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Abstract

Access control is a mechanism for achieving
confidentiality and integrity in software systems.
Specifying access control policies (ACPs) is a complex
process that can benefit from requirements engineering
techniques. In this paper, we present a method for deriving
access control policies from software requirements
specifications (SRS) and database designs. The approach
provides prescriptive guidance for how to derive and
specify ACPs. It also improves the quality of requirements
specifications and the database designs by clarifying
ambiguities and resolving conflicts across both artifacts.
The approach provides traceability support between
requirements, access control policies and design decisions,
ensuring consistency among these artifacts. Examples from
two projects are employed to demonstrate how the
approach helps bridge the gap between requirements and
design.

1. Introduction
Access control (AC) mechanisms ensure every access to

a system and its resources is controlled according to a set
of predefined policies [39]. It is one of the major security
mechanisms used to achieve confidentiality, integrity and
data privacy in software systems [16]. We use these terms
as follows:  Confidentiality means that information is not
disclosed to unauthorized persons, processes or devices.
Integrity means that unauthorized persons, processes or
devices cannot modify information. Privacy implies that
data is protected so that it is used only for authorized
business purposes, based on legal requirements, corporate
policies and end-user choices.  

In the design of software applications, access control
analysis entails analyzing business tasks and organizational
structures to specify access control policies (ACPs).
Defining and deploying ACPs is both a conceptually and
practically complex process because a software system can
have many users performing various tasks and many
resources that need to be protected via access control [37,
38]. Another challenge is the complexity of the
organization for which a system is designed –– it is

difficult to identify and agree upon a common set of roles
and associated permissions within an organization that may
have hundreds of roles to be considered.

Ideally, security-related software requirements are
analyzed and specified before system design rather than as
an afterthought. These security requirements should drive
ACP specification activities. However, current policy
specification efforts often occur after systems are deployed
[7]. Because policy specification efforts are often isolated
from the software requirements, the resulting ACPs and
requirements may not be compliant with one another. Our
goal is to develop techniques that help bring policies and
system requirements into better alignment.

Requirements engineering (RE) entails discovering the
real-world goals for which a software system is intended
[29]. During RE, analysts produce a software requirements
specification (SRS) that details the envisioned system’s
functions and constraints.  ACPs may be derived from
system requirements, but prescriptive guidance is needed to
aid in this specification process.

Researchers are recognizing the need to bridge the gap
between requirements analysis and complex ACP
specification [7]. Existing RE approaches (e.g., KAOS
[13], i* [40] and the analytical role modeling framework
[7]) provide limited support as we discuss herein. In this
paper, we present a method for deriving ACPs from a
system’s SRS and database design. This RE activity
provides prescriptive guidance for deriving access control
policies and improves the quality of the SRS as well as the
database design.

Field studies have shown the importance of
maintaining traceability during the requirements process
[20, 21].  Requirements and policy management are a
significant challenge, however.  One reason for these
difficulties is that both requirements and policies change
during the system development process and it is
challenging to maintain traceability in the face of inevitable
evolu t ion .  The approach presented herein features
traceability support as a prominent design principle.

The rest of the paper is structured as follows. Section 2
summarizes the most relevant work. Section 3 overviews
our approach for deriving ACPs from requirements



specifications and database designs. Section 4 introduces
the two systems that serve as the basis for our case studies:
the Security and Privacy Requirements Analysis Tool
(SPRAT) and the Transnational Digital Government (TDG)
Project. Section 5 details the ACP specification process
and associated heuristics, using concrete examples from
both case studies. Finally, Section 6 provides a discussion
and summarizes our plans for future work.

2. Background and related work
This section discusses the key elements of ACPs and

summarizes prior related work.

2.1. Access control policies in security
An access control system is typically described in three

ways: access control policies, access control models and
access control mechanisms [39]. Access control policies are
security requirements that describe how access is managed,
what information can be accessed by whom, and under
what conditions that information can be accessed [16].
These policies are enforced via a mechanism that mediates
access requests and makes grant/deny decisions. The access
control mechanism defines the low-level functions that
implement the controls imposed by the policies. It must
work as a reference monitor [39], a trusted component
intercepting each and every request to the system. Access
control models provide a formal representation of an access
control system. They provide ways to reason about the
policies they support and prove the security properties of
the access control system. Access control models provide a
level of abstraction between policies and mechanisms,
enabling the design of implementation mechanisms to
enforce multiple policies in various computing
environments.

ACPs can be broadly grouped into three main policy
categories: Discretionary Access Control (DAC),
Mandatory Access Control (MAC), and Role-Based Access
Control (RBAC). DAC policies enforce access control
based on the identity of the requestor and the explicit rules
specifying who can or cannot perform specific actions on
specific objects. Early discretionary access control models,
such as the access control matrix model [27, 19] and the
HRU model [23], provide a basic framework for describing
DAC policies. It is the users’ discretion to pass their
privileges on to other users. Thus, DAC policies are
vulnerable to Trojan Horse attacks [39].

MAC policies enforce access control based on the
security classifications of subjects and objects. For
example, the lattice-based multilevel security policy [12],
policies represented by the Bell-LaPadula model [5, 6] and
the Biba model [3] are MAC policies. MAC policies
protect indirect information leakages (e.g., Trojan Horse
attacks), but are still vulnerable to covert channel attacks
[39, 32].

RBAC policies employ roles to simplify authorization
management for enforcing enterprise-specific security
policies [16, 36]. The RBAC model is an alternative to
traditional DAC and MAC models and has received
increased attention in commercial applications, such as the

Oracle 9i DBMS [9].  RBAC is now an American National
Standard1.

Instead of considering ACP specification from a
holistic, real-systems perspective as we advocate in this
paper, current ACP specification research has a much
narrower focus (e.g., uniform or flexible ways to specify
ACPs [25], specifying ACPs for XML documents [17],
etc.). There are few reported methods and experiences
relating ACP specification in real software systems. In the
RBAC literature2, researchers are investigating role
engineering, the process of defining roles and privileges as
well as assigning privileges to roles [8]. Several role-
engineering approaches employ RE concepts. For example,
Fernandez and Hawkins suggest deriving the needed rights
for roles from use cases [14]. Neumann and Strembeck
propose a scenario-driven approach for engineering
functional roles in RBAC [30]. Role engineering is specific
to RBAC, whereas our method is a more general approach
for specifying ACPs.

2.2. Elements of access control policies
An access control policy is comprised of a set of access

control rules.  A rule can have various modes (e.g.,
permit/deny/oblige/refrain). This paper is focused on allow
and deny rules.  Allow rules authorize a subject to access a
particular object. Deny rules explicitly prohibit a subject
from accessing a particular object. When a subject requests
to perform an action on an object, the corresponding rules
will be evaluated by the enforcement engine for that
request. A typical access control rule is expressed as a 3-
tuple <subject, object, action>, such that a subject can
perform some action on an object [11]. A subject is a user
or a program agent, or any entity that may access objects.
An ob jec t  is a data field, a table, a procedure, an
application or any entity to which access is restricted. An
action is a simple operation (e.g. read or write) or an
abstract operation (e.g. deposit or withdraw).  In this paper,
we extend the typical AC rule 3-tuple to include conditions
and obligations as we now discuss.

An ACP may express additional conditions that must
be satisfied before an access request can be granted. For
example, in healthcare applications, the location from
which the access request originates might affect the
grant/deny decision [2]. If an access request is from the
emergency room, then the request may be granted. In this
case, we can specify the location of the request is
emergency room as a condition for the AC rule.
Additionally, in the context of privacy protection, we may
specify additional conditions to restrict access to personal
data. For example, purpose is a standard entity in most
privacy policies as recognized in P3P (The Platform for
Privacy Preferences Project) [31]. When a subject (e.g., a
nurse) requests to perform an action on an object (in the
context of privacy, the object is often personal data, e.g.,
medical records), the purpose of the operation should be

                                                
1 American National Standard: ANSI INCITS 359-2004.
2See ACM RBAC and SACMAT workshop series,

http://www.sacmat.org/.



bound to the purposes consented to by the data subjects.
This is the purpose binding principle [15], which can be
enforced by specifying conditions for ACPs. Karjoth et al.
treat purpose the same as subjects, objects, actions, etc. for
a privacy authorization rule because purpose tends to be the
primary focus of privacy protection [26]. In this paper, we
do not treat purpose as an independent element because it is
mainly useful for protecting data privacy.

Obligations [4] are actions that must be fulfilled if a
request to access an object is granted. For example,
consider: require affiliates to destroy customer data after
service is completed. In this case, “destroy customer data”
is an obligation that must be satisfied by affiliates.
Obligation-based security policies can be enforced if they
can be completely resolved within an atomic execution
[34]. If the obligation is not an immediate action (e.g., it is
a task that will be executed in the future), monitoring and
auditing its execution might be sufficient for enforcement
[4].

In requirements specification, we are concerned with the
actions for which each actor (subject) is responsible, the
conditions under which each action can occur (constraints
and pre-conditions) and the post-conditions (obligations)
that must be satisfied. Each of the five access control
elements can be mapped to a requirements specification
element. Because we seek to ensure that ACPs comply
with the requirements, we have mapped these five ACP
elements <subject, object, action, condition, obligation>
to requirements elements.  This mapping helps guide
analysts as they derive ACPs from requirements.

2.3 Access control analysis in RE
Requirements engineering researchers are investigating

methods and tools to help analyze and specify access-
related security requirements. Fontaine [18] employs
KAOS, a goal-based requirements acquisition and
elaboration method [13], to refine security requirements
into specific authorization rules and ACPs expressed in
Ponder –– a language for specifying management and
security policies for distributed systems [10]. Fontaine’s
work is an important step towards requirements-level access
control analysis for security policy specification. However,
the method for mapping KAOS specifications to Ponder
policies is not general in the sense that not all types of
Ponder policies can be generated from KAOS
specifications. Fontaine has thus far only shown how to
specify authorization and obligation policies [18], not
refrain and delegation policies.

Liu et al. applied the i* framework [40], a goal-based
requirements analysis method, to support access control
analysis by modeling the dependencies among actors, tasks
and a system’s resources [28]. However this approach is
limited in that it assumes the roles and privileges have
been previously derived. Additionally, it provides no
guidance as to how roles and privileges are identified, from
where they originate, or how privileges are assigned to
these roles. Moreover, it is difficult to model context and
constraint information in the i* framework. These topics

remain major challenges in access control analysis during
RE.

Crook et al. proposed an analytical role-modeling
framework to model ACPs [7]. This approach offers two
contributions. First, the framework clarifies the need to
model ACPs during requirements analysis. Second, the
rationale for deriving roles based on organizational
structures is very useful. Job positions in an organization
can be mapped to roles in RBAC. Organizational and
seniority hierarchies can be mapped to RBAC role
hierarchies. This is common in identity management
products in which individuals in a particular department
and/or division are classified into a specific role and that
role grants them the access rights to specific (e.g., bank)
accounts. Deriving roles from organizational structures
facilitates the user assignment and authorization
management processes in access control.

3. Access control analysis & ACP specification
This section overviews our approach and introduces the

general principles for this kind of analysis.

3.1. Overview of our approach
Figure 1 portrays our approach using a traditional

ICOM (Inputs-Constraints-Outputs-Mechanisms) model.
The required source documents for the approach are: the
initial SRS and database design (e.g., E/R diagram). The
two source documents are complementary in that the
requirements specification justifies the rationale for the
ACPs (e.g., why a user is given a particular privilege to
perform a task or access an object), whereas the database
design details the objects to which any access should be
controlled. If the requirements specification is unclear,
analysts might also consult the database design to clarify
these ambiguities. One of these source documents alone
cannot achieve this result – both are necessary.

Figure 1: ACP Specification ICOM Model

The approach guides analysts with a detailed process
description and heuristics as they examine both types of
documents and derive ACPs based on this information.
During the process, analysts employ RE techniques, such
as goal [13] and scenario analysis techniques [33], to help
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identify access control elements. During the process,
ambiguities in the requirements specification are clarified,
and inconsistencies between the SRS and database design
are identified and resolved. A tool is currently under
development to support the process.

The overall objective of our approach is to produce a
comprehensive set of ACP specifications.  Additionally,
the source documents inevitably benefit from the process as
the SRS and database design are augmented, which results
in more complete, correct and less ambiguous project
documentation. The approach also yields a documented list
of design decisions made during the analysis process.

Our approach is based on the following three
assumptions that serve to narrow the scope of our efforts to
data intensive information systems:  

Assumption #1: The existence of a system’s database
design and requirements specification are required. Both are
pre-requisite source documents for this approach. ACPs, in
a sense, bridge the gap between an information system’s
requirements specification and its database design.

Assumption #2: Data in software systems must be
protected. There are various objects in a system to which
access may be restricted. For example, an employee may be
allowed to print jobs to a local printer, but not a central
printer in the neighboring office. This kind of resource
access control is beyond the scope of this paper. Instead,
we focus on access to data within a database.

Assumption #3: Restricting access to data may be
implemented at different levels, e.g., function, application,
etc. For example, we can implement the System
Administrator’s capabilities in one or more functions and
restrict users’ access to these functions. Sometimes,
restricting access to functions and applications is important
for other security reasons beyond simply protecting the
data.  However, function-level and application-level access
controls are beyond the scope of this paper.

Assumption #4: ACPs are specified for data-intensive
information systems. These information systems are
typically supported by a database containing sensitive data.
We have not investigated ACP specifications for security
kernels, such as file access in operating systems.

Figure 2 portrays the activities an analyst undertakes to
derive ACPs from requirements specifications and database
designs. The process is detailed in Section 4, employing
concrete examples from two case studies.

3.2 Access Control Analysis Principles
The high-level activities described above provide an

overview of our method. In practice, we adopt several
principles to guide this process.

Principle #1: Software requirements and the operational
functioning of policy enforcing systems are often
misaligned. Policies and system requirements must be
brought into better alignment to ensure that unauthorized
accesses to sensitive data and security breaches are
prevented. The underlying principle of our approach is thus
to ensure compliance between access control policies,
system requirements and database design.

Principle #2:  Traceability between ACPs and
requirements must be maintained. Both policies and
requirements may change throughout system development
and even after the system is deployed. They are
interdependent with respect to change. When one of them
changes, it is important to make appropriate changes to the
other. Traceability helps analysts track changes and
maintain consistency between requirements and policies.

Principle #3: In our approach, ACPs are data-centric
rather than function-specific (e.g., logging into a system is
not codified as an ACP). If a requirement does not describe
access  to some data (e.g., the system shall support
language translation between English and Spanish), then
we cannot derive access control rules from it.

Figure 2. The process of access control analysis
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Principle #4:  Access control analysis and requirements
analysis is an iterative process.  Both require one to
maintain documents containing information with different
levels of formality and describing different kinds of
information. Therefore, it is helpful to employ an inquiry-
driven approach [33] to document important or recurring
questions, design decisions as well as identified
inconsistencies that are pending resolution.

4. Case studies
Two case studies involving two real systems have

enabled us to preliminarily evaluate the method introduced
in Section 3 as we now discuss.

4.1. The Security and Privacy Requirements Analysis
Tool (SPRAT)

The Security and Privacy Requirements Analysis Tool
(SPRAT) [24] is a research tool under development at
North Carolina State University with funding from the
U.S. National Science Foundation (NSF). The tool
supports goal-based and scenario-based requirements
analysis and provides support for analyzing and specifying
security and privacy requirements as well as ACPs. It
builds upon and extends two existing tools, the Privacy
Goal Management Tool (PGMT) [1], and the Scenario
Management and Requirements Tool (SMaRT) [35].

With the help of SPRAT, analysts can seamlessly
integrate goals, scenarios, requirements, policies and
documents in a project repository and conveniently trace
from one element (e.g., a goal) to another (e.g., a scenario)
during requirements analysis. The SPRAT architecture calls
for centralized data storage with distributed client access,
with an option that allows local data storage. The
envisioned users include requirements analysts, policy
makers and security engineers. The information stored in
the centralized database is proprietary and needs to be
protected. Thus, access control is critical For example, we
have a rich privacy goal repository in the PGMT, which is
the result of four case studies conducted over the course of
three years. We treat these goals as valuable assets that need
to be protected via access control. SPRAT analysts will
have certain permissions to access these goals.
Additionally, industry has expressed interest in having
access to these goals to help them analyze and specify their
own privacy policies. We may give Chief Privacy Officers
or industry collaborators permissions to view some
attributes of the data (e.g., only the goal descriptions but
not the classifications and statistical data). In short, there
are a variety of access control requirements in the system,
making it a sufficiently sophisticated system to analyze
using our approach.

At the time of writing, we have completed the SRS
document [24], the database design and most of the user
interface design. We are currently implementing the tool’s
functionality. The SRS and the database design are the
inputs for our first case study.

4.2. The Transnational Digital Government (TDG)
project

The Transnational Digital Government (TDG) project,
funded by the U.S. National Science Foundation (NSF)3,
is a collaborative research project involving researchers at
seven universities as well as government agencies in three
participating countries: U.S., Belize and Dominican
Republic. The project’s objective is to research advanced
information technologies useful for rapid collection,
dissemination, and exchange of information related to
transnational border control. The system will collect and
share immigration information. The prototype system is
the source of this case study.

The security and privacy of immigration data is critical
in this project. Secure remote sharing of sensitive data
requires reliable access control mechanisms. RBAC and
distributed trust management have been chosen to
implement this functionality. Many organizations are
involved in the transnational border control process,
including remote border stations, governments, police
departments, immigration departments, customs, etc. and
information must flow among these organizations as well
as across national borders. Different countries have different
security and privacy policies and laws regulating the
corresponding activities. Policy enforcement was important
throughout the system’s development to ensure compliance
with the corresponding policies yet flexible enough to
enforce changing policies in the future. Using our approach,
we specified a set of ACPs for the TDG project in
collaboration with the TDG database team at the University
of Florida

4.3. Efforts and results
Table 1 summarizes the efforts devoted to both case

studies as well as the resulting artifacts. This paper’s
authors conducted both case studies. The first case study
took a total of 15.33 person-hours, whereas the second case
study took a total of 5.83 person-hours. The first case
study took longer than the second one for two reasons.
First, it served as a formative case study. At the time of the
analysis, the methodology was still under development and
our experiences helped us refine the approach throughout
the first case study Second, the SPRAT SRS is more
concrete and detailed than the TDG SRS, which is
relatively high-level and stable, with minimal need for
change; thus, no new requirements were created during the
second case study and few requirements changed.

During both case studies, the analysts devoted a modest
amount of time to training to ensure a common
understanding of the analysis activities. The total effort
devoted to training for each case study was 6% for the
SPRAT and 17% for the TDG project. The steps that
required the largest proportion of analysis effort were Steps
2 (67% for SPRAT and 74% for the TDG project) and Step
3  (26% for SPRAT and 8% for the TDG project).

                                                
3 The TDG Project URL: http://www.acis.ufl.edu/transdg/



5. Analysis process and heuristics
We now describe the steps an analyst takes to conduct

this kind of analysis using examples from both systems,
demonstrating how the heuristics are applied.

Table 1. Summary of the two case studies

SPRAT TDG

No. of analysts 2 2

Total time efforts (person-hour) 15.33 5.83

No. of functional requirements 56 25

No. (percentage) of new requirements
created

6 (10.7%) 0 (0%)

No. (percentage) of changed
requirements

27 (48.2%) 4 (16%)

No. of access control rules derived 73 17

No. of inconsistencies between the SRS
and the DB design

2 17

Step 1: Read the Introduction section of the SRS.
The SRS for both projects contains introductory

material, which yielded a general understanding of the
envisioned system, the stakeholders and the end users. It is
important for system designers to understand the concerns
of both end-users and stakeholders so they can control end-
users’ access to data accordingly.
Step 2: Scan the SRS to identify access control elements

Actors, actions, objects, etc. can be identified using
traditional inquiry-driven analysis [33].  For each
requirement in the SRS, we followed steps 2.1 through 2.6
(see Figure 2) to identify these elements. It is not necessary
to follow these steps in sequential order, they merely serve
as a checklist; an experienced analyst may perform some of
these steps in parallel.
Step 2.1 Identify objects that need to be protected.

Objects are data to which access needs to be restricted.
We present three general heuristics (H1, H2 and H3) for
identifying these objects:
H1: Objects are nouns that can typically be identified by looking at

the nouns that follow verbs.
Consider the following SPRAT requirement:  
FR-GSM-3: The system shall allow analysts to

classify goals.

 The noun “goals” follows the verb “classify”, thus
“goal” is tagged as an object. Note that because not every
noun is an object, the following heuristic is used to
distinguish access-related objects from other objects.
H2: Objects are system resources that should only be accessed by

authorized actors.
In the case of FR-GSM-3 above, heuristic H2 ensures

“goals” is the identified object to be protected instead of
“analyst”.
H3: Every object identified in the SRS should also appear in the

database design.
Heuristic H3 forces analysts to ensure that the

requirements and database design are consistent with one

another.  In both case studies, H3 was instrumental in
helping us identify missing data fields in the database
design. Consider the following TDG requirement:

2.3.1: The system shall allow border
immigration agents to determine if
the traveler is on the “watch list”.

This requirement was annotated with stakeholder
comments on what data is contained in the “watch list”.
Three of these items were missing in the database schema:
gender, the reasons for a person’s name being on the watch
list, and actions to be taken if person whose name appears
on the watch list is encountered at a border station. As
shown in Table 1, we identified 17 inconsistencies between
the TDG SRS and the corresponding database designs.
Clearly H3 allowed us to correct the database designs early
on, preventing possible costly changes that may not have
been identified until well into the development lifecycle.
Step 2.2 Identify responsible actors and possible actions
on the object.

Although these heuristics are not comprehensive, we
discuss some of the most helpful ones below.
H4: If a requirement is stated as “The system shall allow

<someone> to <do something>”, then the actor is <someone>
and the action is <do>.
Consider the following TDG requirement:
2.5.2: The system shall allow border

immigration agents to create a new
record in the “watch list”.

The actor is border immigration agent and the action is
create.
H7: When requirements are vague or when it is impossible to

directly identify any actor/action, scenario analysis can be used
to elaborate the requirements.
Consider the following SPRAT requirement:
FR-PM-3: The system shall support multi-user

analyst results comparison.

This requirement was so ambiguous that without
clarification it is impossible to understand what it means.
Scenario analysis enabled us to identify the main events in
this scenario as follows [22]:

Event 1: Analysts classify goals
independently according to
predefined categories.

Event 2: Project managers select analysts
whose classification results they
wish to compare.

Event 3: The system shall display those goals
that are classified differently and
how they are different (e.g., by
showing the different categories)

This analysis yields the following actors and actions,
which are of interest for specifying ACPs:

Actor: Analyst      Action: classify
Actor: Project Manager     Action: request
Actor: Project Manager     Action: view

Step 2.3 Document reasons why an actor performs an
action, or accesses an object, as purposes.



This step is necessary only when the purpose of an
access request affects grant/deny decisions. Purpose is often
used in the context of privacy protection.  Example
purposes include telemarketing, payment, research and
development. If the purpose of an access needs to be
considered when making grant/deny decisions, we specify
the purpose in the condition part of an AC rule as follows
[22]:

action.BusinessPurpose << object.DataPurpose

The symbol << means business purpose is contained in
data purpose. Consider the following example. A particular
piece of data (e.g., credit card information) is supposed to
be used only for payment (data purpose). Given the
condition in the ACP rule above, a data access request will
be evaluated by an enforcement engine (to either grant or
deny access); the business purpose of this access will be
checked against the requested object’s data purpose ––
payment.
Step 2.4 Identify conditions under which an actor is
allowed to perform an action on an object.

Again, consider SPRAT requirement FR-PM-3
mentioned previously. If a user assumes the role of Project
Manager and Analyst at the same time, as an analyst, he
can classify goals; as a project manager, he can view other
analysts’ classification results. However, access to the
information (classification results) is withheld until he is
finished with his own classification of the goals. This
condition must be satisfied before a Project Manager can
view the classification results. We document this rule as
follows:

IF Role (user, Project Manager) = TRUE AND
Role (user, Analyst) = TRUE AND
user.scheduledToClassify = TRUE AND
user.classifyingFinished = FALSE

THEN viewClassificationResults = DENY

Step 2.5 Identify obligations that the actor or system must
fulfill if an access request is granted.

Although no obligations were identified for either
system, this step is still necessary because in other systems
obligations may be identified.

It is important to document the results of the above
steps. In both case studies, we marked the elements on the
SRS printouts using color coding and then documented
this information in an access control matrix in preparation
for Step 3. We are developing the SPRAT to support this
process. Recall that traceability is a primary design
principle for this approach, when analysts document
analysis results, they must also document from which
requirement the rules were derived. With tool support, the
traceability between requirements and access control
policies will be maintained more easily.  

Analysts must make design decisions during the ACP
specification process. For example, the SPRAT SRS
clearly states that the system shall support four system
access levels: administrator, project manager, analyst and
guest. Given that access to the system is restricted to these
four levels (or roles), RBAC seems suitable for
implementing access control. In our analyses, we made

additional design decisions. For example, instead of
building a role hierarchy, we ensured that the privileges
assigned to each role never overlap.

During Step 2, analysts produce a set of candidate AC
rules that are used in Step 3 to specify ACPs.
Step 3: Refine AC rules into ACPs

Recall that an access control policy is comprised of a
set of access control rules.  The access control rules derived
from different requirements could be redundant or in
conflict with each other. Thus, we have to reconcile the
different rules identified in Step 2 and specify the collective
privileges that should be assigned to each actor. We
conducted the following analysis for each actor:
Step 3.1 Sort the AC rules according to objects (e.g.,
goals, scenarios, requirements).

Grouping rules according to objects allows analysts to
identify redundant and conflicting rules more easily as
described in Steps 3.2 and 3.3. In the SPRAT, for
example, the actions that an analyst can perform on a goal
were specified as follows:

Table 2. Actions for Analyst on Goals

Actor Action Object

Analyst Add Goals

Analyst Delete Goals

Analyst Update Goals

Analyst View Goals

Analyst Search Goals

Analyst Classify Goals

Step 3.2 Merge redundant AC rules.
As common in requirements specification, synonymous

words are often interchanged.  In the SPRAT SRS, for
example, “view elements of goals” encompasses “view
contexts of goals” because context is a goal element.  These
two rules were merged, yielding: “view elements of goals”.
Step 3.3 Reconcile any conflicting AC rules.

If the requirements from which AC rules were derived
are in conflict with one another, the resulting AC rules may
conflict as well.  Thus, any conflicts must be resolved at
this stage of the analysis. The requirements specifications
for both systems had been thoroughly analyzed and any
conflicts identified during our analysis were resolved
immediately. Sorting rules according to actors and objects
also helps analysts identify conflicts.
Step 3.4 Merge existing rules based on access control
design decisions and create new rules, if necessary.

In the SPRAT, we decided to employ RBAC to control
users’ access to data. Based on this decision, we merged
the three privileges for the System Administrator role
(create Project Managers, create Analysts and create Guests)
into: “create user account” and created a new privilege:
“assign roles to users”.  In this way, the rules we specified
are consistent with the design decision and more flexible
than the candidate rules.
Step 3.5 Merge all remaining AC rules into final ACPs



The objective is to refine all the candidate rules into
ACPs.  The previous steps help eliminate redundant rules,
reconcile conflicting rules, and refine rules according to
decision decisions. Any remaining AC rules should be
merged as ACPs. For example, in the SPRAT, we did not
merge or create any privilege for the Project Manager role.
Instead, we simply merged the AC rules into ACPs
because these rules did not fit any of the cases described in
Steps 3.2 through 3.4.
Step 3.6 Document all design decisions.

Recall that analysts make important design decisions
during ACP specification. Flexible access control is often
desirable. In the SPRAT, for example, Project Manager
can specify what information within the system is
accessible to Guests and how the information can be
accessed. But, increasing flexibility may also increase
access control implementation complexity as well as
system development costs. Analysts must conscientiously
make design decisions based on qualitative tradeoff
analysis (e.g., between implementation complexity and
access control flexibility). These design decisions must be
documented.

The main artifacts produced by analysts during the
ACP specification process for a given project are a set of
ACPs, documented design decisions, as well as augmented
requirements and database design specifications. As
previously mentioned, we specify ACPs as a group of rules
that contain five elements: <subject, object, action,
condition, obligation>. Figure 3 portrays a SPRAT ACP,
which contains two access control rules: a Deny rule and an
Allow rule. In this example, the ACP subject is a role –
Pro jec t  Manager .  The  ACP ob jec t  i s
GoalClassificationResults, which can be mapped to table
clOptions in the database design. The ACP action is View.
In the Allow rule, Project Manager is allowed to view
GoalClassificationResults under normal circumstances.

However, the ACP also specifies a Deny rule that restricts
the  Project  Manager’s  abi l i ty  t o  view
GoalClassificationResults under a particular condition.
Both rules will be evaluated by the access control
enforcement engine to make grant/deny decisions when a
data access request occurs.

6. Discussions and plans for future work
The access control policy specification approach

presented in this paper is inherently inquiry-driven and
iterative.  As such, it helps analysts ensure that many of
the ambiguities, inconsistencies, and conflicts that often
plague requirements specifications, database designs and
corresponding policies are eliminated to ensure consistency
across all artifacts. Specifically, our approach improves the
quality of the SRS and database design in several ways.
First, it helps analysts clarify ambiguities in requirements
specifications and maintain consistency across the SRS and
DB design. Second, checking objects identified in the SRS
with the database design forces analysts to ensure that those
objects missing from the database design are included in
the final design. In our case studies, we identified missing
data fields in the initial database design, which we were
able to rectify. Examining the database design also helps
one gain a better understanding of the requirements. For
example, the SPRAT E/R diagram provided a general
understanding of how goals, scenarios, requirements,
documents, etc. are linked to each other. This was not easy
to glean from the SRS alone.

Our approach supports access control analysis and ACP
specification by providing traceability between
requirements, ACPs and design decisions. In the event of a
change in a policy or requirement, our approach allows
analysts to quickly locate the affected requirements or
policies for subsequent modification. By ensuring
consistency between ACP, requirements and database
designs, our approach improves the quality of ACPs and
helps bridge the gap between requirements and design.

In both case studies, we examined the functional and
nonfunctional requirements, but all ACPs were actually
derived from functional requirements. This may be because
most access controls are related to system functionalities.
Access control analysis entails investigating how to control
end-users’ interactions with data in the system ––
information that is usually described in the functional
requirements. These two case studies suggest that analysts
may only need to derive ACPs from functional
requirements, but further validation is required to be
certain.

The level of detail in an SRS affects the efficiency of
our approach.  The SPRAT SRS provides a more detailed
functional description than the TDG SRS. In contrast, the
requirements description in the TDG project is high-level
and stable, yet somewhat ambiguous. We have tried to
clarify the requirements but the results are less than
satisfactory due to the distributed environment, large
research team and the communication complexities that
accompany any project of this size. As a result, we
admittedly spent less time on the TDG case study and also

Deny rule {

Subject: Role (Project Manager)
Object: GoalClassificationResults
Action: View
Condition: Role (user, Analyst) = TRUE AND

user.scheduledToClassify = TRUE AND
user.classifyingFinished = FALSE

Obligation: Null

}

Allow rule {

Subject: Role (Project Manager)
Object: GoalClassificationResults
Action: View
Condition: Null
Obligation: Null

}

Figure 3. An example ACP for the SPRAT



derived fewer AC policies. We plan to conduct a face-to-
face meeting with all the TDG stakeholders in the
Dominican Republic this October to further disambiguate
the requirements and specify the remaining ACPs.

An AC rule can have various modes (e.g.
permit/deny/oblige/refrain). To date, we have found the
allow/deny rule to be sufficient for the systems we have
evaluated.  However, we plan to explore the efficacy of
other modes to possibly extend our approach accordingly.

Our approach does have limitations. It focuses on
protecting sensitive data in information systems. We have
not examined access control in security kernels or function-
and application-level access control. Additionally, our
approach assumes that a database design is available; we
have not investigated projects for which one is not
available.

Case study research is valuable for forming initial
insights and preliminary validation. To date, we have
conducted two case studies using our approach. Both the
SPRAT and TDG studies, involving real systems, have
offered valuable lessons learned and insights for future
research. However, the scope of both studies was limited.
For example, an important part of specifying ACPs for
RBAC systems is to define roles. The roles were already
defined in the SRS for both systems. We will continue to
evaluate the approach’s overall effectiveness and also plan
to conduct empirical studies with software engineering
students and practitioners.

Finally, we acknowledge that access control
requirements not only come from the software system
itself, but also from other sources, such as enterprise-wide
corporate policies and legal requirements. These kinds of
documents are inherently different from the kinds of
documents we have examined to date. They are less specific
and more ambiguous than requirements specifications.
Deriving ACPs from these sources remains a challenge that
we plan to explore in the future.
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