
Reasoning About the Functionality of Tools and Physical
Artifacts

Ergun Bicici and Robert St. Amant
Department of Computer Science
North Carolina State University
Raleigh, NC 27695

Abstract. Tool use is an important characteristic of intelligent human behavior. Representing,
classifying and recognizing tools by their functionality can provide us new opportunities for
understanding and eventually improving an agent’s interaction with the physical world. Tech-
niques have been developed in a wide range of areas within artificial intelligence to represent
and automatically reason about the functionality of tools. This article surveys past approaches
to reasoning about functionality in the literature and gives an extended example to illustrate
the application of the techniques.
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1. Introduction

In popular thinking, tool use rivals natural language as the defining character-
istic of intelligent behavior. Mazlish writes (1993):

When humans first appear, they are already holding tools. Whatever the
evolutionary steps leading to this development, our fossil remains are of
human and tool together. Freed from pawing the ground, the released hu-
man hand can now hold a stone axe, that is, shaped stone, which obviously
gives an adaptive edge. The first reason for tools, then, is that they are part
of the process of natural selection, giving humans an advantage in their
evolutionary struggle.

From an artificial intelligence viewpoint, gaining an understanding of tools
has important implications. The development of habile (tool-using) agents
has been identified by Nils Nilsson as one of the key challenges in the future
of AI. Representing, classifying and recognizing tools by their functionality
can provide us new opportunities for understanding and eventually improving
an agent’s interaction with the physical world. InThe Society of Mind, Mar-
vin Minsky describes “bridge definitions,” as the best ideas that can bridge
between two different worlds (Minsky, 1986). We believe that work on the
recognition of tools for specific uses will lead to bridge definitions to facilitate
researchers’ efforts in bringing robots into the world of human interactions.

Defining tools as physical and functional objects is not as straightforward
as it might seem. If our definition is too specific, we may need to include
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a large number of exceptions; if it is too general, we may end up including
many things that we do not want. In the AI literature the example of a chair is
often used to illustrate these problems. One purposeful definition for a chair
is “something that you can sit on.” However, because you can sit on almost
anything, this definition is too general, including such things as floor, food,
and other people. At the same time, a structural definition such as “a chair
has a sit-able structure that is held between a backing structure and a legged-
support structure not much taller than the legs of a human” is too specific. It
excludes physical objects we might like to include, such as overturned pails
and appropriately shaped rocks. Sowa has described this difficulty in terms of
an “egg-yolk theory of word meaning” (Sowa, 2000). The basic idea, related
to prototype-based theories in cognitive modelling and linguistics (Lakoff,
1987), is that objects most central to a given concept will be found in the yolk
of the egg, while objects that are less similar will be in the white part [Figure
1].

We find this a very interesting approach that can help us learn starting
from the functional representations of sample objects in a domain. We can
state the basic approach as follows, using Sowa’s example from the domain
of chairs:

I– Start with a set of example objects (e.g. chairs).

II– Based on some level of granularity, find their common character-
istics and apply these to other objects to find similar ones with the
same functionalities.

III– If you run out of objects, search deeper into the objects space by
ignoring one or more defining characteristics.

IV– Filter these newly found objects according to the updated func-
tionalities and update all objects accordingly until saturation. Total
number of objects may decrease or increase.

The goals or purpose of the learner are important in answering questions
about the functional similarities of objects. To continue with the example of
a chair, we might ask the learner, which objects are most like a chair? We
are implicitly assuming that the functionality of the chair is uppermost in the
mind of the learner. However, if the goal is different (perhaps we want a chair
that can be used to wedge a door closed), then the learner may not be able to
make the relevant distinctions because the yolk of the egg is partly defined by
the goals of the learner.

Similarity, however, is difficult to characterize precisely. In the example
above, identifying an object as chair can depend on the goals of the observer,
the visual similarity of the object to other chairs, the ability of the observer to
generalize to past experience with chairs, and so forth.

