is very important in making hypothe-
attribute) directly as an IDS alert (or a system attribute). Ses about possible missed attacks, while including such non
When a node represents a system attribute, it can denote eicontribution attributes really does not increase the cespl
ther a piece of state-based evidence (e.g., scan report), oity of the Bayesian inference computation in the next step.

a hypothesized attribute alteration caused by an IDS alert.
A node denotes a hypothesized attribute when the attribute
is in the postcondition of the attack corresponding to an

IDS alert. Each node is timestamped. The timestamp of an
alert node is the time when the corresponding activities tak

place, while the timestamp of an attribute node is the time
when the attribute alteration is observed or inferred. -sshd_running

All edgesin the graph are directed. An edge from an alert
node to an attribute node represents that the correspond- DDos daemon
ing attack changes the system attribute into this new state. installed
An edge from an attribute node to an alert node represents
that the attribute is a part of the precondition of the corre-
sponding attack. An edge from an attribute node to another
attribute node represents that the first attribute imphes t
second attribute. There are no edges that connect two alert
nodes together directly.

We construct such a graph starting with the initial sys-  Figure 1 shows an example alert-attribute network,
tem state, which is represented in the graph as a set of atWhich is constructed as discussed above. The gray nodes
tribute nodes corresponding to the initial attributes.imt ~ répresent initial or updated system attributes, and the
goes by, new IDS alerts and system monitoring reports areWhite nodes represent IDS alerts. Initially, both at-
raised. When a new IDS alert is reported, a correspondingtfibute sshd.runni ng and vul nerabl e sshd are
alert node is added into the graph only if the alert's pre- Sét to True. For simplicity, we do not show the ini-
condition is evaluated to be True given the attributes pre-tial System attributes that are not involved in the pre-
sented in the graph by the time. Also, edges are added fronfondition or postcondition of the corresponding at-
the latest attribute nodes corresponding to the attribintes tacks. Alert sshd_buf fer overfl ow indicates an
the alert’s precondition to the newly generated alert neale ( aftémpt to compromise the system through the vulnera-
represent the causal relationships). To serve the same puf?!® sshd. The precondition sshd. buf f er overfl ow
pose, edges from the alert node to its postcondition atibu 1S Sshd.runni ngavul nerabl e_sshd, and the post-
nodes are also established when they are created. For eacPndition is  {-sshd.runni ng, root access}.
attribute node in the alert's postcondition, if nodes ®dat Thus, this attempt can be successful since its precondition
to the same attribute already exist in the graph, which couldis satisfied in the system state. As a result, this attack in-
either be caused by some previous alerts or reported by systroduces two attribute alterationssshd.r unni ng and
tem monitoring tools, an edge from the latest such node tof 00t -access. I_n other words, the attacker stops the sshdl
the new node is added to represent the implication relation-d@€mon and gains root access to the system. As shown in
ship. By doing so, each attribute node in the graph repre_Flgure 1, the_ attacker then installs a mstrfeam zombie pro-
sents the accumulative effects on the attribute of all tierpr ~ 9@M, changing the attribufBDoS daenon.i nst al | ed
related alerts. Thus, when an attribute is part of the precon from False to True.

dition of an alert, only the latest attribute node beforsthi 2.2.2. Conditional Probabilities A Bayesian network is

alert is connected to the alert node. Note that we represeng, directed acyclic graph (DAG), where each directed edge

this construction process like it is done in real-time to em- represents a causal relationship between the two ends of the

phasize the importance of the time sequence of intrusion ev-edge, and each node stores a conditional probability table

idence, however, all the construction and analysis presess describing the statistical relationships between the aode

can be done offline following the time sequence of the IDS its parent nodes [18].

alertlog and scan reports. Based on the construction of the alert-attribute network,
One may notice that an attack may affect many attributes, it is easy to see that a graph constructed in that way is

_sshd

sshd_buffer_overflow

root_access

install_mstream_
zombie

Figure 1. A Bayesian network built from intru-
sion evidence




acyclic. Indeed, all the edges are from previously existing ent variables (either alert nodes or attribute nodes) ig,Tru
nodes to newly added nodes, and thus will not result in anyand O if all its parent variables are False (unless it is re-
cycle. From our discussion above, the causal relationshipsported by system scanning/monitoring tools). The tables as
among the nodes in an alert-attribute network are obvious.sociated withr oot _access and—-sshd_r unni ng show
Now we discuss how to determine each node’s conditionalexamples of such conditional probabilities. Similar to the
probability table so that the alert-attribute network bees above example, we only show the probabilities for the at-
a Bayesian network. tributes to be True, from which the probabilities for the at-
When an IDS alerte is reported, the probability tributes to be False can be easily computed.
for the alerte to be a real attack isr(e). The vari- i i _
able ¢ being True represents that the corresponding at-2-2-3- Reasoning  about Intrusion  EvidenceThe
tack is successful. We assume an attack will succeed if3@yesian networks constructed in this way offer an ex-
its precondition is satisfied. Thus, the probabilitycobe- ~ Cellent opportunity to reason about the uncertain in-

ing True is the prior confidence of the corresponding trusion e\{ldence, _partlcularl_y the IDS alerts. We_caII
IDS alert when its precondition is satisfied, @rother-  those attributes with a confidence value bfthe veri-

wise. Since attack’s precondition is a logic formula of sys- fied attriputes. The report of such yeﬁfied gttributes are
tem attributes, the conditional probability of an alert aod observations of facts. When new verified attributes are re-

can be easily derived. The conditional probability ta- POrt€d by system monitoring/scanning tools, we can use
ble associated with nodesshd.buf fer overfl ow these observations to re-compute the confidence val-

in Figure 2 shows such an example, where we as-Y€S in the related previous objects in the network with
sumePr (sshd_buf f er overflow) = 06 Note that  Bayesian inference. And for each node in the Bayesian net-
. c work, its final probability value is the combined result of

the probability of an IDS alert variable being False un- k -
der these preconditions can be easily computed from the?!! the evidence and knowledge. Take the Bayesian net-

above probabilities. Thus, we do not include them here. ~ WOrk shown in Figure 2 as an example. We may be
uncertain about an IDS alert reporting a buffer overflow at-

tack againstsshd, since the IDS has reported the same
sshd_vulnerable type of alerts incorrectly in the past. However, if by scan-
ning the system we find thatshd is not running properly
after the IDS reports this alert, we can then update the con-

sshd_running

sshd_ | sshd_ | P(sshd_buffer_ fidence in—sshd_running to be 1. Thus, we are more
running | wulnerable | overflow=TRUE) . . .

sshd_buffek ovérflow | FALSE | FALSE 0 certain about the alert, which caused the attribute alter-
HASELIRE S ation. Though human users would do the same reasoning,
TRUE | TRUE 0.6 placing these evidence into Bayesian networks offers addi-

tional benefits, since such a reasoning process can then be
performed automatically and systematically. Also such rea
soning could become too difficult for human users when

root_acce —sshd_running

sshd_buffer [ P(root_acces | [ sshd_buffer [ p(-sshd_running dealing with very complicated scenarios.
overflow =TRUE) _overflow =TRUE) . . .
FALSE 0 FALSE 0 It is easy to see that the more verified state-based evi-
TRUE 1

dence we have, the better judgement we can make by rea-
soning about the uncertain IDS alerts and system states.
Figure 2. Conditional probability tables in an This suggests that we should monitor the system closer and
alert-attribute network possibly scan the system more frequently, as system mon-
itoring tools and vulnerability scanning tools usually gen
erate evidence with high confidence value. However, such
monitoring and scanning are often expensive and may hurt

Conditional probability tables associated with system at- the other applications by consuming resources. Thus, it is
tributes are even simpler to compute. Indeed, if an IDS a|ertimportant to determine the right balance for system moni-
e represents a successful attack, all the system attributes i toring and scanning activities. Nevertheless, this protite

its F_)OStCOﬂdition should turn to True. Othel’Wise, the Sylste ) out of the scope of this paper. We leave it for future consid-
attributes that are False before the IDS alert should remaingration.

False. If two attribute nodes of the same attribute are con-

nected together with an edge representing implication rela 2.2.4. Merging Attribute Nodes As discussed ear-
tionship, and the earlier one is True, the latter one shouldlier, there may be edges between attribute nodes corre-
also be True. Thus, the conditional probability of a system sponding to the same attribute, which represent implica-
attributea being True would bé if at least one of its par-  tion relationships between them. We observe that in certain




cases, such attribute nodes can be merged without affectity density functionProb(S), whereS is the set of all the
ing the reasoning about intrusion evidence in alert-atteb  nodes &4, X5, ---, Y3, ---, M, ---) in the Bayesian net-
networks. This observation is reflected by Lemma 1, which work.

is presented next. For the sake of presentation, if two at- BecauseA andB's probability values solely depend on
tribute nodesA andB are connected with edgeA, B), X, andYj, given a set of input(4, B, {X;}, {Yi},--),
we refer to the action of removing nodewith all its out- the probability valueProb(A, B,{X;},{Y;},---) either
going edges and redirecting all its incoming edges to nodeequals td) asA andB cannotbdr ue given({ X, }, {Y;}).

B asmergingA into B. or equals toProb({X;},{Y;},---) asA andB are deter-
Lemma 1 Consider two attribute node8 and B corre- mi”e‘?' FO beTr ue given ({X;}, {1;}). Thus, the res_ult of
sponding to the same attribute and connected by an edgemggnmg outd and B from Prob(S) before mergingA
(A, B).Ifeitherthereis no other outgoing edge from node
Aor Ais instantiated (verified), merging into B does not Z Z Prob(A, B, {Xi}, {Yj},- )
change the probability of any other node when reasoning BA
about intrusion evidence. equals to

proof: The proof is divided into two steps. The first step > Prob({X},{Y;}, ). 1)
is to prove that merging the two nodes will not affect other B=True

nodes in the downward reasoning in the Bayesian network.Similarly, margining outB from the joint probability den-

The second step is to prove that such a merge will not af-sity function of all nodes after the merge can also be repre-
fectthe posterior probability values of other nodesinthe u  sented as

ward reasoning (belief updating) in the Bayesian network.

As shown in Figure 3, we assum nod&s par- > Prob({X:},{¥;}, ), 2)
ent nodes areX;, X»,...,X,, nodeB's parent nodes B=True
areYy,Ys,...,Y, andA, and (A, B) is the only outgo-  whereProb'({X;},{Y;},---) is the joint probability den-
ing edge fromA. sity function of the rest of the nodes in the merged network.

BecauseA andB are solely dependant ofiX;} and{Y;},
andB's conditional probablity table ovg{ X}, {Y;}) does
not change after the merge, formula 1 equals to formula 2.
Thus, the posterior probability of any other node in the net-
work remains the same as before merghigto B. O
With Lemma 1, we can recursively merge attribute nodes
that satisfy the condition specified in Lemma 1 to reduce the
complexity of the network structure without affecting the
reasoning result.

Figure 3. Merging two attribute nodes

2.3. Alert Aggregation and Abstraction
SinceA andB are both attribute node8,is True if any

of X1, Xo, ..., X, is True, andB is True if any ofA, Y1, The reasoning framework can greatly reduce the num-
Y, ..., Y, is True. ThusBis True if any ofA, X1, X, ..., ber of false alerts, and provides a method to combine mul-
Xm, Y1,Ys, ..., Y, is True. After mergind\into B, B's par- tiple observations in intrusion analysis. However, in teal

entnodes ar&(;, Xo, ..., X,;,, Y1, Ys,..., Y, andBis True ity, IDSs often generate a large number of alerts for the

if any of these nodes is True, which is exactly the same logic same attack during a short period of time. Such alerts may

equation as before the merging. Thus, in the downward rea-be due to repeated attack attempts, or false alerts triggere

soning process, the probability value of any node other thanby similar and repeated normal operations. For example,

Ain the network remains the same as before mergiirgo Snort [28] generated 248NVP publ i ¢ access udp”

B. alerts in our experiment without raising any other alert dur
When computing the posterior probability value of a ing a period of 10 minutes. As a result, these alerts share the

nodeMin the network after there is additional verified evi- same parent nodes and child nodes in the Bayesian network.

denceE, the posterior probability can be computed as This introduces two problems. First, a child node of the 24
P(M, E) “SNMP publ i c access UDP” alerts has a conditional
P(M|E) = ?]75) probability table with22* entries. Having so many entries

makes it difficult to take advantage of existing Bayesian net
In this equation,P(FE) and P(M, E) are derived from  work tools, though it is possible to reduce the storage over-
margining out all the other variables in the joint probabil- head by computing the conditional probability table on the



fly. Second, when we use verified evidence discovered laterever, the model still cannot deal with missed attacks. When
to reason about these 24 alerts, the effect of the additionathere is a missed attack, the effect of the attack on the sys-
evidence will spread over these 24 alerts, since we do nottem will not be reflected in the alert-attribute network, and
know which of the 24 alerts indeed contributes to the mod- some later alerts corresponding to successful attacks may
ification of system attributes or later attacks. be considered False. Thus, the alert-attribute network gen

In practice, when there are multiple consecutive alerts of erated by the model may not reflect the reality when there
the same type of attack, we usually do not care which one isare missed attacks. In other words, the current model only
the actual successful attack, but whether at least oneof the works when there are no missed attacks. (Note that this is
is successful and changes the system state. Thus, a natural common problem shared by almost all alert correlation
approach to addressing the above problem is to aggregatenethods.) Because none of the current IDSs can guaran-
such alerts together into one single node, which representgee to detect all attacks, it is necessary to improve the rea-
“at least one of the component alerts corresponds to a sucson framework to deal with missed attacks.

cessful attack”. Specifically, we aggregate the alert nodes e observe that when successful attacks are missed by
that have the same attack type, parent nodes, and childreqpss; it is still possible for the system monitoring tools to
nodes into one aggregated alert node. catch the impact of the attacks on the system states. In other
The conditional probability table of an aggregated alert words, we may observe “unexpected” attribute alterations
node can still be computed similarly. However, we need to caused by the missed attacks. Such cases essentially cause
use aggregated prior confidence vallie,, which repre-  jnconsistencyn the alert-attribute networks, where an at-
sents the probability that at least one of its componentsaler tripyte alteration is reported by system monitoring toals b

corresponds to an actual attack. Givewomponent alerts  there are no alert nodes in the network leading to the alter-
for attack typ€l” that are merged into one aggregated alert, ation.

the aggregated prior confidené®,(7") can be computed

as Considering the defectiveness of current IDS technol-

n ogy, we can expect that sudhconsistenciesare bond
Pro(T) =1~ (1= Pr(T))". to happen in practice. Thus, we propose to hypothesize
IDSs usually raise different alerts for similar attacks, or about missed attacks based on the above inconsistencies
variations of the same attack. For example, Snort has mordn alert-attribute networks. Inconsistencies are almdst a
than 100 WEB-IIS related alerts, and many of them are ex-ways caused by missed attacks: An “unexpected” attribute
ploiting the same unicode vulnerability and have the samealteration causing the inconsistencies can either be di-
impact. In many cases we do not care about the subtle differrectly caused by some successful attack missed by IDSs, or
ence between these alert variations, but only want to knowby a detected attack that does not appear in the network be-
if any of them is a successful attack. Thus, we may considercause its precondition is not satisfied in the network with-
these alerts as the same type of alerts in a coarser granusut the missed successful attacks. The only exceptiontis tha
larity. To do so, we abstract alert variations into one com- it could be caused by false alerts if the monotonicity prop-
mon alert and apply alert aggregation. Specifically, we re- erty of attacks does not hold for some particular types
place the attack type of each IDS alert with an abstract at-of attacks, that is, a successful attack disables other at-
tack type, and follow the same procedure as for alert ag-tacks’ preconditions. According to [29], this kind of
gregation. Note that this abstraction requires human knowl! attacks are very rare. We can always recognize such at-
edge about the alerts and attack types. tacks and pay additional attention in the investigationnmvhe
Since different variations of the alerts being aggregatedthey are involved.
may have different_ prior confidence values, we neeo! to ad- Figure 4 shows an example to hypothesize about possi-
just the computation of the aggregated prior confidencepjy missed attacks to resolve such inconsistency. As we can

slightly. The prior confidence is computed as below: see in the figure, when the system monitoring tool reports
n the fact that the backdoor “BackOrifice” was found in the
Pry(T) =1—[](1 = Pr(Typea,)), local system, the system adds node “BACKDOOR BackO-
i=1 rifice installed” to the graph immediately, which activates
whereay, as, ..., a, are the alerts to be aggregaté@tpe,, the precondition of the later alert "TBACKDOOR BackOri-
is the attack type of alett;, andT is the aggregated attack fice access”. However, there is no previous node possibly
type. causing the “BackOrrifice installed” attribute set to True. T
fill in this gap, we look up the graph structure for estab-
2.4. Hypothesizing about Missed Attacks lished attributes and attacks, the knowledge base for possi

ble attacks that can cause this attribute alteration, aed th
With alert aggregation and abstraction, our model can log of previously dropped alerts for possible related &i$ac
handle a larger number of alerts generated by IDSs. How-According to the above information, we make a hypothesis



from the Bayesian network with this conditional prob-

Root
00t access ability table the confidence in the hypothesized attack.

Q Although this confidence value has a different mean-
Install ing from that in those normal alert nodes, it still shows
BackOrifice st 9 L . f .
4 which hypothesis is more expectable given the available ev-
BACKDOOR idence.

We add the the hypothesized attacks with the corre-
sponding conditional probability tables into the alert-
attribute network. From the earlier discussion, we can
see that such a hypothesis is made and placed into the
alert-attribute network only if the attack is possible give
the system state at the time. However, there may be later ev-
idence showing that some attribute in the pre/post-candliti
Figure 4. An example of hypothesized attack of the hypothesized attack is not valid, and such evidence
will affect the belief of the hypothesized attacks via be-
lief update process in Bayesian inference. Thus, with the
of a possibly missed attack “Install BackOrifice” linkinggth ~ Bayesian network inference, we can always keep the hy-
attribute nodes “Root access” and “BackOrifice installed”. potheses consistent with our observations in the system.
The hypothesized node and edges are presented with dotFor example, we may find negative evidence against a hy-
ted lines in the figure. pothesis, and the Bayesian inference process may update

A hypothesis upon a possibly missed attack infers that the probability of the hypothesized attack @o imply-

ing that the hypothesis cannot be a successful attack.

e the attack has happened, Validation is necessary for all hypotheses. From the
above discussion about Bayesian inference about the hy-
potheses, we can see that the validation process is already
e the attack is successful. embedded in the Bayesian inference process. Our belief in
ﬁ]ypotheses is always consistent to the latest evidence of th
system. Further details with examples about making and
validating hypotheses are discussed in section 3.

. BackOrifice installed

BACKDOOR
BackOrifice access

¢ the attack has been missed by IDSs, and

Thus, as the three properties are independant from eac
other, the probability of a hypothesized attack being a cor-
rect hYPOthGSiS isphypothesis = Phappened : Pmissed .
Poyccess futy Where Phgppeneq 1S the probability for the at-
tack to have happened®,,;ss.q iS the probability for the  2.5. Scaling Up
IDS to miss the attack, an®s,ccess i IS the probabil-
ity for the attack to succeed if it happens. From our pre-  The reader may have observed that as more IDS alerts are
vious discussion, the successfulness of an attack is deterreported, the Bayesian network will grow larger and larger.
mined by whether its precondition is satisfied by the sys- Though by periodically scanning the system and gathering
tem attributes. Thus, a hypothesis will have a probability o evidence about attacks, we may verify earlier alerts to be ei
Phrappened- Pmissea if its precondition is satisfied by the sys-  ther successful or not, there will still be a number of unver-
tem attributes. Then, the conditional probabilty table of a ifiable alerts. This has a severe impact on intrusion anal-
hypothesis node over the attributes in the attack’s preeond ysis. Indeed, both exact and approximate inferences in a
tion is similar as a normal alert node’s probability table ex Bayesian network upon partially observed evidence have
cept that the non-zero value of the node in the conditional been proved to be NP-hard [7, 11]. It is very expensive, and
probability table iSPrappened - Prmissed instead ofPr. even infeasible, to make inferences upon new evidence if

P,isseq is the prior knowledge (or the belief) of hu- the Bayesian network is very large and complex.
man experts about known attack types, which can be One possible solution is to rebuild Bayesian networks
collected from historical data and experience. How- when the previous ones grow too large. This can avoid in-
ever, Pyoppen SOlely depends on the attacker's knowl- tractable Bayesian networks. However, the effect of the ev-
edge and personal preference, which is unpredictableidence accumulated in the previous Bayesian networks will
There is no way that we can have a fixed value of this prob- be lost, especially the system attributes that have been rea
ability. Thus, we use the valué,,;.s.q instead in the  soned about using other evidence but not yet verified. As a
conditional probability table, which represents the proba result, information collected in an earlier Bayesian netwo
bility for the hypothesis to b&T ue given the condition  cannot be carried over to the new one.
that it has actually happened and its precondition is sat- To make a trade-off between the accumulated informa-
isfied. Accordingly, we refer to the probability computed tion and the network size, we propose to use a sliding win-



dow to process and reduce the Bayesian networks. Specif3. Experimental Results

ically, we use a time window to decide what evidence to

keep in the Bayesian network as well as what to remove. We have performed a series of experiments to evaluate
When new alerts or scanning results are reported, we slidethe effectiveness of the proposed techniques. In our experi
the window so that the front of the window advances to the ments, we connected three PCs through a hub in an isolated
most recent evidence. Some old evidence may move out ofnetwork. For convenience, we refer to thena#tacker vic-

the window, and be removed from the Bayesian network. tim, andIDS. We launched attacks from the attacker against
IDS alerts can be simply removed from the network. How- the victim, while monitoring the attacks on the IDS.

ever, for system attributes, the last version before theoénd We use Snort version 1.9.1 [28] as the IDS sensor. We
the window will be used as the initial system state in the up- also use Nessus [3] and XScan [34] as the vulnerability
dated Bayesian network. scanning tools. We evaluate our techniques with five at-
tack scenarios, which we refer to as Scenario 0 to Scenario
4. The goals of these attack scenarios vary from modify-

Note that the effect of the removed evidence is still kept ina the target's web page to converting the taraet machine
in the Bayesian network. When a Bayesian network is first . 9 9 bag g g

L into a part of attacker’s own distributed network. Some at-
constructed, all the probabilities of the nodes are contpute . i .
X L tack scenarios target MS Windows systems, while the oth-
from the prior probabilities. As old nodes are removed, pre-

s target Linux systems. Accordingly, the victim runseith

. ; r
viously internal nodes become the root nodes of the updatecsvmdowS or Linux, depending on the attack scenarios. We

Bayesian network. These new root nodes use the previously - . ;
updated probabilities as their prior probabilities foetan- fun TripWire [5] (for MS Windows) and Samhain [4] (for

X . . Linux) on the victim as the file system integrity monitoring
ferences. As a result, the effect of earlier evidence is re- : .
tained by the updated Bayesian network. tools. We a}lso run Trojan horse scanning tools Tauscan [31]
(for MS Windows) and chkrootkit 0.43 [1] (for Linux) on

the victim as additional system scanning tools. We devel-

One may point out that sliding windows give attackers an oped a program to automatically generate alert-attribete n
opportunity to defeat our technigue. That s, an attackgr ma works from the IDS alerts and the reports of these scanning
slow down his/her attacks so that the related attacks are notools, and then use JavaBayes [2] to make inference using
effectively considered since they do not appear in the samethese networks.
Bayesian network. However, even if an attacker slows down To simulate the realworld system administration, we
the attacks, the effect of each successful attack steplis sti configure the file system integrity monitoring tools (Trip-
captured by its postcondition in a Bayesian network, if the wire and Samhain) to monitor important files and directo-
attack is detected. Thus, we can still reason about an indi-ries only, i.e., system configurations files, service configu
vidual alert if its postcondition is verified. Moreover, ifia  ration files, and the main webpage files.
attacker has to slow down his/her actions to avoid being de- To mimic an operational network, we also inject back-
tected, our technique has already deterred attacks. ground traffic into the network during our experiments. We
randomly select one of the training datasets (the training
dataset on Monday in the third week) in the 1999 DARPA

The size of the sliding window is critical to the effec- intrusion detection evaluation datasets [22] as the back-

tiveness of the Bayesian networks. If the window size is too

small (e.g., shorter than the time interval between two Con_ground traffic in the experiments, as it is attack free. This

. . ackground traffic triggers 325 alerts in Snort, which afe al
secutive system scans), some IDS alerts may be discarde
alse alerts. All the other alerts reported by Snort are real

before we can use related evidence to reason about them.
Certainly, such a Bayesian network cannot be too large duealerts. . . ) .

to the difficulty in computing with large Bayesian networks. In th(_e res_t of th's. section, we first pre_sent the analysis of
Thus, we should balance the computational cost and theS_cenano 0in detf"“l' and '_[hen summarize the results of all
risk of losing information The computational cost of cor- five attack scenarios. Adqunal details of t.he other faur a
relation and Bayesian inference is highly dependent on thetack scenarios are included in the Appendix.

amount of alerts and the amount of real attacks among those

alerts. More frequent, deeper, wider system scans can de3.1. Analysis of Scenario 0

crease the size of the Bayesian network, while the compu-

tational cost of such scans also increases as its frequencyd.1.1. Details of Scenario On this attack scenario, the at-
depth, and width increases. All those considerations maketacker exploits the remote buffer overflow vulnerability in
the problem even more complex. Those issues are alreadyome old versions of Serv-U ftp server to get administra-
out of the scope of this paper, we will leave them to our fu- tive access. The victim machine is a Windows box running a

ture study. vulnerable Serv-U 5.0 ftp server with default public anony-



mous access. At the same time, the victim also runs Nor- semu150

ton antivirus with file system real-time protection. When Mﬁ?"(’f" A liess " Dalsaion nmng " Hep on ot 80
the system attemps to access a file containing known virus e e O
or backdoor, the file system real-time protection will quar-

antine the file. 156 SNMIP publc

The attack scenario includes five steps: wpeere

FTP command overflow
attempt

1. remote buffer overflow attack against the Serv-U,

gain public host Cmd.exe root shell access

information

2. attempt to install BackOrifice on the victim, which was
guarantined by Norton antivirus, ®

3. kill the Norton antivirus process with system process e
tools through the remote administrative shell, o

—Norton Antivirus realtime EAC.KDOOR
protection running O BackOrifice access

(not to appear in

the network)
Webpage file modified

4. install the BackOrifice again (successful), and

5. changing the web page through BackOrifice.
The initial system attributes include

e Serv-U 5.0 on port 21,

e anonymous ftp access,

Figure 5. Initial alert-attribute network

Now let us look at possible missed attacks. There
are several obvious inconsistencies in Figure 5.
There are no detected alerts causing the verified at-
e http on port 80. tributes ‘Norton Antivirus not running”
“Virus BackOrifice found & quarantined”,
and “Webpage file nodified”. Based on our

e Norton Antivirus with file system real-time protection,
and

During the attack process, Snort reported the following

2 alerts:
knowledge about attacks, Shut down Norton
e OneFTP command overflow attenpt alert Antivirus via cnd. exe shell” and “I nstal |
e ONeBACKDOOR BackOrifice access alert BackOrifice” are the only possible hypotheses that

. _ ~can fill in the first two gaps. For the attribut§bpage
Norton also logged that BackOrifice was foundin thefile ¢ | e npdi fi ed”. it could be done through remote con-

system and quarantined successfully during the attack peyg| via either cmd.exe shell or BackOrifice access. The
r_|od. In the end, Tr|pw!re logged and reported the modifica- ¢ option implies hypothesized remote control via
tion to the web page file and the system logged that Nortonc g exe, while the second one implies hypothesized instal-
antivirus was shut down. lation of BackOrifice after Norton was shut down. These
3.1.2. Reasoning about Intrusion EvidenceOur alert- ~ hypotheses lead to a new alert-attribute network in Fig-
attribute network generation tool generated the network Ure 6-
shown in Figure 5 based on the above information and the In Figure 6, the dotted nodes and edges denote hypothe-
prior probabilities and attack type information, which are Sized attacks and corresponding causal relationships. Con
included in the appendix,. ditional probability table of each node can be generated au-
To distinguish between different types of nodes in a tomatically given the network structure and prior probabil
Bayesian network, we use white nodes to denote IDS alertsjty values. Then JavaBayes generates updated confidence
gray nodes to denote unverified system attributes, and blackvalues of each node in this Bayesian network. The confi-
nodes to denote verified system attributes. The relative ver dence values of the related alerts before and after reason-
tical position of nodes in the graph represents the relativeing are shown in Table 1. We can see significant increases

time order among nodes. in the confidence values of successful attacks; however, all
Note that Figure 5 includes 156SNMVP publ i c the false alerts have either decreased or unchanged confi-

access udp” alerts, which results in2'%¢ entries  dence.

in the conditional probability table ofjai n public We also find some interesting observations in Table 1.

i nf or mat i on. Computing with such a conditional prob- The confidence values in three of the hypothesized nodes
ability table is out of JavaBayes’ handling capacity. How- turned intol, and two of them are the two options to re-
ever, after alert aggregation, the 156 nodes are aggregatesdolve the same inconsistency. As we have discussed in Sec-
into a single node and thus can be handled easily by Javtion 2.2.2, unless a hypothesis is the only option to solve
aBayes. the inconsistency, a confidence valuelofor a hypothe-



Serv-U5.0

o P R eemon g™ alert name beford after | relative
SNx::su:"c Administrator ’ | n-
: crease
FTP command overflow 0.3 1 233.3%
SNMP public udp
: attempts
FTP cormmand overtow BACKDOOR BackOri-| 0.3 0.6 100%
: fice access
gein pubi host Cmd.exe root shellaccess Shut down Norton An-{ N/A | 1 N/A
: tivirus via cmd.exe shel
O e (Hypothesized)
Antiin via omd e shell install BackOrfce nstance 17 Install BackOrifice In-| N/A | 0 N/A
—Norton An(ivirusrealﬁme‘ : Stance 1 (HypOtheSIzed)
protection running el Vs BackOres found & Install BackOrifice In-| N/A | 1 N/A
: " . quaraniined stance 2 (Hypothesized)
Install BackOrifice instance 2 MOdIfy Web page via N/A 1 N/A
; cmd.exe shell (Hypothet
Modify webpage via am dexe’; BackOrifice installed SiZEd). _
shell g 156 individual SNMP| 0.075| 0.075| 0%
BackOritce aceess public access udp
aggregated SNMP publi¢ 0.5 0.5 0%
access udp
other 169 alerts 025 | 0 —100%

Webpage file modified

Table 1. Confidence values before and after
Figure 6. Updated alert-attribute network the reasoning

sized attack does not mean that the attack must have hap- thi
pened. Instead, it implies thitthat attack has happened, N tiS Process.

it must be successful. Thus, although the confidence vaI-d :n our ex;:r)]ertLr]nents,lgvSe ulsetq a conflden]f:el t?treskhold t?
ues for the two hypothesized nodes are bigtht does not etermine whetner an alertis a successiulattack or not.

mean that both attacks must have happened. However, COm$pecn°|cally, if the confidence in an alert is greater than or

paring the probability of the path from the initial verified e_quall t(()j the _tthrvevsholhd, we ?ﬁciﬁt thﬁ ?cljert. IOthber\;\vAilse, Wg
attributes to the later verified attribute (by multiplyinget simply drop It. YWe change the threshold value between

probabilities of all the intermediate nodes along the path) and 1, and collect the dgteghon rate_s an_d false alert rates.
we find that the one througtvbdi fy web page vi a To compare the results in different situations, we repeated

cnd. exe” has a greater probability than the other one. Al- the above process in two cases: (1) without alert aggrega-

though it is not what exactly happened in our experiment, it t!on and abstraction, (2) with alert aggregation and abstra

shows that both methods can achieve the goal of modifyingtlon‘ The performance graphs for the five attack scenarios
web page without being detected, and modifying through are very similar. . . .
established remote cmd.exe shell is simpler and easier com- In our evaluation, we abuse the notlons of detection rate
pared to the other option, which requires several extralatta and false alert rate to represent ifhetection rate of suc-

steps. Also, the probability of a hypothesized node béing c_essful gttackandfalse alertand failed a_ttack rajgespec-
means either it is not missed by the IDS, or it is a failed at- tively. Figure 7 and 8 show t_he detection rate curves and
tack attempt. false alert rate curves w.r.t. different thresholds in aes

for one of our scenarios. Since the meaning of the confi-
3.1.3. Using Confidence for Intrusion DetectionWith dence in a hypothesized attack is different from that in an
the reasoning framework for intrusion evidence, we are ableIDS alert, we do not consider hypothesized attacks in this
to associate a quantitative measure (i.e., confidence) withevaluation.

each IDS alert. It is natural to think about using the alert  From the two figures, we can see that the Bayesian rea-
confidence values to improve the performance of intrusion soning with verified evidence can significantly increase the
detection. In addition, we want to see how additional com- detection rates and decrease the false alert rates in a large
plementary evidence (e.g., verified system attributeg)shel threshold space by adjusting the confidence values of the
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2 out of the 4 hypothesized attacks are actual successful at-
tacks missed by the IDS, and 1 of the other 2 hypothesized
. attacks is an actual failed attack attempt.

[ P verification without aggregation
— - — -verification with aggregation

: 3.2. Summary of Experimental Results
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In the following, we summarize the results obtained from
201 all the five attack scenarios. We first discuss the impact of
0] the proposed techniques on alerts, and then describe the re-
sults about hypothesized attacks.
0 ‘ ‘ ‘ ‘ ‘ ) We use a simple metric named confidence ratio to exam-
0 20 40 60 80 100 120

Threshald (001 ine the usefulness of the proposed techniques in reasoning
about IDS alerts. Specifically, @onfidence ratias the ra-
tio between the average confidence of alerts corresponding

Figure 7. Detection rate vs threshold (Sce- to successful attacks and the average confidence of the other

nario 0) alerts (i.e., false alerts and alerts corresponding tedaat-
tack attempts).
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Figure 8. False alert rate vs threshold (Sce- . ] )
nario 0) Figure 9. Confidence ratio before and after
the reasoning

alerts based on complementary evidence. Please note that

because the largest confidence value of alerts before rea- Figure 9 shows the confidence ratios in all five attack sce-
soning is0.3, the curve of raw alerts only continuesia narios before and after using the proposed techniques. (We
on thex axis in Figure 8. No alerts can be detected with a have discussed Scenario O in the previous subsection; de-
threshold larger thad.3 before the reasoning. After the rea- tails of the other scenarios can be found in the appendix.)
soning, the detection range is also greatly increased whic These results indicate that with the proposed techniques,
provides more flexity for making security policies. If we the average confidence in alerts of successful attacks are
further consider the fact that after the reasoning, we knowgreatly increased compared with the average confidence in
for sure that three of the four hypothesized attacks mustthe other alerts (false alerts and alerts for failed attaek a
have happened, the framework’s ability to improve detec- tempts). In fact, the average confidence in the other alerts
tion performance is actually more than what is shown in the either remain the same or decrease.

figure. The reason the result with aggregation has a higher We totally made ten hypotheses during the reasoning in
false alert rate when the probability threshold is o0&y the analysis of the five attack scenarios. Table 2 shows the

is because that the 156 fals8NMP publ i ¢ access accuracy of these hypotheses in these attack scenarios, re-
UDP” alerts are aggregated into one single alert and its prob-spectively.
ability is greatly increased. Also, the detection rate show In the experiments, six out of the ten hypothesized at-

the figure does not consider the hypothesized attacks, whergacks are actual successful attacks missed by Snort, and one



niques in [20, 21] use conceptual clustering and general-

Scenario| Accuracy ization hierarchy to aggregate alerts into clusters. It p
0 5% posed in [27]to use time series analysis to discover patenti
1 100% causality between alerts without specifically modeling at-
2 50% tacks. Alert correlation may also be performed by matching
3 100% attack scenarios specified by attack languages. Examples
4 50% of such languages include STATL [15], LAMBDA [10],
and JIGSAW [32]. These methods use mechanisms differ-
Table 2. Accuracy of hypotheses in the exper- ent from ours to correlate alerts, and are potentially com-
iments plementary to our approach. It may be possible to improve

some of these approaches to support complementary intru-
sion evidence. However, we do not consider it in this pa-

out of the other 4 hypotheses is an actual failed attack at-Per- _
tempt. Among the seven real attacks, we have definite con- Our approach is also related to the recent results on vul-
fidence that four of them must have happened from the alert-nerability analysis (e.g., [6, 19, 29]). In particular, theth-

attribute network. The result shows that with sufficieneloc ~ 0ds in [6,29] also model system state as system attributes,
System evidence, our model is efficient and effective in dis- and attacks atomic transformation that establish postcon-

covering some missed attacks. ditions given the attacks’ preconditions. However, our ap-
proach is aimed at reasoning about intrusion evidencerathe
than finding out possible sequences of attacks.

4. Related Work

The techniques closest to ours are M2D2 [23] and the 5. Conclusion and Future Work
mission-impact-based correlation method [26], which have
been briefly discussed in the introduction. All these meth-  In this paper, we developed a method to integrate and
ods, including the techniques proposed in this paper, at-reason about complementary intrusion evidence, including
tempt to correlate intrusion evidence from multiple soarce IDS alerts, reports of system monitoring or vulnerability
However, M2D2 is intended to provide a formal model to scanning tools, and even human observations. By using
represent intrusion related information, while the missio  the interdependency between attacks and system states, we
impact-based method requires substantial human involve-combine IDS alerts and attributes representing modifica-
ment in the specification of correlation models. In con- tions of system states into Bayesian networks, which are
trast, our method can automatically construct Bayesian net then used to infer about uncertain IDS alerts based on addi-
works of IDS alerts and other complementary intrusion ev- tional observations of system states. We further proposed
idence based on the knowledge of individual attacks, andto refine these Bayesian networks through alert aggrega-
harness the rich results developed for reasoning about uniion and abstraction, so that we can focus on the reason-
certain events. ing about existences of successful attacks and use comple-
Another approach was proposed in [25] to make hy- mentary intrusion evidence more effectively. We also pro-
potheses about missed attacks based on the pre/posposed to use sliding windows to provide a trade-off be-
conditions of known attacks. Our approach differs in that tween the intractability of reasoning with large Bayesian
the hypotheses made in our model is based on not only thenetworks and the ability to integrate and reason about IDS
pre/post-conditions of known attacks but also the avail- alerts and other evidence. Our initial experimental result
able system states. have demonstrated the potential of the proposed techniques
The techniques proposed in [9, 24, 32] are also based A limitation of our approach is that it reasons about suc-
on modeling individual attacks, similar to ours. However, cessful attacks, but cannot handle attack attempts in the
these approaches only focus on IDS alerts, but do not takesame way. In other words, with additional evidence such
advantage of other information sources. Our approach caras a verified attribute, our approach will increase the confi-
potentially get more concrete analysis results due to thedence in alerts corresponding to successful attacks, but de
additional, complementary information considered in our crease the confidence in those representing failed attack at
model. tempts. This feature certainly restricts the applicapidif
There are other alert correlation techniques. The tech-our approach. Another limitation is that our model cannot
niques in [8, 12, 30, 33] correlate alerts on the basis of thereason about attacks which has no effect on the local sys-
similarities between the alert attributes. The Tivoli agaarh tem, i.e., probes and scans. Indeed, most attackers need to
correlates alerts based on the observation that some alertgather certain information via network to launch attacks.
usually occur in sequence [14]. The alert clustering tech- For example, a probe to some specific ports may be neces-



sary for attackers to gain related information to launchesom [11] P. Dagum and M. Luby. Approximating probabilistic infe
corresponding expolits. However, the effect of such infor-
mation gathering activities is on the remote attackers sid
which cannot be predicted and be used as preconditions of12]
attacks. Information can be gathered in multiple ways other
than network scans, e.g., chatting with a careless adminis-
trator or wiretapping the telephone. Thus, such attacKs wil
not appear in the alert-attribute Bayesian network so Heat t
reasoning will not affect and be affected by such alerts. In-
formation of such alerts is usually useful for human admin-
istrators in analyzing the attacker’s intentions and styiats

in realworld. For example, people may have a higher be-
lief on alerts of follow-up attacks after monitored probes
on some special ports. However, modeling this observation[15]
brings risk of being distracted by forged traffic from attack

ers.

This paper is only the starting point of our effort to inte-
grate and reason about complementary intrusion evidence.
In our future work, we will investigate additional technigi
to improve the performance. In particular, we will study the
use of dynamical Bayesian networks in processing streamsﬂs]
of IDS alerts and other intrusion evidence, investigate ap-
proaches to handling attacks missed by IDSs, and perform
experiments with large sets of intrusion evidence.

References

(1]

[2] Javabayes.

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

checkrootkit. ht t p: / / www. checkr oot ki t. org. Ac-
cessed on Feb. 4, 2004.

http://ww 2. cs. cnu. edu/

~j avabayes/ Home/ . Accessed on Oct 10, 2003.
Nessus.htt p: / / ww. nessus. or g. Accessed on Feb.
4, 2004.

Samhain. http://1 a- sanhna. de/ sanhai n/. Ac-
cessed on April 4, 2004.

Tripwire. http://ww. tri pwi re.com Accessed on
Feb. 4, 2004.

P. Ammann, D. Wijesekera, and S. Kaushik. Scalable,lgrap
based network vulnerability analysis. Rroceedings of the
9th ACM Conference on Computer and Communications Se-
curity, pages 217-224, November 2002.

G. F. Cooper. The computational complexity of probadhili
tic inference using bayesian belief networksgtificial Intel-
ligence 42:393-405, 1990.

F. Cuppens. Managing alerts in a multi-intrusion detect
environment. InProceedings of the 17th Annual Computer
Security Applications ConferencBecember 2001.

F. Cuppens and A. Miege. Alert correlation in a coopeti
intrusion detection framework. IRroceedings of the 2002
IEEE Symposium on Security and Privatbay 2002.

F. Cuppens and R. Ortalo. LAMBDA: A language to model
a database for detection of attacks. Aroc. of Recent Ad-
vances in Intrusion Detection (RAID 200@gges 197-216,
September 2000.

[13]

[14]

[16]

[17]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

ence in bayesian belief networks is NP-haAdtificial Intel-
ligence 60:141-153, 1993.

0. Dain and R.K. Cunningham. Building scenarios from a
heterogeneous alert streamProceedings of the 2001 IEEE
Workshop on Information Assurance and Securfigges
231-235, June 2001.

0. Dain and R.K. Cunningham. Fusing a heterogeneous
alert stream into scenarios. Rroceedings of the 2001 ACM
Workshop on Data Mining for Security Applicationsages
1-13, November 2001.

H. Debar and A. Wespi. Aggregation and correlation of
intrusion-detection alerts. IRecent Advances in Intrusion
Detection LNCS 2212, pages 85 — 103, 2001.

S.T. Eckmann, G. Vigna, and R.A. Kemmerer. STATL: An
Attack Language for State-based Intrusion Detectidwur-

nal of Computer Security10(1/2):71-104, 2002.

D. Farmer and W. Venema. SATAN: Security administrator
tool for analyzing networkshtt p: // 142. 3. 223. 54/
~short/ SECURI TY/ satan. ht m .

Fyodor. Nmap free security scannerhtt p://ww.

i nsecure. or g/ nmap, 2003.

F.V. Jensen. Bayesian Networks and Decision Graphs
Statistics for Engineering and Information Science. Sy@in
2001.

S. Jha, O. Sheyner, and J.M. Wing. Two formal analyses of
attack graphs. IProceedings of the 15th Computer Security
Foundation WorkshgpJune 2002.

K. Julisch. Mining alarm clusters to improve alarm hiangl
efficiency. InProceedings of the 17th Annual Computer Se-
curity Applications Conference (ACSA@pges 12-21, De-
cember 2001.

K. Julisch and M. Dacier. Mining intrusion detectioraghs

for actionable knowledge. Iifhe 8th ACM International
Conference on Knowledge Discovery and Data Minihgy
2002.

MIT Lincoln Lab. 1999 DARPA intrusion detection sceiar
specific datasets. http://ww. || . mt.edu/l ST/

i deval / dat a/ 1999/ 1999 _dat a_i ndex. ht nl ,

1999.

B. Morin, L. Mé, H. Debar, and M. Ducaés M2D2: A for-

mal data model for IDS alert correlation. Rroceedings of
the 5th International Symposium on Recent Advances in In-
trusion Detection (RAID 2002pages 115-137, 2002.

P. Ning, Y. Cui, and D. S Reeves. Constructing attack sce
narios through correlation of intrusion alerts.Rroceedings

of the 9th ACM Conference on Computer and Communica-
tions Securitypages 245—-254, Washington, D.C., November
2002.

P. Ning, D. Xu, C. Healey, and R. St. Amant. Building at-
tack scenarios through integration of complementary alert
correlation methods. IfProceedings of the 11th Annual
Network and Distributed System Security Symposium (NDSS
'04), pages 97-111, February 2004.

P.A. Porras, M.W. Fong, and A. Valdes. A mission-impact
based approach to INFOSEC alarm correlationPioceed-
ings of the 5th International Symposium on Recent Advances
in Intrusion Detection (RAID 2002pages 95-114, 2002.



[27] X. Qin and W. Lee. Statistical causality analysis ofoséc Wurftpd 2.6.0
alert data. InProceedings of The 6th International Sym- running under Anenymous ftp
posium on Recent Advances in Intrusion Detection (RAID root
2003) Pittsburgh, PA, September 2003. SNQ"OFC’ePs“sb”C
[28] M. Roesch. Snort - lightweight intrusion detection foet-
works. InProceedings of the 1999 USENIX LISA confer- )
156 SNMP public
ence 1999. udp alerts
[29] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J.M. Wing
Automated generation and analysis of attack graph®rda
ceedings of IEEE Symposium on Security and Privitay

FTP EXPLOIT wu-ftpd 2.6.0
site exec format string
overflow Linux

2002.
[30] S. Staniford, J.A. Hoagland, and J.M. McAlerney. Picadt galn publlc haat Root shell access
automated detection of stealthy portscadsurnal of Com- information

puter Security10(1/2):105-136, 2002.
[31] Tauscan. http://waw. agnitum coni product s/

tauscan/ . .

[32] S. Templeton and K. Levitt. A requires/provides modml f
computer attacks. IRroceedings of New Security Paradigms
Workshop pages 31 — 38. ACM Press, September 2000.

[33] A. Valdes and K. Skinner. Probabilistic alert corraat In
Proceedings of the 4th International Symposium on Recent
Advances in Intrusion Detection (RAID 200pages 54—68,
2001. Initial vulnerability scan showed that the system was

[34] X-scan.http://wwmv. xfocus. org. running a vulnerable wu-ftpd 2.6.0 on port 21 with anony-

mous access open. However, we are not sure about whether

Additional Attack Scenarios Used in Our Ex-  the SNMP public access is turned off because we did not

periments check the SNMP options in Nessus.

: . _ . The result alert-attribute network before making hy-
Results abOL_Jt Scenario 0 hgs been dlscussed_ in the ma'Botheses is as shown in Figure 10.

text. Here we give further detaisl about the experimental re

sults for the remaining scenarios.

Webpage file modified

Figure 10. Initial alert-attribute network

Based on the observation of the inconsistency in the
alert-attribute network shown in Figure /reffig:wuattackO
together with the attack type knowledge, the only possi-
ble hypothesis to fill in the inconsistency is that some re-

This scenario is fairly simple. We simulated a common Mote control via the root shell caused the web page modifi-
scriptkid's activity, which exploits a common vulnerabil- cation. Thus, the complete alert-attribute network is sow
ity to get certain privilege, and modify the remote server's as in Figure 11.
web page. In this particular scenario, we exploited the for-  We use dotted nodes and edges to denote hypothesized
mat string vulnerability of wu-ftpd 2.6.0 on a RedHat linux nodes and relationships in this new figure of alert-attabut
6.2 server to get remote root access. The attack scenario innetwork.
cludes two steps:

.1. Scenario 1

According to the prior probability values and attack type

1. A remote format string attack toward the wu-ftpd, and information included in appendix B, our program generated

2. replacing the remote servers web page with a the Bayesian n_etwork from .the evidence Io.g automqtically
“Gotcha” web page via the remote root shell ac- and the reasoning result using JayaBayes is shown in table
cess gained after the previous attack. 3. Table 3 also shows the relative increase of the confidence

values of the alerts.

Snortraised the following alert(s): The confidence in the only hypothesized attack “Remote

e 1FTP EXI_DLOIT wu-ftpd 2.6.0 site exec format string control via root shell” turned ta after the inference, which
overflow Linux indicates that it would be successful and missed by the snort

Note that no alerts were raised for the remote root shell If it happened.
access. The file system monitoring tool (Samhain) gener- When using probability threshold to decide whether an
ated alert for the web page modification since we config- alert denotes a successful attack, the experiment yie&ds th
ured the threshold on the times of modifications on those detection rate and false alert rate curves as shown in Figure
files to bel. 12 and Figure 13.
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cess udp Figure 13. False alert rate VS. threshold (Sce-
FTP SITE EXEC| 0.3 1.0 333.33% nario 1)
format string at-
tempt linux
Remote con- N/A 1.0 N/A includes two steps:
trol via root
shell  (hypothe- 1. Exploiting the unicode vulnerability to download and
sized) install a Trojan horse naméd aci er to the victim
Other alerts 0.25 0 —100% 2. Monitoring/controlling the victim file system remotely

through the Trojan horse. The activities include replac-

Table 3. Confidence values before and after ing the web page

the reasonin .
9 When the above attacks were launched without back-

ground traffic, Snort generated the following 6 alerts:

.2. Scenario 2 e 2 WEB-IIS unicode directory traversal attemp alerts,

and
This attack scenario exploits the unicode vulnerability of

MS 1IS 5.0. The victim machine was a windows box con-
figured to be running a vulnerable IIS 5.0. The initial sys- Both the WEB-IIS unicode directory traversal and the
tem vulnerability scan showed that there exidté® 5. 0 WEB-IIS cmd.exe access alerts indicate web attacks ex-
uni code vulnerability on the victim. The attacks scenario ploiting 11IS 5.0’s unicode vulnerability, thorough which

e 4 WEB-IIS cmd.exe access alerts.



the attacker can execute commands remotely thorough lo-'I I S uni code vul nerability” node and the web
cal host's cmd.exe program and cause various systenpage file modified node. Due to the second option, a hypoth-
modifications. They can actually be taken as Snort’s re- esized alert nhodeRenote control via Q acier
ports on the same type of attacks. Thus, in the later anal-Tr oj an hor se” is added to link the Tr oj an hor se

ysis we aggregate them together into a single node.d aci er found” and the ‘File nodified in
The postconditions of such attacks are highly depen-c: /11 S/ WWV " node. With all these hypotheses and nec-
dent on the detailed content of the message sent by theessary alert aggregations/abstractions the completerietw
attacker. As snort does not detect and distinguish those deis shown in Figure 15.

tails, we define for this type of attacks a general postcon-
dition “Various system nodi ficati ons done

1IS unicode

t hr ough cnd. exe”, which could imply any sys- SN public access Vueratity
tem modifications possibly done through cmd.exe.
Snort failed to detect the attempts of installing 1S unicode explot
the Glacier backdoor and the remote control accesses [Saurme Varous sy
through the Glacier backdoor. However, on the local sys- BT
tem side, Tauscan did report in real time that Trojan N 8 .
horse Glacier was found in the system immediately af- mopwers 3. osmmasans
ter the IDS reported WEB-IIS alerts. Then Tripwire logged ) sanoe s o Y. et neode ot
the modifications to the files in the 11S’s web page directo-
ries a few minutes later after that. S ‘

Again, before aggregation and making any hypotheses
about missed attacks, we have an alert-attribute network Figure 15. Updated alert-attribute network
with inconsistencies as shown in Figure 14.

1IS unicode
Vulnerability

The probabilistic confidence values of alerts before and
after the analysis are shown in table 4.

In the reasoning, we assumed the remote control via Tro-
WEB-IS cmd.exe access 4 jan horse Glacier to have a much larger probability to be
missed by snort, compared with the IIS unicode exploit.
This results in a higher confidence that the remote con-
WEB-IS omd exe access 6 trol via Glacier actually succeeded and was missed by snort,
compared with the other hypothesis.

When using probability threshold to decide whether an

SNMP public access

WEB-IIS unicode directory WEB-IIS emd.exe access 2

traversal attempt 1

156 SNMP public
access udp alerts WEB-IIS unicode directory
traversal attempt 3

WEB-IIS cmd exe access 5

gain public host

information Various system

madifications done through
cmd exe

Trojon horse Giacier () alert denotes a successful attack, the experiment yietds th
detection rate and false alert rate curves as shown in Figure
File modified in C:/IISAMWW/ . 16 and Flgure 17'

Note that the reason for the rate after alert aggregation
and abstraction being smaller than before aggregatioais th
the true alerts are aggregated into one single alert. Thes, t

) ) total numbers of alerts are different for the two sets of re-
For the Tauscan’s report of Trojan horse Glacier found, gjts.

this attribute may only be implied by theVari ous

system nodi ficati on done” caused by the IIS

unicode exploits, thus we can have a hypothesized im-.3. Scenario 3

plication relationship between them, which is denoted

by a dotted empty arrow in the figure. For the modifi- This attack scenario was a popular one on the Internet
cations in web page files, according to the system statein the fall 2002, cause we have read a number of victim re-
and knowledge base (attack type info) we have, thereports on the Internet and one of the machines in our lab
are two options to achieve it on the victim: It could ei- was unfortunately one of them. The attack exploits the re-
ther be caused by some missed WEB-IIS unicode ex-mote buffer overflow vulnerability of several older versson
ploit, or by the remote control via the Glacier Trojan horse. of Serv-U ftp server to get administrative access, and in-
Due to the first option, a hypothesized IIS unicode ex- stalls IRC DCC bot on the victim server to make it part of
ploit alert node is added to the network to link the initial the attacker’s public distribution network.

Figure 14. Initial alert-attribute network




alert name before after rea-| relative
rea- soning in-
son- crease
ing

2 individual | 0.25 0.50394 | 101.58%

WEB-IIS direc-

tory traversal at-

tempts
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WEB-IIS uni-

code exploit
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nario 2)

We configured the victim machine to be a Windows box
running a vulnerable Serv-U 5.0 ftp server with default pub-
lic anonymous access. At the same time, the victim was
also running snort to log intrusion activities, and Tripsvir
to monitor the local file system.

The attack scenario includes four steps:

1. Two remote buffer overflow attack attempts toward the
Serv-U 5.0 server, one of which failed while the other
succeeded.

2. Downloading and installing the IRC DCC bot on the
victim through the remote root shell.

3. Cleaning the attack trace logged by snort after noticing
the existance of snort in the system process list..

4. Starting another ftp server on port 28021.

The initial system scan reported finding vulnerable Serv-
U 5.0 ftp server running on port 21 with public anonymous
access.

When the attacks were launched without background
traffic, snort reported two “FTP command overflow at-
tempt” alerts and the system monitoring tools reported the
following two observations:

e File modifications found on “c:/snort/log/alerts.ids”
and “c:/servu/ServUDaemon.ini” reported by Trip-
wire.

e IRC DCC bot running on port 6666 and Serv-U 5.0 ftp
server running on port 28021 reported by later system
port scan.

Thus, when combined with the false alerts generated by
the background traffic, we have the alert-attribute network
shown as in Figure 18.

After aggregation and making hypotheses, the final alert-
attribute network is shown in Figure 19.

The confidence values of the related alerts before and af-
ter reasoning is shown in table 5.
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SNMP public rea- soning in-
access
son- crease
156 SNMP public Ing
udp alerts T ]
2 individual FTP| 0.3 0.714 40.06%
FTP command overf| FTP command overflow COmmand over
attempt 1 attempt 2
flow attempts
I Cmd.exe root shel access Aggregated FTH 0.51 1 96.08%
gain public host
information command over
flow attack
o o o o Remote con-| N/A 1 N/A
oG etie  fi Sl 0 er IRG DCC g Seibsenen.n trol via cmd.exe
root shell (hy-
Figure 18. Initial alert-attribute network pothesized)
156 individ- | 0.075 0.075 0
ual SNMP public
sen-Uso access udp
running on port Anonymous ftp
W access Aggregated 0.5 0.5 0
e SNMP public ac-
cess udp
150 SMP other 169 alerts | 0.25 0 —100%
2 FTP command overflow
attempt aggregated i
Table 5. Confidence values before and after
gain public host the reasonlng
information Cmd.exe root shell access
Remot controls via ‘
cmd.exe root shell !
- DR
‘ ‘ 6 ‘ raw alerts
257 — - — - verification without aggregation
Jsnort/log/alerts.ids file F'PSeV-US.00n  |RC DCC bot running on port  SevUDaemon.nimodified ) e verification with aggregation
modified port 28021 by
Administrator 20 -— e
— |
Figure 19. Updated alert-attribute network S 5] [
8 |
5 !
i . . S 10 1
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alert denotes a successful attack, the experiment yietds th 5] i
detection rate and false alert rate curves as shown in Figure !
20 and Figure 21. 0 ‘ ‘ b ‘ ‘
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Threshold (%)

4. Scenario 4

This attack scenario studies the attacks on a target with  Figure 20. Detection rate VS. threshold (Sce-
multiple vulnerabilities. The victim machine was config-  nario 3)
ured to be running both a vulnerable Serv-U ftp service and
avulnerable IIS 5.0. Initial system scan showed that vdlner
able Serv-U 5.0 is running on port 21 with public anony- 2. Modifying the web page file on the remote system.
mous access, and IS is vulnerable to unicode attacks.

We exploited the ftp vulnerability to attack the victim
machine. The attack scenario includes 2 steps:

During the attack, snort reported one “FTP command
overflow attempt” alert, while Tripwire logged and reported
the modification of web page file.

1. Remote buffer overflow attack to the Serv-U ftp and  Thus, when combined with the false alerts generated by
get remote root shell. the background traffic, we have the alert-attribute network
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Figure 21. False alert rate VS. threshold (Sce-

nario 3)
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ing
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Figure 22. Initial alert-attribute network

After aggregation and making hypotheses, the final alert-
attribute network is shown in Figure 23. Table 6. Confidence values before and after
The confidence values of the related alerts before and af-  the reasoning
ter reasoning are shown in table 6.
From the comparison in table 6, we can see that al- ] .
though multiple vulnerabilities introduce multiple cheic ~ A. Attacks in the Experiments
when making hypotheses and we can not have definite con- - N N
fidence in the hypotheses. The comparison result of the hy- Table 7 specm_es the precc_)ndmons and postcondition of
pothesized attacks shows that when both preconditions ard€ attacks used in our experiments.
satisfied, the attack with a higher missing rate gains a mighe ~ 120l€ 8 shows the prior probabilities about the attacks
confidence from the reasoning, which means that they areV€ Used in our experiments.
more expectable in reality.
When using probability threshold to decide whether an
alert denotes a successful attack, the experiment yiedds th
detection rate and false alert rate curves as shown in Figure
24 and Figure 25.




60

- verification without aggregation

------ verification with aggregation

raw alerts DR

- T /0
! attack precondition postcondition
g : WEB-IIS cmd.exe| IISunicode vul-| {gain cmd.exe
ks " l access nerability acces}
s ! WEB-IIS directory | IS unicode vul-| {gain cmd.exe
§ 20 : traversal attempt nerability access
i FTP command| (Serv-U  5.0)| {cmd.exe
104 ! overflow attempt A(anonymous | root shell ac-
![ access) ces$
0 ‘ ‘ ‘ — : : Modify web page| root access {web page
0 2 40 60 8 100 120 / shutdown Norton modified /
Threshold (%) Antivirus —Norton  An-
tivirus run-
Figure 24. Detection rate VS. threshold (Sce- ning}
nario 4) Install BackOrifice | (user accessh | {BackOrifice
-Norton An- | installed
tivirus run-
ning)

Install BackOrifice | (Norton  An-| {Virus BackO-
tivirus run- | rifice  quaran-
ning) tined}

FTP SITE EXEC| (vulnerable {Root shell ac-

format string at-| wu-ftpd  ver- | cesg

tempt sion < 2.6.21
(anonymous ftp
access)

EAR SNMP public ac-| SNMP pub-| {gain pub-
cess udp lic access lic host infor-
120 + mation}
WEB-CGI redirect| vulnerable {gain ac-
100 7=rpmmmeey p— access ColdFusion count informa-
% 80 + : — - — - verification without aggregation / Cluster- tion}
8 ; verification with aggregation CATS
g0 4 ATTACK RE- O
8 a0 | SPONSE Invalid
g i URL
201
i Table 7. Preconditions and postconditions of
° 20 0 60 80 100 120 the attacks in our experiments

Figure 25. False alert rate VS. threshold (Sce-

nario 4)

Threshold (%)




attack prior confi- | missing rate
dence

WEB-IIS cmd.exe| 0.5 0.2

access

WEB-IIS directory | 0.5 0.2

traversal attempt

BACKDOOR 0.6 0.5

BackOrifice ac-

cess

FTP command| 0.6 0.5

overflow attempt

FTP SITE EXEC| 0.6 0.5

format string at-

tempt

Remote control via] N/A 1

cmd.exe root shell

Install BackOrifice | N/A 1

Modify web page| N/A 1
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trol via Trojan

horse Glacier
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SNMP public ac-| 0.15 0.5

cess udp

Table 8. Prior probabilities of the attack types
in our experiments




