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ABSTRACT
Lack of scalability and channel efficiency is often touted as
the main drawback of TDMA for wireless sensor networks.
However, the results of this paper dictate otherwise. In
the paper, a new distributed TDMA scheduling algorithm,
called DRAND, is employed that gives a channel schedule
as efficient as RAND - a commonly used centralized channel
allocation scheme, but does so only in the expected run-
ning time and message complexity of O(δ) where δ is the
maximum number of contending neighbors. This is the first
distributed, scalable implementation of RAND. As the run-
ning time of DRAND does not depend on the total size of the
input network, it is highly scalable, thus apt for large-scale
sensor networks.
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1. INTRODUCTION
Many contention-based MAC schemes [1, 2, 3, 4] are pro-
posed for wireless ad hoc/sensor networks due to its easy
deployment. In contention-based MAC schemes, there is no
startup overhead incurred. That is, after deployment, nodes
can instantly start communication among their neighbor-
hoods while trying to avoid collision using RTS (Request-
to-send) and CTS (Clear-to-send) signals. One more advan-
tage of contention-based MAC schemes is flexibility in that
it can accommodate with dynamic environments resulting
from mobility of nodes in ad hoc networks, node failures,
and energy depletion. However, broadcast in contention-
based approaches is susceptible to packet loss. Furthermore,
under a dense network or increased offered load, the perfor-
mance of contention-based schemes can significantly degrade
due to higher contention among neighborhoods. That is,
there may cause reduction of battery life and huge control
packet overhead for retransmission. This points to the need
of collision-free MAC protocols based on scheduling.

TDMA is one of schedule-based MAC protocol which is a
subject of an active and broad research (see [5]). TDMA
provides collision-free transmission from nodes or links since
a set of time slots are prearranged. Thus, TDMA can adapt
well to various network densities and offered loads. An ef-
ficient TDMA schedule can save energy by allowing nodes
to turn on the radio only during the scheduled transmis-
sion times of their neighbors, without wasting energy due
to idle listening and overhearing unlike contention-based
schemes. It is well-known that idle listening consumes as

much as energy as receiving. Furthermore, as TDMA does
not require any control message exchanges for communica-
tion (e.g., RTS/CTS), it limits overhead in communication.
Finally note that since sensor networks are relatively station-
ary, the impact of dyanmic environments on TDMA MAC
schemes can be lessened. Thus, the deployment cost can
be amortized during the entire life time of sensor networks
unless there is quite frequent channel assignment procedure.
Despite these benefits, there are several challenges of a sen-
sor MAC protocol that employs TDMA for sensor networks.
Among these, the biggest challenge is lack of scalability and
efficiency in existing solutions for producing an efficient time
slot assignment.

• Scalability: Recent advances in processor and low power
wireless communication technologies have enabled the
deployment of large-scale sensor networks consisting
of thousands, or even millions of nodes, of small and
cheap sensor nodes. The performance of sensor MAC
protocols must be scalable and independent of the to-
tal size of networks, as these networks are often de-
ployed in large scale. Obtaining the optimal TDMA
schedule is NP-hard [6]. Either existing heuristics re-
quire global topology information and centralized [7],
or their performance still depends on the size of total
networks [6, 8, 9].

• Efficiency (Low latency): Recent distributed “more
scalable” heuristic solutions [10, 11, 12] are originally
designed for mobile ad hoc networks. These solutions
typically run in a per-slot basis: for each slot, they de-
termine a set of nodes to transmit safely without inter-
ference. Because of this per-slot property, it is difficult
to find a schedule in which all nodes can transmit ex-
actly once. Therefore, even if they are adapted to work
in stationary sensor networks, the resulting schedules
would be very inefficient. Furhtermore, schedule-based
schemes are known for higher delays [13]. However,
longer delays are an artifact of inefficient scheduling.
The TDMA scheduling protocol being employed for
sensor networks must efficiently take advantage of spa-
tial resue of time slots.

To overcome these challenges with TDMA, we develop a
new distributed TDMA scheduling scheme, called DRAND,
that implements RAND [7], a commonly used centralized
channel allocation scheme for mobile adhoc networks e.g.,
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[14, 6]. This is the first scalable, distributed implementa-
tion of RAND to date, to the best of our knowledge. RAND
sorts all the nodes in the graph in a random total order
and assigns to each node, in that order, the minimum color
(or channel) that has not been taken by its adjacent, but
preceding nodes. Since RAND requires the knowledge of
the global network topology, it is impractical for large-scale
sensor networks. DRAND gives a channel schedule as effi-
cient as RAND, but does so in the expected running time
and message complexity of O(δ) where δ is the bound on
the number of contending neighbors.

RAND has been used as a benchmark for many distirubted
dynamic channel access algorithms [12, 11]. The theoretical
computer science community has also independently worked
on distributed graph coloring extensively [ref]. The best dis-
tributed algorithms for graph coloring are randomized ones
developed for a completely synchronous environment. In
these algorithms, a randomly chosen color from a a palette
of available colors is assigned to a node until that node
has a different color from its adjacent (contending) nodes.
However, the performance of both dynamic channel access
schemes and palette-based algorithms are still inferior to
that of RAND in terms of worst chromatic number which
is defined by the maximum number of colors used by an al-
gorithm for an input network. (See Section ? for details
of related work.) Thus, to our best knowledge, DRAND
is the most efficient distributed TDMA schemes working in
asynchronous environments.

Clearly, large- scale sensor networks follow a pattern of unit-
disk graphs [15], and the total network size is much larger
than δ. DRAND is highly scalable and efficient, thus apt for
large-scale sensor networks Our implementation of RAND
is exact in the sense that for any input graph, DRAND can
produce any channel assignments producible by RAND and
vice versa. It is surprisingly simple and easy to implement.
Finally, DRAND is inherently fair since every node in the
network can transmit a packet within worst chromatic num-
ber of slots.

We formulate the channel assignment problem in Section
2, and present DRAND and its correctness, practical is-
sues from Section 3 to Section 5. To study performance
of DRAND in more realistic environments, we implemented
DRAND in ns-2, and compared its performace with the
other MAC protocol [12] in Section 6. Section 7 discusses
related work, and Section 8 concludes the paper.

2. CHANNEL ASSIGNMENT
In this section, we formally define the channel assignment
problem. The network is represented by a graph G = (V, E)
where V is the set of nodes, and E is the set of edges. An
edge e = (u, v) exists if and only if u and v are in V and
u can hear from v and vice versa (i.e., all edges are bidirec-
tional). A frame is divided into the MaxSlot number of non-
overlapping equal time periods, called time slots. The slots
are numbered from 1 to MaxSlot. We assume that MaxSlot
is sufficiently large to handle all the assignment strategies.
Once the channel assignment is finished, the frame size will
be re-adjusted to fit to the maximum number of slots actu-
ally used (more on this in Section 5).

Informally, the objective of channel assignment is that each
node picks a time slot during which it can transmit without
“conflict”. We say that two nodes u and v are in conflict
if and only if the simultaneous transmission from u and v
causes radio interference at some node. The definition of
interference (or conflict) determines the channel assignment
problems. For example, in the broadcast scheduling mode,
conflict can happen among all the nodes within a two-hop
distance. A good list of conflict relations in wireless net-
works is defined in [7].

We define the channel assignment problem as finding a time
slot for each node, given an input graph G and conflict defi-
nition, such that if any two nodes are in conflict, they do not
have the same time slot. The performance of an algorithm
for the channel assignment problem can be determined by
three quantities:

• Worst-case chromatic number: the maximum number
of time slots required to solve the problem for all exe-
cutions of the algorithm.

• Running time: the maximum time taken for all the
nodes in V to decide on their time slots for all execu-
tions of the algorithm.

• Message complexity: the maximum number of mes-
sages transmitted for all the nodes in V to decide on
the time slots for all executions of the algorithm.