Raftpa2.tex; 12/04/2003; 0:27; p.2



Reasoning About the Functionality of Tools and Physical Artifacts 3

Figure 1. Egg-yolk theory of the meaning of chair

As a starting point in organizing the potentially vast amount of information
that might be brought to bear on the interpretation of physical objects as tools,
we turn to a definition from Beck (Beck, 1980): “Thus tool use is the external
employment of an unattached environmental object to alter more efficiently
the form, position or condition of another object, another organism, or the
user itself when the user holds or carries the tool during or just prior to
use and is responsible for the proper and effective orientation of the tool.”
This definition comes from the literature on non-human primate tool use but
reflects human tool use as well. Definitions such as this raise a number of
important issues for artificial intelligence research; tool use and, generally
speaking, reasoning about the functionalities of physical artifacts depends on
the following factors and senses:

− Shape:For many tools, shape is a decisive factor in their effectiveness.
For example, screwdrivers are often sold in sets, in which individual
tools vary in length, thickness, and the shape of the driver head. Phillips
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head or slotted screws much be matched by screwdrivers with particular
shapes.

− Planning: Appropriate sequences of actions are key to tool use. The
function of a tool usually makes it obvious what kinds of plans it takes
part in. For example, a mechanic needs to choose the right tool for the
job and plan ahead which tools he will need and which tools he can use
in the absence of some others. Also, proper usage of tools often involves
appropriate application of forces in suitable amounts.

− Physics:For reasoning about a tool’s interactions with other objects
and measuring how it affects other physical artifacts, we need to have
a basic understanding of the naive physical rules that govern the objects.
We can classify many tools according to the principles of leverage and
lever types. For instance, hammer claws function as a type-1 lever, where
the pivot (fulcrum) is between the effort and the load and therefore the
direction of the force changes.

− Dynamics:The motion and the dynamic relationships between the parts
of tools and between the tools and their targets provide cues for proper
usage. In the case of a hammer, for effective use, we need to swing it
with a proper angle and velocity towards the target. By building systems
that observe and learn from this type of experience, we can find proper
and effective usage of physical artifacts.

− Causality:Causal relationships between the parts of tools and their cor-
responding effects on other physical objects help us understand how we
can use them and why they are efficient. For example, in the case of
a hammer, it has a graspable portion and a striking surface that, when
used, may cause a distortion on the objects that it hits. We think that
if the striking surface stays intact after the hit and can be “re-usable”
afterwards, then we can use that tool as a hammer.

− Work space environment:A tool needs enough work space to be effec-
tively applied. A hammer needs swinging room, a screwdriver needs
space for twisting. Finding enough room for a particular tool is closely
related to spatial planning and reasoning.

− Design requirements:Using a tool to achieve a known task requires
close interaction with the general design goal and requirements of the
specific task. For example, if we want to nail a carpet to the floor, we
may use a hammer, but we might instead design a system that involves
three hammers which enable us to nail in one third of the time.
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Table I. Approaches to understanding tool use by functionality

Non-interactive approaches: These models do not interact with the objects to realize their
functionalities. Most are applications in computer vision.

Functionality = Shape(Solina and Bajcsy, 1986; Vaina and Jaulent, 1991; Zlateva and Vaina,
1992; Rivlin et al., 1995; Kim and Nevatia, 1998; Li and Lee, 2002)

Functionality = Shape + Causality(Winston, 1975)

Functionality = Shape + Planning(DiManzo et al., 1989)

Functionality = Shape + Dynamics(Duric et al., 1996)

Functionality = Shape + Physics + Causality(Brady et al., 1985; Connell and Brady, 1987;
Hodges, 1992; Hodges, 1995; Brand, 1997)

Functionality = Common sense theories(Hayes, 1978; Davis, 1990; Davis, 1993; Davis,
1998)

Interactive approaches: These models interact with the objects to realize their functionalities.
Most are applications in robotics.

Functionality = Shape(Allen, 1990; Stansfield, 1992)

Functionality = Shape + Work Space(Wilson, 1996a)

Functionality = Shape + Physics(Far, 1992; Bogoni and Bajcsy, 1993; Krotkov, 1994; Green
et al., 1994; Bogoni, 1995; