
 NCSU CSC Technical Report 2004-20

Examining the Impact of Pair Programming
on Female Students

Chih-wei Ho1, Kelli Slaten2, Laurie Williams3, and Sarah Berenson 4

ABSTRACT
There has been low representation of women in Computer Science. Numerous studies
have been conducted to identify the cause of this under-representation and to provide
suggestions to improve the situation. Still not much progress in attracting women to
computer science has been observed. The research discussed in this paper was done
during the pilot study phase of a three-year project about women in information
technology field. During the first semester of this project, pair programming was used in
a junior/senior Software Engineering class at North Carolina State University. The goal
of this research is to examine the effect of pair programming on female students. We
interviewed three female students and analyzed all female students’ project retrospective
reports. Theoretical models were developed to describe (a) the source of project
enjoyment, (b) context that influenced female students’ study habits, and (c) the
effectiveness of pair programming. The cause and effect of each component of the
theoretical models were identified and are illustrated with narrative data.

1. INTRODUCTION
Women’s participation in Computer Science (CS) has always been low. Numerous
studies have been conducted to identify the cause of this under-representation [e.g. 7 and
12], and the researchers have made several suggestions to attract more women to this
field [e.g. 11 and 16]. Still, according to recent statistical data, female students are still a
minority in CS education system [23, in 2002]. The low percentage of women in CS
education programs leads to the low supply of women professional workforce. We need
to take steps to encourage more women to join this field.

Pair programming, whereby two programmers work at one computer on the same
programming task, shows several promising properties [33] for educational purpose. A
qualitative study was conducted to examine the effect of pair programming on female
undergraduate CS students. Pair programming was used in a junior/senior Software
Engineering course (CSC326) at North Carolina State University (NCSU) in fall 2003.
In the middle of the class three students were interviewed. At the end of the class, the
students wrote a retrospective essay of their experiences. Qualitative research methods,
including grounded theory, were used to analyze the female students’ interviews and their
retrospective essays on the final project. The purpose of this phase of the research is to
develop a theory about the effect of pair programming on female students, guided by the
following two questions:

1. How were the study habits of the female students affected by pair programming?

1 Chih-wei Ho, North Carolina State University, Department of Computer Science, cho@unity.ncsu.edu
2 Kelli Slaten, North Carolina State University, Department of Math and Science Education, kmslaten@ncsu.edu
3 Laurie Williams, North Carolina State University, Department of Computer Science, williams@csc.ncsu.edu
4 Sarah Berenson, North Carolina State University, Department of Math and Science Education, berenson@unity.ncsu.edu

 NCSU CSC Technical Report 2004-20

2. How and why did the female students like (or dislike) pair programming?

The rest of this paper is organized as follows. Section 2 provides prior studies about
gender issues and pair programming, as well as the research method utilized in this
research. Section 3 gives a detailed description about the research approach, and Section
4 presents the research results. Finally, Section 5 concludes the paper and suggests future
work.

2. BACKGROUND
In this section, I will present a literature review of studies about gender issues in the field
of CS. Then, I will discuss the background of pair programming and its applicability in a
classroom setting. Finally, information about the research method used in this study will
be provided.

2.1. Women in Computer Science
There has been an ongoing concern about the low representation of women in the field of
CS. Statistics shows that women are under-represented in academic CS, as shown in
Figure 1. The graph shows the percentages of post-secondary degrees conferred to female
CS students by degree-granting institutions from 1988 to 2001 [calculated from 23].
From the graph, we can see that the percentages of female CS bachelor and masters
degree receivers have been consistently around 30% in the last decade, and the
percentage of female CS doctoral degree receiver is even lower.

0

5

10

15

20

25

30

35

40

88-89 89-90 90-91 91-92 92-93 93-94 94-95 95-96 96-97 97-98 98-99 99-00 00-01

Bachelor
Master
Doctoral

Figure 1: Female percentage of post secondary degrees in Computer and Information Science

For the purpose of comparison, Figure 2 shows the percentages of secondary degrees in
all fields [calculated from 23, in 1990-2002] conferred to female students. The graph
shows that there are increasing percentages of female degree receivers, an opposing trend
to what is seen in CS. While approximately 50% of post-secondary degrees were awarded
to women, female participation in CS has been low. Nevertheless, women’s participation
is important. Cohoon [12] emphasizes some reasons why we need participation of women
in CS, including maintaining a supply for CS professionals, providing diverse viewpoints,
and promoting gender equity. Actions must be taken to attract more women to CS field.

 NCSU CSC Technical Report 2004-20

30

35

40

45

50

55

60

65

70

88-89 89-90 90-91 91-92 92-93 93-94 94-95 95-96 96-97 97-98 98-99 99-00 00-01

Bachelor

Master

Doctoral

Figure 2: Female percentage of post secondary degrees in all fields.

Camp describes a pipeline shrinking problem concerning women in CS [9]. Camp notes
that although 50% of high school CS classes were made up with women in 1993 – 1994,
only 28.4% of the bachelor’s degrees in CS were awarded to women. The number went
even lower with graduate degrees: 25.4% at the master’s level, and 15.4% at the doctoral
level. Camp contends that computer scientists and educators have not done enough to
make progress and that dramatic change needs to be taken. From the recent statistics data
from National Center for Education Statistics, we can see that the pipeline is still
shrinking today [23, in 2002]. A consequence of the low number doctoral degree in CS
received by women is the low number of female faculty. According to the CRA Taulbee
survey, fewer than 20% of newly hired faculties in year 2001-2002 were female [29]. The
lack of female faculty results in the lack of CS role models for female students, which is
reported as one of the reasons why girls do not pursue CS careers [16]. It is necessary to
improve women’s retention in CS education to balance representation of different
genders.