3. DESCRIPTION OF DRAND
We first describe the algorithm in a distributed synchronous
message-passing model [16] where every operation runs in
a synchronous round and communication is reliable. We
discuss in Section 5 how to implement the algorithm in a
distributed asynchronous model where communication may
not be reliable. We describe the algorithm only for broadcast
scheduling and omit the generalization of the algorithm for
other conflict relations. We assume that all nodes know
their neighbors in a two-hop distance and the network is
connected. These issues are discussed further in Section 5.

At each round i, the algorithm performs following steps:

With a probability pi where pi is set to the inverse of
the number of contending nodes (including itself) that
have not decided their slots in earlier rounds, a node A
broadcasts a request message to its one-hop neighbors
if it has not decided on its time slot. When a neighbor
B receives a request from A, if it is not aware of any
of B’s one-hop neighbor (including B) that has sent a
request message earlier than A in the same round, then
it sends a grant message to A. If and when A receives
grant messages from its entire one-hop neighbors, it
decides on its time slot to be the minimum of the time
slots that have not been taken by its two-hop neighbors
before this round. Then A broadcasts a release mes-
sage containing information about the selected time
slot to its one-hop neighbors. When receiving a re-
lease message, a node re-broadcasts that message to
its one-hop neighbors. Let us call this “forwarded”
release message to be a two-hop-release message.
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A node which sent a request, but could not get grant mes-
sages from all of its one-hop neighbors in the current round,
simply gives up and repeat the above step in the next round.
When receiving a release or a two-hop-release message, a
node can update the number of contending neighbors in a
two-hop distance that have decided. This information is
used in setting the probability pi for the next round. We
note that the choice of probability pi is critical in the per-
formance of the algorithm which is discussed in the next
section.

4. CORRECTNESS AND PERFORMANCE
OF DRAND

The safety property of the algorithm (i.e., no two nodes
within a two-hop distance can decide on a time slot at the
same round) can be easily seen from the followings: (1)
a node has to receive grant messages from all of its one-
hop neighbors, (2) any nodes which are two-hop away from
each other, share at least one common one-hop neighbor and
(3) a node sends at most one grant message at each round.
This property ensures that when a node decides, it always
picks the minimum time slot that is not taken by two-hop
neighbors and no other nodes within two- hop neighbors can
pick the same time slot.

The liveness property of the algorithm is that every node
in the network eventually decides its time slot in a finite
time. To show this, it is sufficient to see that the proba-
bility that a node decides its slot is always larger than 0.
Intuitively, it means that since at each round, some (frac-
tional) node will decide and would not compete during en-
suing rounds, the number of contenders (for grabbing a time
slot) within a two-hop distance always decreases as rounds
progress. Therefore, the convergence of the algorithm is
guaranteed. Next, we show that the expected running time
for DRAND algorithm is O(δ) where δ is the maximum num-
ber of contending neighbors.

Let Ci be the expected number of contending nodes includ-
ing itself in a round i and we set pi to be 1

Ci
in a round

i. Then, the probability that a node with Ci contending
nodes (including itself) decides at a round i, Pri(assigned),
is greater than or equal to the probability that only one node
among Ci sends a request:

Pri(assigned) ≥ pi(1− pi)
Ci−1 (1)

Note that Ci ≤ δ +1 and if Ci becomes 1 (all of its contend-
ing neighbors decided slots), then Pri(assigned) = pi =
1/Ci = 1. The expected number of nodes deciding their
slots in a round i, Di, is CiPri(assigned), i.e.,

Di ≥ D̄i = Cipi(1− pi)
Ci−1 (2)

Note that when pi = 1/Ci, D̄i is maximized in the Eq. (2).
Thus, in order to maximize the speed of convergence, at each
round, we set probability pi to the inverse of the number of
contending nodes.

The next i+1 round has the expected number of contending

nodes Ci+1,

Ci+1 = Ci −Di = C1 −
i∑

m=1

Dm (3)

Putting pi = 1/Ci in Eq. (2), Di has a lower bound e−1 as
follows:

Di ≥ D̄i = (1− 1

Ci
)(Ci−1) ≥ e

−Ci−1
Ci ≥ e−1 (4)

From Eq. (3) and (4), we have

Ck ≥ C1 − ke−1 (5)

When Ck becomes less than 0, every node chooses its time
slot. Thus, if the number of rounds is larger than eC1, then
DRAND algorithm completes channel assignments. Since
C1 is bounded by δ+1, the expected running time of DRAND
is O(δ) rounds.

Let us examine the message complexity of DRAND. Ac-
cording to the algorithm, each node sends O(1) messages
per round. In a round, if a node is requesting, it will send at
most two messages, a request and a release - when it sends
a release message, it does not have to send a two-hop re-
lease since, by the safety property, no two contending nodes
decide at the same time. Also by the same token, a node
does not receive more than one release message in a round.
If a node is not requesting, then it will also send at most
two messages, a grant and a two-hop-release. Since a node
decides its slot in O(δ) rounds on average, a node sends at
most O(δ) messages on average before it makes the decision.

We now prove that the algorithm implements RAND from
the perspective of worst chromatic number. The intuition is
clear, but its formal proof is a bit subtle.

Theorem 1. For any execution Er of RAND, there exists
a corresponding execution of DRAND that produces the same
slot assignment as Er, and conversely, for any execution of
Ed of DRAND, there exists a corresponding execution of
RAND that gives the same slot assignment as Ed.

Suppose that S (= v1, v2, v3, ..., vn) is the sequence in which
the nodes are assigned the time slots in Er, and s(u) is the
slot assigned to a node u in the execution of RAND (Here,
n = |V |). We divide S into m non-overlapping partitions
P1, P2, P3, . . ., Pi, Pi+1, ..., Pm for m > 0 where Pi is
a subsequence of S, and the concatenation of P1 through
Pm yields S. No two nodes in each partition Pi(1 ≤ i ≤
m), conflict with each other. That is, S = P1P2P3...Pm =
v1, v2, v3, ...vn. The following lemmas are sufficient to prove
the first part of the Theorem 1.

Lemma 1. There exists an execution Ed of DRAND that
all the nodes in Pi (1 ≤ i ≤ m) decide their time slots in a
round i.

Proof: We will prove the lemma by induction. Consider i
= 1. It is possible that each node in P1 sends requests and
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any contending nodes of nodes in P1 do not send a request
at the first round. This guarantees that nodes in P1 decide
their own slots in the first round because no two nodes in
P1 are in conflict by the definition of partition. By the in-
duction hypothesis, suppose that there exists an execution
of DRAND in which nodes in Pi decide their time slots in
a round i (1 ≤ i ≤ h− 1). That is, P1P2...Ph−1 is the node
ordering up to round h − 1 in some execution of DRAND.
As the nodes in Ph have not decided in the earlier rounds
than h, according to the algorithm, there exists a non-zero
probability that only those nodes in Ph send a request in
round h. Since by definition, those nodes are not in conflict,
they decide on their slots in round h.

Lemma 2. In the execution Ed of DRAND, a node vi

(∀i, 1 ≤ i ≤ n) chooses the same slot as in Er (i.e., s(vi)).

Proof: By induction on i. Consider i =1. Since v1 is the
first node to decide in Er and Ed, it will choose time slot
1 in both executions. Suppose that all the nodes before vh,
(v1, . . . , vh−1) choose the same colors in both executions.
By the algorithm of RAND, if vh chooses s(vh), then s(vh)
must be the minimum slot that has not taken by all of its
conflicting nodes that have decided earlier than vh. Since
in both executions, vh will have the same set of conflicting
nodes that have decided before vh by Lemma 1, and by the
hypothesis, they have chosen the same colors in both execu-
tions. Therefore, the algorithm of DRAND will also dictate
vh to choose s(vh).

Lemmas 1 and 2 prove the first part of the Theorem 1. The
second part of the Theorem 1 can be proved in the similar
fashion and we omit its proof.

5. PRACTICAL ISSUES
5.1 Determining time slot size
TDMA requires clock synchronization. Typical clock syn-
chronization algorithms [17] offer clock drifts in the order of
microseconds or less. Also it is not uncommon to see sen-
sors equipped with GPS [18] which can give much more ac-
curate synchronization. To allow slack time for clock drift,
the slot time must be several times larger than the drift.
Typically, the slot size must be large enough to transmit at
least one packet. The typical packet size in sensor networks
are around 8-16 bytes [19, 17]. Given a 115 kbps network,
assuming a packet size of 20 to 30 Byte packets, this runs
around 1.4 ms to 2.1 ms. A slot size in order of 2 ms to
10 ms would be sufficient to handle the clock drift and one
packet. The slot size must also be kept small because a large
slot would result in larger delay.

Switching overhead is another factor in determining the slot
size. When a sensor turns on the radio, it incurs non-
negligible transition overhead. This overhead ranges from
20 µs [20] and a few hundred microseconds [21]. Thus, the
slot size must also be long enough to compensate for the cost

of the switching overhead. As this overhead time can over-
lap with the clock drift, we consider 2 to 10 ms a reasonable
slot size.

5.2 Running under asynchronous environments
In an asynchronous environment, it may be difficult to run
the algorithm in synchronous rounds as each node may start
at a different time and communication may also be unreli-
able. But in TDMA environments where clocks are well
synchronized within a bound, it is rather straightforward to
implement DRAND.

To ensure the reliability of message communication and avoid
deadlock due to message losses, the algorithm uses a three-
way handshake with retransmission: a request message is
always acknowledged by a grant message from a neighbor,
and a grant message is always acknowledged by a release
message, and request and grant messages are always retrans-
mitted until their corresponding acknowledgments arrive.

A round is set to a time period large enough to finish the
three-way handshake with some additional slack time for
retransmission. If a requesting node does not receive a grant
from the entire one-hop neighbors before one round expires,
then it gives up on this round by sending a release message
(with no slot assignment information), and moves on the
next round where it restarts with probability pi as described
in Section 3. On the other hand, when a granting node
does not receive a release, it has to retransmit the grant
message until it receives a release message. This is because
the requesting node may or may not decide on a slot in
the current round, and the granting node must know its
outcome to proceed. A granting node retransmits the grant
message to its requesting node even after the current round
until it receives a release message from the node. Therefore,
when receiving a grant message, even if a node decided and
sent a release message in the previous rounds or if it gave
up requesting in the previous rounds and is not requesting
any more in the current round, it must transmit a release
message to “release” the granting node. If a requesting node
receives a grant message that was triggered by a request sent
in earlier rounds, it can still use this grant for the current
round because the granting node must wait until it receives
a release message from the requesting node.

One drawback of this round-based scheme is that if the pe-
riod of one round is too small or too large, the assignment
may take a longer time to finish. Another way to implement
the algorithm in asynchronous environments is to have a new
message called reject. If a node B receives a request from A
when it has granted to another node C and is waiting for a
release, then B sends a reject message to A. Once A receives
a reject message, it gives up and sends a release (with no slot
assignment information). In this scheme, the program does
not run by a round and no requesting node gives up until it
receives a reject or grant. The correctness of the algorithm
does not change by the use of reject since the reject mes-
sages are used only to make requesting nodes give up earlier
so that they can retry. It will, though, increase the message
complexity by a factor of the number of one-hop neighbors.
(We implement this algorithm in our simulation presented
in Section ??.)
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Careful engineering on the message timing, however, avoids
a substantial number of message exchanges. To avoid col-
lision due to simultaneous transmission among neighbors,
we force each node to wait a random amount of time be-
fore each transmission of a message. This random waiting
helps reduce collision especially for grant or reject messages
as they are triggered by a request broadcast. Further, by
broadcasting and overhearing grant and reject messages as
well as request and release messages, we can suppress some
message transmissions: when a node B overhears a reject
or grant message destined to another node from a node A
while waiting to transmit a request, B can simply suppress
the transmissions of the request, and wait for a longer pe-
riod of time before it carries out the next request try. This
is allowed because the grant or reject message indicates that
its transmitter A has given a grant to some other node, so
it’s no use for B to send the request.

Our algorithm description has assumed that each node knows
all of its two-hop neighbors. In fact, the safety of the algo-
rithm still holds as long as one of any two one-hop neighbors
is aware of the other. This is because a node needs to re-
ceive a grant message from the other before deciding. As the
algorithm progresses, the two nodes become aware of each
other, they will decide on their own slots. In an unlikely
event that none of the two neighbors knows each other, the
algorithm needs to be restarted. We are not aware of any
algorithm that can work in such an event.

5.3 Reducing the frame size
We have assumed that the system fixes MaxSlot sufficiently
large at the beginning of the execution of the algorithm.
However, a large frame size leads to a long delay, as each
node has to wait for its slot in a frame. In a greedy coloring-
based technique such as RAND, it is sufficient to set MaxSlot
to the maximum number of nodes in conflict, δ+1 [22]. But
typically in sensor networks where conflicts occur because of
a radio range, the input network is very close to a unit-disk
graph [15]. In such networks, the number of slots allocated
by RAND can be far fewer than δ + 1.

In order to reduce the frame size, we can start DRAND with
a large enough MaxSlot and when we gather information
about the maximum slot number selected by the network, we
then set the frame size to that maximum slot number being
assigned. In large-scale networks, we need a scalable way to
accomplish this information gathering and propagation.

To gather and disseminate the frame size after deciding their
slot numbers, all the nodes wait until their one-hop neigh-
bors finish assignments. Then they synchronize to a prede-
termined periodic time (e.g., every minute by synchronized
clocks). Using MaxSlot as the frame size, they then broad-
cast the maximum slot number taken by their neighbors, in
their selected slot times. Transmitting during their own slot
times reduces the possibility of collision in case when some
nodes have not finished their assignments. If a node hears
a slot number larger than the one it currently knows, it re-
broadcasts the new number. Otherwise, it keeps quiet (i.e.,
suppresses it). After some predetermined time for the flood-
ing to spread the entire network, all the nodes synchronizes
to set their frame sizes to be the maximum slot number that
they have heard. Again, the synchronization can occur at

# of nodes Max. # of slots Run time(sec) Avg. # message
100 8 6.04 5.19
200 9 7.56 5.91
300 10 9.25 5.74
400 11 8.42 6.24
500 9 8.31 5.93

Table 1: DRAND performance results

the predetermined periodic time.

As it is possible that some node may learn about a new
maximum number even after it synchronizes to its previously
known maximum slot number, the periodic synchronization
of frames based on the global clock helps re-synchronize even
after nodes use a wrong frame size. To enable this, we set
the synchronization time to be always some multiple of a
slot size. The slot size, synchronization time, and MaxSlot
are among the global information that every node needs to
know before deployment.

6. DRAND PERFORMANCE EVALUATION
The main goals of the performance evaluation of DRAND
is to show that (1) the performance of DRAND is scalable
and independent of the total size of the network, and (2)
DRAND produces an efficient channel assignment (i.e., a
small worst chromatic number) with low overhead in a dis-
tributed environment.

First to show that the performance of DRAND is indepen-
dent of the network size, we test DRAND in various net-
work configurations with differing numbers of sensor nodes.
We generate five sensor networks of different sizes, rang-
ing from 100 to 500 nodes with an increment of 100 nodes.
The 100 node sensor network configuration is generated by
randomly placing the nodes in a 1000 x 1000m2 square. We
use 200 Kbps radio bandwidth and 100m radio transmission
range. The other configurations are generated by increasing
the number of nodes as well as the area of the sensor field
by the same factor as the increase in the number of nodes.
This scaling of the sensor field while keeping the radio range
constant keeps the average density of nodes approximately
constant.

We measure (1) the number of slots assigned (worst chro-
matic number), (2) running time, and (3) message complex-
ity, i.e., the average number of messages transmitted per
node during the run time of the protocol.

Table 1 shows the performance of DRAND for the five differ-
ent configurations. Since we approximately make density of
nodes constant, the maximum numbers of slots assigned are
approximately the same for all the tests. We note that the
running time and message complexity are unaffected as we
increase the number of nodes. This indicates that DRAND
is scalable to the total size of network.

To compare the performance of DRAND to that of the exist-
ing TDMA scheduling schemes, we implemented a modified
version of a well-known distributed TDMA scheduling algo-
rithm called Five-Phase Reservation Protocol (FPRP) [12]
in ns-2. FPRP is a very efficient TDMA protocol developed

5



Transmission ranges 100m 150m 200m 250m
Avg. # of one hop neighbors 2.7 5.82 9.84 14.54
Avg. # of two hop neighbors 4.84 12.9 24.8 36.82
Max # of two hop neighbors 13 30 42 61

Table 2: Characteristics of sensor fields (100 nodes
in 1000 x 1000 m2)

for mobile ad-hoc networks but can be adapted to provide a
static slot assignment. FPRP alternates between a reserva-
tion frame and a data transmission frame. In a reservation
frame, a segment of time slots is assigned to a set of nodes
for data transmission, and in the following data transmis-
sion frame, the nodes that are assigned a slot in the previous
reservation frame can transmit during their assigned slots.
We can adapt the reservation frame for our purpose as fol-
lows. During a reservation frame of FPRP, for a given slot,
each node that has not assigned a slot repeats a number of
five-phase reservation cycles to compete for that slot. After
a “sufficient” number of trial, FPRP assumes that a “suffi-
cient” number of nodes have been selected for transmission
during that slot. Clearly as more cycles are employed, it
returns a better channel assignment, but with an increased
running time. Unfortunately, in a distributed environment,
nodes do not know in advance how many reservation cycles
are required. Although this scheme may not be practical for
a static assignment required for our purpose, for a compari-
son purpose, we can test the algorithm with various numbers
of the reservation cycles. We denote FPRP-x to be the run
with x number of reservation cycles for each slot.

We generate the input topology to the algorithms by ran-
domly placing 100 nodes in a 1000 x 1000 m2 network. At
this time, we vary transmission ranges of each node from
100m to 250m to control the number of neighbors (i.e., den-
sity). We set 2.5ms to be the duration of each reservation cy-
cle. Table 2 shows the characteristics of the various network
configurations being tested. Table 3 shows the performance
results of DRAND and FPRP. As the density increases, we
observe that the number of slots, the message complexity,
and the running time increase. DRAND outperforms all
of (modified) FPRPs on the number of slots and message
complexity. For the most dense case (a 250m transmission
range), the number of slots by DRAND is far less than that
of FPRP (up to 34%). Note that any percentage reduction
in the number of slots can be translated into the same per-
centage improvement of the overall performance in TDMA
since it represents the size of frame in RASMAC. The run-
ning time of DRAND is comparable to that of FPRP-30,
and is less than FPRP-50. Considering that DRAND pro-
duces much more efficient channel assignments than FPRP-
50, this result is encouraging. The number of transmitted
messages in DRAND is far less than that in FPRP, which
implies much less energy consumption for DRAND.

7. RELATED WORK
Wireless MAC has been a subject of an active and broad
research [2], [1], [3]. In this section, we relate our work only
to MAC schemes for sensor networks. Stankovic et al. [5]
gives a good survey of them.

Sohrabi et al. [23] propose a distributed MAC scheme that

Max # of slots
FPRP-10 FPRP-20 FPRP-30 FPRP-50 DRAND

100m 12 10 11 9 8
150m 18 19 19 17 14
200m 31 31 30 34 24
250m 59 40 45 41 34

Average # of message transmitted
FPRP-10 FPRP-20 FPRP-30 FPRP-50 DRAND

100m 13.41 18.32 22.29 29.56 6.88
150m 35.01 41.15 48.7 52.69 18.37
200m 80.36 81.36 92.13 109.03 30.78
250m 185.73 132.81 163.4 160.32 52.06

Run time (sec)
FPRP-10 FPRP-20 FPRP-30 FPRP-50 DRAND

100m 1.91 4.63 11.03 17.03 7.32
150m 5.43 11.87 20.01 39.03 14.86
200m 11.47 26.23 33.87 61.03 32.53
250m 22.63 34.27 50.63 81.15 64.87

Table 3: The performance results of DRAND and
(static) FPRP

combines both TDMA and FDMA. Use of two different
mediums (time and frequency) reduces the chance of col-
lision, but it incurs high cost, as it requires essentially two
radio systems in each sensor. As SMAC [24] is extensively
discussed in the earlier sections, we skip the discussion here.
Guo et al. [25] gives a new CDMA scheme that adopts a
graph coloring similar to δ + 1 coloring algorithms by Luby
[26] and Johansson [27], which color any graph with δ+1 col-
ors where δ is the maximum number of two- hop neighbors.
TMAC [28] enhances SMAC by sending data in burst in a
shorter active period and allowing nodes to sleep if no signals
are detected for some period of time even during the sched-
uled active period. DMAC [29] also improves on the delay
problem of SMAC especially for data gathering applications
where routes follow a tree-like structure. By staggering ac-
tive periods between the parent and children, it achieves
low delays for some specialized networks (where routes are
predetermined). Although DMAC uses route information
to reduce delay, it is not clear how this information can be
obtained and how route adaptation can be performed. Both
TMAC and DMAC still carry the same drawback as SMAC
where they are route-oblivious and node outside route paths
waste energy via unnecessary idle listening.

Rajendran et al. [13] proposes a schedule-based TDMA
scheme called TRAMA that bears some similarity to our
RA-TDMA. Like RA-TDMA, TRAMA allows nodes that
are not transmitting and receiving to sleep opportunistically.
It requires each node to periodically transmit packet infor-
mation such as sources, destinations, and the size of packets
to transmit. Based on this information, a TDMA scheduling
scheme, called NAMA [11], is used to produce transmission
schedules for the next period. Due to its route awareness,
TRAMA saves a lot of energy, because each node knows
exactly how and when packets are transmitted. However,
this incurs a lot of delay because of scheduling overhead.
Their experiments indicate that its delay characteristics are
several orders of magnitude worse than SMAC.

TDMA scheduling is an extensively studied subject (see [5]).
Most of early work is centralized and has performance de-
pendency to O(n) where n is the total size of the network.
Recent distributed solutions [11], [12], [30], [10] improve
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the performance by removing global topology dependency.
NAMA [11] and FPRP [12] obtain dynamic channel assign-
ments where without a notion of frames, every time slot
is contended by some of the neighboring nodes. Dynamic
and topology independent assignments are inapplicable for
route-awareness since channels being used for transmission
by a node is not known a priori. NAMA uses a hash func-
tion to determine priority among contending neighbors. One
main drawback of this hashing based technique is priority
chaining; even though a node gets a higher priority in one
neighborhood, it may still have a lower priority in other
neighborhood. This chaining can build up to O(n), yielding
a very inefficient schedule. Thus the worst chromatic num-
ber of NAMA is O(n). SEEDEX [30] uses a similar hashing
scheme based on random seed exchanged in a two-hop neigh-
borhood. However, its worst case chromatic number is δ +1
as each node can pick randomly (instead of the minimum)
a channel among those not taken by the others. FPRP [12]
is discussed extensively in Section 6.

8. CONCLUSION
Existing TDMA schemes are not scalable. We claim that
this is not an inherent feature of TDMA, but rather an
artifact of inefficient schemes. In this paper, we develop
DRAND that gives a very efficient channel assignment with
only O(δ) time and message complexity on average.
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