Researchers have shown that men and women have different passions and interests in
learning. Margolis et al. [20] point out that female students in CS are more interested in
broader, people-oriented issues, and male students like CS because of their fascination
with the machine. A survey of 567 first-year college students shows that female students
are significantly more interpersonally-oriented, career-oriented, and family-oriented
when compared with male students [6]. However, computing is widely stereotyped as a
solitary, masculine activity. CS students are perceived to be very smart, spending their
days working alone in front of the computer and talking about nothing but computer
science [19]. The impression of this field is discouraging to female students.

Lack of confidence is also a reason that women stay away from CS. Beyer et al. indicate
that women have less confidence in their computer capability [7]. Bayer conducted a
survey of 56 students (24 females and 32 males) enrolled in a CS course at the University
of Wisconsin-Parkside. The survey results indicate that although men and women
thought male students outperform female students in CS, females CS students actually

 NCSU CSC Technical Report 2004-20

have a higher GPA [5]. That men can do better in “masculine” majors is a misconception,
but it also dispirits women from joining CS at the first place.

To address the problems, the American Association of University Women Educational
Foundation Commission on Technology, Gender, and Teacher Education performed a
survey of 900 teachers and qualitative research with more than 70 girls [1]. In the report,
the commission makes several key recommendations for schools. The recommendations
include the following:

- School software should not be specially designed for boys or girls.
- Provide positive role models.
- Change the negative stereotype of computing as a solitary activity.
- Engage girls in the “tinkering” activities of computing to stimulate deeper interest in

technology.
- Design classroom activities for gender equity. Design group work and encourage

multiple approaches for learning.

2.2. Pair Programming and Its Effectiveness in Education
Pair programming is a practice, whereby two programmers work side by side at the same
computer, continuously collaborating on the same design, algorithm, code, or test [33].
One of the programmers is the driver, who has the control of the keyboard and the mouse,
actively implements the program, and explains the implementation to his or her partner.
The other is the navigator, who constantly watches the driver, reviewing driver’s design,
detecting driver’s errors, and being a brainstorming partner. After a period of time
(usually less than one hour), the programmers switch their roles. Pair programming has
been practiced for a long time and has recently been popularized by Extreme
Programming [3], an emerging software development method. Early evidence for the
effectiveness of pair programming was only anecdotal. Recent researches find that pair
programmers can produce code with higher quality without sacrifice of productivity [10].

Williams and Kessler point out seven behaviors that happen naturally when programming
in pairs [33]. These behaviors make it possible for pair programmers to finish their tasks
about twice as fast as solo programmers, with the use of approximately the same overall
resource expenditure, and still generate higher quality products. These seven behaviors
are:

1. Pair pressure: Williams and Kessler report that, in a junior-senior software
development course, most students worked harder when paired because they did not
want to let their partners down [31]. The students do not intentionally put pressure on
their partners. Nevertheless, each feels the push to move forward.

2. Pair negotiation: The two programmers work together to solve a problem. They have
different prior experiences but a common goal. The two have to negotiate to share a
common approach.

3. Pair courage: The programmers give each other the courage to do something they
might not do if working alone.

4. Pair learning: The programmers can learn from their partners’ continual critique and
review. Additionally, because the programmers work closely together, their

 NCSU CSC Technical Report 2004-20

knowledge, including programming tips, design skills, tool usage, is transferred
between them constantly.

5. Pair trust: Pair programmers work in a collaborative fashion. They learn to trust their
partners to get the work done.

6. Pair review: When working in a pair, both programmers review their joint product
continuously. This review technique has been shown effective and enjoyable.

7. Pair debugging: Debugging is a tedious and laborious task. However, if we can
discuss the problem with someone, we might find new ideas and solutions.

Because of the promising properties of pair programming, some educators started using it
in the classroom. Research conducted at the University of Wales indicates that students
with low self-confidence seem to enjoy pair programming most, while students who think
they have high skill level like to pair the least, especially when they have to work with
students with less confidence [28]. Although the authors did not distinguish the students’
attitude from their real performance in this research, it still shows that students with high
confidence usually regard themselves as “lone rangers.” However, another study done at
NCSU indicates that the association between the self-esteem and the compatibility of pair
programmers in a classroom is weak [18]. The difference may result from the inaccuracy
of the students’ self measurement of self-esteem.

Research conducted at University of California at Santa Cruz (UCSC) and NCSU have
shown the effectiveness of pair programming in introductory CS courses [21, 22, 34].
Their studies show that paired students achieve higher performance and produce higher
quality code. Furthermore, those studies also show that pair programming helps student
persistence in computer science related majors. Sanders indicates that students who favor
for pair programming think it enhances their learning experience, while those opposed to
it think pair programming can pull back good programmers and should be practiced only
with competent partners [25]. These studies about pair programming show that pair
programming is a promising approach for computer science educators to use with their
students. However, we need to explore the variety of students’ responses to enhance the
students’ learning experience.

2.3. Qualitative Research
Qualitative research is widely used in the fields of education, nursing, sociology, and
psychology, to explore the complexity of social or human problems. Denzin and Lincoln
describe qualitative research as “multimethod in focus, involving an interpretive,
naturalistic approach to its subject matter.” To perform qualitative research, the
researchers need to “study things in their natural settings, attempting to make sense of or
interpret phenomena in terms of the meanings people bring to them.” [14] The intent of
our study is to examine the effects of different programming practices among the female
students in an undergraduate level Software Engineering course. It is not possible to
measure students’ behaviors using quantified measurements without losing the accuracy
of the meaning. Therefore, qualitative methods are used in this study. Two qualitative
data collection methods are used:

1. Interview: In qualitative research, interviews usually involve unstructured and open-
ended questions. The intent of interviews is to elicit views and opinions from the
interviewees [13].

 NCSU CSC Technical Report 2004-20

2. Document: Another source of qualitative data can be text in documents. Documents
offer data that are more thoughtful than interview, because the participants can give
more attention when writing a document. However, if the documents are not in a
structured format, the researcher may need to make an effort to find useful information.
[13]

Qualitative data can be analyzed via a technique called coding. Some qualitative data,
especially more structural ones, can be quantified so statistical methods can be applied.
Seaman recommends several coding methods for studies utilizing mixed (quantitative and
qualitative) approaches [26]. In Seaman’s definition, coding is the process of turning
qualitative data into quantitative data. The quantifying process usually results in loss of
information. However, the quantified data are more reliably accurate when they are
restricted to “straightforward, objective information.”

2.4. Grounded Theory
The majority of the data used in this research cannot be quantified. To preserve the
complexity of the data, a qualitative research approach called grounded theory is used.
Grounded theory was first described by Glaser and Strauss [15]. The spirit of grounded
theory is that the theories can emerge from gathered data, in contrast to research in which
data is gathered to support or refute a theory. The intent is to generate or discover a
theory that is “grounded” in data from the field. In grounded theory, new theory comes
from a small size of cases, exploring a wide variety of variables. This approach is suitable
for this research because the impact of pair programming on female students is unclear.

Strauss and Corbin define a coding procedure for grounded theory [27]. Note that coding
in this context is different from Seaman’s definition. Here coding is the process that
attaches labels to different categories (or themes). Strauss and Corbin define theory as a
set of interrelated, well-developed categories. The interrelationships among the categories
form a theoretical framework that explains the phenomenon existing in the collected data.
The proposed coding procedure has three steps: open coding, axial coding, and selective
coding. Open coding is the process of identifying the categories in the data and the
properties of the different categories. Axial coding is used to connect the categories and
to find their interrelationships. In the last step, selective coding identifies one or two
central categories and forms a conceptual framework from which to generate a theory.
Strauss and Corbin’s coding process is utilized in analyzing the qualitative data in this
research to examine the effect of pair programming on female students.

3. RESEARCH APPROACH
The focus of this research is to find out the female students’ response to pair
programming pedagogy. There are two questions guiding the research:

1. How were the study habits of the students affected by pair programming?
2. How and why did the students like (or dislike) pair programming?

We care more about the female students’ feelings of and reaction to pair programming,
than about their performance in the class. The objective of this research is to find a
grounded theory of the effect of pair programming on female students. This section
provides the parameters and methods of the research.

 NCSU CSC Technical Report 2004-20

3.1. Research Settings
This research was during the pilot study phase of a three-year project about women in the
information technology field. A study was run at NCSU in the 2003 fall semester with an
undergraduate-level Software Engineering course (CSC326). There were 103 students in
the class, including 16 (15.5%) females and 87 (84.5%) males. Ninety-three students,
including 15 (16.1%) females and 78 (84.0%) males, agreed to participate in this research
by signing an Institutional Review Board Informed Consent form. In this paper, only data
from participating students are analyzed. Table 1 shows the GPA information of the
students. Note that the female students had a higher overall GPA than the male students;
however, their CS GPA was lower.

Table 1: Students’ GPA information5
 GPA Average Std. Deviation CS GPA Std. Deviation
Female 3.25 0.50 3.06 0.70
Male 3.17 0.54 3.23 0.67
All 3.18 0.53 3.21 0.67

The course in which the study took place was a three-credit junior-senior Software
Engineering course. The students had two 50-minute lectures each week. Additionally,
the students were divided to five lab sections of approximate 24 students per section, led
by a student lab instructor. The students had three programming assignments, the first
two of which were paired assignments. For the paired assignments, each student was
assigned a partner. A different partner may be assigned for each assignment. After the
three programming assignments, there was also a final project, in which the students
worked in groups of between four and five students to write a plug-in for Eclipse6, an
open-source development environment for the Java programming language.

To allow for comparison for our research, there were two types of groups for the team
project: solo groups and paired groups. In the solo groups, each team member was
assigned a piece of the overall project, programmed alone and integrated completed work.
In paired groups, the members practiced pair programming, where the team was divided
into pairs, and each programming task was assigned pair-wise. The students might switch
their pairing partners during the development.

To assign the students with groups of their favorable programming styles, they were
asked to submit a short paper which provided their choice of programming style (solo,
paired, or don’t care), a short statement of their rationale for making this choice, and to
list the students she or he did not want to work with. The students’ preference of
programming is shown in Table 2. For the most part, a student was assigned to a group of
her/his programming style. More than half the students preferred to work in pairs. To
allocate approximately the same number of students in both programming styles, the
students who did not care for the programming style were initially assigned to solo
groups. Additionally, prior academic performance was considered so that the groups
could be as academically equivalent as possible. Finally, programming style assignment
was adjusted to conform to the following rules:

5 Two females did not have GPA information; one male did not have GPA information; three females did

not have major GPA information; and three males did not have major GPA information.
6 http://www.eclipse.org

 NCSU CSC Technical Report 2004-20

1. A group could only have students of the same lab section. Therefore, if few students
in a lab section chose a certain programming style, some students in the same lab
section would need to change their programming style so that the number of students
in a group could be either four or five.

2. The number of students in paired groups should be similar to that of students in solo
groups.

3. The academic performance (see below) of students in paired groups should be similar
to that of students in solo groups.

4. If a group had any female member, there should be at least two female members in
the group.

The academic performance is an aggregated score based on the student’s SAT-Math
(SATM), overall GPA, and the midterm score of the course. It is evaluated with the
following algorithm. In the algorithm, NSAT is normalized SATM score (SATM score
divided by eight), and NGPA is normalized GPA score (GPA score multiplied by 25).
The normalization is necessary so that all three scores (normalized SATM, normalized
GPA, and midterm score) range from 0 to 100.
NSAT = SATMScore / 8
NGPA = GPA * 25
if SAT and GPA are unavailable then
 performance = MidtermScore
else if SAT is unavailable then
 performance = MidtermScore * 0.5 + NGPA * 0.5
else if GPA is unavailable then
 performance = MidtermScore * 0.5 + NSAT * 0.5
else
 performance = MidtermScore * 0.4 + (NGPA + NSAT) * 0.3
endif

The students were not enforced to use the assigned programming style, though. The
purpose of programming style assignment was to gather students of similar preference
together so that they could use their preferred style.

After the programming style of each student had been decided, the students were
assigned to different groups randomly. However, their lists of “undesirable partners”
were taken into consideration. Table 2 shows the result of programming style assignment.

Table 2: Programming Style Assignment
Preferred Style Assigned Style

Solo Paired Don’t Care Solo Paired
Female 5 8 2 8 7
Male 16 44 18 38 40
All 21 52 20 46 47

Table 3 shows the students’ academic performance scores regarding of the assigned
programming styles, indicating the groups were essentially equivalent academically.

Table 3: Students’ Performance Scores
Solo Paired

Average Std. Deviation Average Std. Deviation
77.51 11.11 76.65 10.11

 NCSU CSC Technical Report 2004-20

3.2. Limitations of Study
A number of limitations of this study need to be taken into consideration. First is the
small size of subjects. Only three interviews and 15 retrospective reports of the students
in the same class were analyzed. Although sample size is not a concern when generating
a theory [15], the small sample size made it inappropriate to utilize statistical methods on
the quantitative data so triangulated results [17] could be found. Additionally, generality
cannot be shown in this study due to small sample size and sample similarity. Further
study, as described in Section 5, will be conducted to confirm the findings in this research.

3.3. Research Methods
To attain accuracy and breadth of the result, both quantitative and qualitative methods
were applied. Data collection and analysis approaches are explained in this section.

3.2.1. Data Collection
The information about students’ academic performance is used. The information includes
their GPA scores, assignment scores, and the final scores of the class.

There are two sources of qualitative data used in this study. One is the interviews with
seven students, including three females, in the middle of the semester. The interviews
were conducted and transcribed by Berenson and Slaten from the Department of Math
Education [4]. These interviews were semi-structured. The interview protocol is provided
in the Appendix A. The interview data of the female students are analyzed in this paper.

The other source is the students’ project retrospectives. At the end of the semester, the
students were asked to write two-page project retrospectives. The project retrospective is
in the form of a questionnaire, including several yes/no questions and several open-ended
ones. The questionnaire used to structure the project retrospectives is provided in
Appendix B. In this paper, the retrospectives of 13 female women are analyzed.

3.2.2. Data Analysis
The focus of this paper is to form theories from the data we collected. In this research,
there are large amounts of qualitative data. In the project retrospectives, some questions
are more objective and concrete. The students’ answers to these questions are quantified.
The quantified information is not the focus of this study, but it is used with qualitative
data to study the same phenomenon [17]. The quantifying coding process is not suitable
for the analysis of the student interviews and the open-ended questions in the
retrospectives. Grounded theory was used to analyze those less-structured data.

In addition to quantifiable data such as GPA and course grades, the students’ attitudes
and feelings about software development are the center of this research. The interviews
are the most informative data for this purpose. The coding process applied in this
research is described as follows.

Open coding. The interviews with female students consist of approximately 30 pages of
textual data. In the open coding process, the categories for each interview were identified.
The result of open coding is written in pairs in the form of <category, excerpt>. Each
category is labeled with a short noun. An example is given as follows.

 NCSU CSC Technical Report 2004-20

Category Sense of dependency
Excerpt Especially after you’ve done two pair programming assignments and when

you go back to the old style of doing solo, it kind of feels a little bit hard. It
suddenly feels like that the weight is heavier like you have to do all this stuff
on your own and there’s nobody to talk to and to ask a question to.

Open coding helps highlight the points in the unstructured textual data. After this process,
the female students’ interview was reduced to approximately five pages of more
structured textual information. Additionally, the categories were clearly identified.

Axial coding. After the categories were identified via open coding, we performed
additional analysis to find the interrelationships among the categories. The
interrelationships were represented as cognitive maps [24]. For example, Figure 3
demonstrates the result of axial coding in the previous example.

Figure 3: Categories Interrelationships

In the diagram, each block is a category. A solid arrow is a positive relationship, and a
dashed arrow is a negative relationship. In this example, the diagram shows that, in the
case of this student, pair programming increased her sense of dependency, which made
her think solo programming was difficult.

Selective coding. The axial coding resulted in several tangible diagrams. In selective
coding, the focus was on finding the categories of interest and on determining if some
patterns can emerge about these categories. If such patterns can be found, we can form a
theory based on such patterns. For example, from the cognitive map in Figure 3, we can
form the proposition:

The student learns to depend on the partner after getting used to pair programming.
However, this sense of dependency makes it difficult for the student to program alone.

Sometimes we cannot find recurring patterns. If this happens maybe some categories are
missed out, or the patterns cannot form a theory. In the prior case, we need to go back to
the original data to find out new categories or go back to the field to find out new
evidence.

4. RESULTS
In this section, the results will be presented, grouped by the categories of interest. Three
central categories are shown: enjoyment, study habits, and pair programming
effectiveness. Based on the interviews and project retrospectives, the factors affecting
each of the main categories will be discussed.

 NCSU CSC Technical Report 2004-20

4.1. Enjoyment
What aspects of software development interest girls? In his classical book The Mythical
Man-Month, Brooks lists the joys of programming [8]. They are: the joy of making things;
the pleasure of making things that are useful to other people; the fascination of fashioning
complex parts and watching them work in subtle cycles; the joy of learning; and the
delight of working in a tractable medium. The final project of this course has all these
five properties: it is about making a useful software tool; composing several software
parts; learning new framework for a development environment; and working in a
tractable medium. Did the female students enjoy the term project because of these
properties? Are there other factors of enjoyment in a team project?

In the retrospective, the students were asked whether they enjoyed the project. Figure 4
shows the cognitive map from the female students’ response. Four out of seven female
students in solo groups and three out of six female students in paired groups said they
enjoy the project.

Figure 4: Project Enjoyment Cognitive Map

Although earlier studies have shown that paired students have higher level of enjoyment
than solo students [21], the female students in this class did not show such trend. The
three paired students who did not enjoy the project have a similar reason. They did not
like the project because they need to write a plug-in for a specific platform. To write a
plug-in, one needs to have thorough knowledge about the platform, which is not the
material in the class. One student expressed her concern of the overwhelming efforts to
learn the skill:

Definitely, we didn’t like the fact that the project was an Eclipse plug-in because
we didn’t have enough time to study it well enough to avoid all that problems with
Eclipse plug-in.

Nevertheless, plug-in programming is a new idea to the students. Learning a new
technique also brings the pleasure of learning. Some students, both paired and solo, enjoy
the project because it is a new experience to them. For example, one student said this in
the retrospective:

Because I’ve never done a plug-in before, it posed a huge challenge to me… now I
feel a lot more confident in approaching a new project on a complete new topic…
One thing I realized is that you don’t have to be taught all the necessary knowledge
before you start the project. Self-learning is very important skill.

 NCSU CSC Technical Report 2004-20

Some of the students enjoyed the project because this project can be useful in the real
world. Compared to men, women tend to link their interest in computers to other areas
that are beneficial to society [20]. Being a plug-in on a popular platform, this project is
enjoyable to some female students. A student expressed her feelings about programming
assignments:

I enjoyed the project, mainly because I felt that we were creating something that
could actually be used by a customer rather than just an arbitrary program that
taught us different aspects of Java like many of the programs that I’ve written up
until now.

Another important factor that made the student enjoy or dislike the project is people. In a
team project, the interaction among the team members can make the project a complete
success or total failure. While some students enjoyed the teamwork, some other students
expressed two problems concerning people, including leadership (I did not enjoy working
on a team that was lead by a young lady with a rude attitude about everything…) and
unbalanced workload (…certain people in my group did not contribute and it caused a
lot of stress.). We can see these problems as lack of skills for group work, as indicated by
Waite et al. [30]. In their paper, the authors suggest to offer more open discussion, group
assignments, and project courses in the course design to improve students’ collaborative
skills.

4.2. Study Habits
There are no explicit questions concerning students’ study habits in the interview
protocol or retrospective questionnaire. However, from the students’ answers, we can still
find out the trends of their study habits. The cognitive map that illustrates the cause and
effect of the students’ study habits is shown Figure 5. The interviews show that pair
pressure has both positive and negative effects on the students’ efficient usage of time.

Figure 5: Pair Pressure Cognitive Map

Beyer et al. report that female students show stronger interpersonal attachment than
males [6, 7]. When interpersonal attachment works in pair programming, it becomes pair
pressure. Williams et al. describe pair pressure as a force that makes the programmers
work smarter and harder, and draw their concentration on the programming tasks [32].
For female students, the source of this force comes from their attitude that they do not
want to upset their partners, and the result is that they put more attention on their work. A
student had a description of how she feels when works in pair:

When we meet, we’ll do stuff, we’ll really talk about the issues we have or really be
productive as opposed to just sitting there and you don’t want wasting the other
person’s time…

 NCSU CSC Technical Report 2004-20

According to the students’ opinions, time management was critical for their assignments
and the term project. From the retrospective essays, ten female students pointed out that
time management is the most important successful factor for the term project. The effect
of pair pressure on time management is two-fold. The three female interviewees stated
that they felt responsible for their partners when doing the paired assignments, and this
sense of responsibility helped them manage their time better. A student talked about her
feelings of pair programming:

I think that it holds people more accountable. It makes people not do as much work
at the very last minute, since they have to schedule with their partner and they just
are better about planning it and working on it… overall they take more time to do it
right.

On the other hand, pair pressure can have negative effect on time management when the
student needs to work alone, which is usually the case for college students. A lot of
students did not get good grades in the solo assignment. Most of these students thought
that assignment was particularly difficult because it was about a new concept for them
(design patterns). Nevertheless, two female interviewees who did not finish the solo
assignment said that they could have finished it if they had managed their time better.
One of the interviewees who did not finish the solo assignment said she might have
finished it if she could pair with someone:

… the last one we had (the third assignment)… I didn’t get started on it until very
late and I didn’t get it finished… But I think if I had been working on it with
someone else I probably would have started earlier.

One student said the negative effect comes from the sense of dependency when they are
accustomed with pair programming:

After you get used to pair programming, and then you have to go back to the solo
programming, you will sort of feel too dependent, too relied, sort of need the other
person for the job as opposed to be very independent… (Pair programming might
take away the ability to work alone) not in the sense of programming ability, but the
ability of time management…

However, the negative effect of pair pressure can be avoided. For example, the teacher
can design more group assignments instead of individual ones, or break a big assignment
into several smaller pieces.

4.3. Pair Programming Effectiveness
The three female interviewees all agreed that pair programming is an efficient working
style, no matter which programming style they preferred in the final project. They think
pair programming is efficient because it can reduce debug time and help the students with
problem solving. The cognitive map is shown in Figure 6.

Pair Review Debug

Pair Courage Problem Solving

 NCSU CSC Technical Report 2004-20

Figure 6: Pair Programming Effectiveness Cognitive Map

When programming in pairs, the driver controls the keyboard and the mouse, and
explains what he or she is doing to the navigator. The explanation can help the driver
concentrate on the problem. If the driver shares his or her thoughts with the navigator, the
flaws in driver’s reasoning can be spotted more easily. At the same time, the navigator
also watches over the driver’s shoulder and catches some errors that the driver is not
aware of. A student shared her opinion in the interview:

If you’re explaining your reasoning, you see flaws easier… if you do it on your own,
you’re probably going to go away and code the whole thing and then suddenly you
realize, oops, I don’t know what I was actually doing here… Literally as you’re
typing something at the screen, they (the partners) can correct it as you go along.

Although traditionally programming is considered as a task that is preformed by
individuals [19], the female students did not have any negative feelings when
programming collaboratively. Instead, they felt more confident when working in pairs.
This kind of confidence is not, however, exactly the same as described in Williams and
Kessler’s book [33]. In their book, the authors say pair programmers are more confident
to try out solutions which they may not do when working alone. In addition to that, the
female students we interviewed said they felt more comfortable to seek help from the lab
assistants, other resources, or from their partners, when they work in pairs. One female
student we interviewed said she felt more assured when she worked with her partner:

…in a situation where you don’t understand some stuff and then you can ask the
other person… if she didn’t understand it, then you know you’re not the only
person… If we want to get the work done we ask the TA… If I’m on my own I
probably wouldn’t do that that often.

Figure 7: Negative Effects on Pair Programming

One way to examine pair programming effectiveness for the female students is to look at
their grades of the final project, which is shown in Table 4. Although the female students
had positive feelings about pair programming, the pair groups did not do as well as the
solo groups. We can find out some clues why pair programming did not work out from
the interviews and from the students’ retrospective reports. The negative effects on pair
programming are shown in the cognitive map in Figure 7.

Table 4: Female Students’ Performance of the Final Project
 Number of Students Average Std. Deviation

Solo Groups 8 104.50 6.24
Pair Groups 7 96.07 11.24

In the project retrospectives, the students were asked how much time they spent solo on
the final project. The students in solo groups all spent more than 50% of their time solo.
Half of the students in pair groups did not answer that question, two said 25% of their

 NCSU CSC Technical Report 2004-20

time was dedicated to solo programming, and one said 66%. All seven females in pair
group said the different schedules of the team members made it difficult to practice pair
programming. Unmatched schedule was the most common cause that stopped the
students practicing pair programming.

Bad pairing experience is another reason why some students preferred to work alone. One
of the female students we interviewed was abandoned by her partner two days before the
first assignment was due. Even though pair programming worked well in her second
assignment, she still chose to be in a solo group in the final project. Another interviewee
said her partner (a male student) did all the work without her in one of the paired
assignments, and she was very annoyed that she was not part of it. She believed that it
was because her partner could not communicate well with her:

He kind of said, which I kind of understand, that he didn’t want to have someone he
can’t explain all his thoughts to someone as he was doing it.

It is technically difficult for the instructors to prevent schedule mismatch and bad pairing
experience. It is virtually impossible to have a grouping scheme that resolves the
schedule mismatch issue, since every student has different classes. It is also impractical
for the instructors to monitor all the pairing sessions to make sure that everything goes
well. Radical solutions, such as distributed pair programming [2], may be needed to solve
these issues.

5. CONCLUSION AND FUTURE WORK
After thorough analysis of the qualitative data from 15 female students of an
undergraduate level Software Engineering course, including three interviews and their
retrospective essays, we find out the following phenomena:

- The project enjoyment comes from the usefulness of the project and teamwork.
- Pair programming helps the female students with time management because they

think they are responsible for their partners.
- When the female students are used to pair programming, it can be difficult for

them to get back to solo programming.
- Pair programming helps the female students work more efficiently in

programming tasks.
- Schedule mismatch and bad pairing experience is the enemy of effective pairing

programming.

This research explores the effects of pair programming on female students, and also
brings up the difficulties to use pair programming in a classroom. From the result, we
find out the following problems that need to be addressed in future study:

- How do we improve the students’ collaborative skills?
- How do we avoid the negative effect of pair programming, i.e. sense of

dependency?
- How do we resolve students’ mismatched schedules?
- How do we make sure the workload equity in group assignments?

We are conducting more qualitative and quantitative inquiries to make the findings more
reliable. From the qualitative perspective, more observations and interviews will provide

 NCSU CSC Technical Report 2004-20

more supportive or contrary evidences, and richer context of the phenomena. Quantitative
experiments are needed to test the generality of the findings.

Acknowledgements
This material is based upon work supported by the National Science Foundation under
Grant No. 00305917. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

References
[1] AAUW Educational Foundation: Tech-Savvy: Educating Girls in the New Computer Age,

American Association of University Women, 2000.

[2] Prashant Baheti, Edward F. Gehringer, and P. David Scotts: “Exploring the Efficacy of
Distributed Pair Programming,” XP/Agile Universe 2002, pp. 208 – 220, 2002.

[3] Kent Beck: Extreme Programming Explained: Embrace Change, Addison-Wesley, 2000

[4] Sarah Berenson, Kelli M. Slaten, and Laurie Williams: “Collaboration through Agile
Software Development Practices: Student Interviews and Lab Observations,” North
Carolina State University Technical Report, NCSU CSC TR 2004-12, 2004.

[5] Sylvia Beyer: “The Accuracy of Academic Gender Stereotypes,” Sex Roles, Vol. 40 Nos
9/10, pp 787 – 813, 1999.

[6] Sylvia Beyer, Kristina Rynes, and Susan Haller: “Deterrents to Women Taking Computer
Science Courses,” IEEE Technology and Society Magazine, Vol. 23 Issue 1, pp 21 – 28,
2004

[7] Sylvia Beyer, Kristina Rynes, Julie Perrault, Kelly Hay, and Susan Haller: “Gender
Differences in Computer Science Students,” Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education, pp 49 – 53, 2003.

[8] Frederick P. Brooks, Jr.: The Mythical Man-Month, Addison-Wesley, 1995.

[9] Tracy Camp: “The Incredible Shrinking Pipeline,” Communications of the ACM, Vol. 40
No 10, pp 103 – 110, 1997.

[10] Alistair Cockburn and Laurie Williams: “The Costs and Benefits of Pair Programming,” in
Extreme Programming Examined, Addison-Wesley, 2001.

[11] Joann McGrath Cohoon: “Toward Improving Female Retention in the Computer Science
Major,” Communications of the ACM, Vol. 44 No 5, pp 108 – 114, 2001.

[12] Joann McGrath Cohoon: “Must There Be So Few? Including Women in CS,” Proceedings
of the 25th International Conference on Software Engineering, pp 668 – 674, 2003

[13] John W. Creswell: Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches, 2nd Edition, Sage Publication, 2003.

[14] Norman Denzin and Yvonna Lincoln (editors): Handbook of Qualitative Research, 2nd
Edition, Sage Publications, 2000.

[15] G. Glaser and Anselm L. Strauss: The Discovery of Grounded Theory: Strategies for
Qualitative Research, Aldine de Gruyter, 1967.

 NCSU CSC Technical Report 2004-20

[16] Andrea Jepson and Teri Peri: “Priming the Pipeline,” SIGCSE Bulletin, Vol. 34 No 2, pp
36 – 39, 2002.

[17] Todd D. Jick: “Mixing Qualitative and Quantitative Methods: Triangulation in Action,”
Administrative Science Quarterly, Vol. 24, pp 602 – 611, 1979.

[18] Neha Katira, Laurie Williams, Eric Wiebe, Carol Miller, Suzanne Balik, and Ed
Gehringer: “On Understanding Compatibility of Student Pair Programmers,” Proceedings
of the 35th SIGCSE Technical Symposium on Computer Science Education, pp 7 – 11,
2004.

[19] Jane Margolis and Allan Fisher: “Geek Mythology and Attracting Undergraduate Women
to Computer Science,” Impacting Change Through Collaboration, Proceedings of the
Joint National Conference in Engineering Program Advocates Network and the National
Association of Minority Engineering Program Administrators, 1997.

[20] Jane Margolis, Allan Fisher, and Faye Miller: “Caring about Connections: Gender and
Computing,” IEEE Technology and Society Magazine, Vol. 18 Issue 4, pp 13 – 20, 1999.

[21] Charlie McDowell, Linda Werner, Heather E. Bullock, and Julian Fernald: “The Impact of
Pair Programming on Student Performances, Perception, and Persistence,” Proceedings of
the 25th International Conference on Software Engineering, pp 602 – 607, 2003.

[22] Nachi Nagappan, Laurie Williams, Miriam Ferzli, Eric Wiebe, Kay Yang, Carol Miller,
and Suzann Balik: “Improving the CS1 Experience with Pair Programming,” Proceedings
of the 34th SIGCSE Technical Symposium on Computer Science Education, pp 359 – 362,
2003.

[23] National Center for Education Statistics: Digest of Education Statistics, 1990-2002,
Institute of Education Sciences, U.S. Department of Education, 1990-2002.

[24] Gery W. Ryan and H. Russell Bernard: “Data Management and Analysis,” in Handbook of
Qualitative Research, 2nd Edition, Sage Publications, 2000.

[25] Dean Sanders: “Student Perceptions of the Suitability of Extreme and Pair Programming,”
Proceedings of 2001 XP Agile Universe, 2001.

[26] Carolyn B. Seaman: “Qualitative Methods in Empirical Studies of Software Engineering,”
IEEE Transactions on Software Engineering, Vol. 25 No 4, pp 557 – 572, 1999.

[27] Anselm L. Strauss and Juliet M. Corbin: Basics of Qualitative Research: Techniques and
Procedures of Developing Grounded Theory 2nd Edition, Sage Publications, 1998.

[28] Lynda Thomas, Mark Ratcliffe, and Ann Robertson: “Code Warriors and Code-a-Phobes:
A Study in Attitude and Pair Programming,” Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education, pp 363-367, 2003.

[29] Moshe Y. Vardi, Tim Finin, and Tom Henderson: “2001 – 2002 Taulbee Survey: Survey
Results Show Better Balance in Supply and Demand,” Computer Research News, Vol. 5
No 2, pp 6-13, 2003. Also available at
http://www.cra.org/CRN/articles/march03/taulbee.html.

[30] William M. Waite, Michele H. Jackson, and Paul M. Leonardi: “Student Culture vs Group
Work in Computer Science,” Proceedings of the 35th SIGCSE Technical Symposium on
Computer Science Education, pp 12 – 16, 2004.

[31] Laurie Williams and Robert R. Kessler: “The effects of "pair-pressure" and "pair-learning"
on software engineering education,” Proceedings of 13th Conference on Software

 NCSU CSC Technical Report 2004-20

Engineering Education and Training, pp 59 – 65, 2000.

[32] Laurie Williams, Robert R. Kessler, Ward Cunningham, and Ron Jeffries: “Strengthening
the Case for Pair-Programming,” IEEE Software, Vol. 17 Issue 4, pp 19-25, 2000.

[33] Laurie Williams and Robert R. Kessler: Pair Programming Illuminated, Addison-Wesley,
2002.

[34] Laurie Williams, Kai Yang, Eric Wiebe, Miriam Ferzli, and Carol Miller: “Pair
Programming in an Introductory Computer Science Course: Initial Results and
Recommendations,” presented at the 17th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2002), 2002.

 NCSU CSC Technical Report 2004-20

Appendix A. Interview Protocol: Mid-semester Pilot, October 2003
OPENING:

SAY: We are evaluating the instructional approaches used in your computer science 326
course. It is important for the instructors to know how well these new methods are
working for you. This is why we want to ask some of the students what they think about
the programming assignments in this course.

Your responses will be anonymous. While we will share the results of the interviews with
the instructor, he or she will not know that you were interviewed.

1. What do you think of the assignments so far?
a. Can you explain why you think that?
b. Can you give me an example?

2. So some of the assignments have been paired and some have been solo. What do
you think of the students in your lab prefer, pair or solo?

a. What reasons do they give for preferring ____________?
b. What about those who prefer _________?

3. What about you? What approach do you prefer?
a. Why is that true?
b. Any other reasons?

4. What makes __________ an effective instructional tool for you?
a. Have you noticed other approaches that help you learn?
b. Can you give me an example?

5. What do you see yourself doing after graduation?
a. Have you ever done this before? How did it go?
b. How do you envision the workplace?

6. Do you think pair programming will work in today’s IT workplace?
a. Why? Please explain this idea some more.
b. Why not? Please explain this idea some more.

Thanks very much for your time. You were very thoughtful. Your ideas will help many
students here at NC State and in other programs across the United States. Good luck with
the semester.

 NCSU CSC Technical Report 2004-20

Appendix B. Project Retrospective Questionaire
1. User Stories, Iteration, Acceptance Tests: Did having three short iterations help you

pace yourself to completion? Do you feel you benefited from feedback you got after
each iteration? Did having the Acceptance Tests help you to clarify the
requirements?

2. Configuration management: Did CVS help you manage your files?

3. JUnit and FIT: Do you feel either or both of these kinds of testing helped you in
creating a high quality project? Do you feel like this kind of testing helped reduce
debugging time? Did you create these test cases as you went along or did you
complete a user story and then run the tests? Based on your experience, do you
think it is best to create the tests all along or at the end?

4. Your method of work: Pair programming or Solo programming. How did it work?
What percentage of time do you feel like you worked solo, what percentage of the
time do you feel you worked in pairs? What made you decide when to work solo
and when to work in pairs [time constraints, difficulty of work, etc.]

5. How well your team communicated with each other. What vehicles did you use for
communication – web site, email, setting up a mailing list, etc?

6. Division of team roles – both the team roles discussed in class (team leader,
development manager, quality manager. planning/process manager) . . . but also did
you assign a certain person to be the SWT expert, etc. How was technical
information shared within the team?

7. Did you enjoy the project? Why or why not? Did you like the fact that it was an
Eclipse plug-in? [This question will help immensely for choosing next year’s
project.]

8. Did you reuse any code found on the web? How did this go? How was testing this
code?

9. How did you like Extreme Programming? Do you think your project would have
instead been better run in a plan-driven way? Did you formally or informally create
use cases, class diagrams, or sequence diagrams? If so, did you share them among
the team? Did you run any CRC card sessions?

10. What advice do you have for next year’s class that will have a 4-5 person, 6-week
team project [which may or may not be an Eclipse plug-in?] [Mark this “you can
share” or “please do not share.” I will create a web page with snippets of advice if
that’s OK with you.]

11. Did you have any particularly stubborn defects? Can you analyze the cause of these
defects – is there anything you’d change about what you did to prevent such defects?

12. Analyze the effect of keeping Sev 1 and Sev 2 defects out of your project. Do you
think you ended up with a better structured code base because of them?

13. Please include anything else you’d like to share.

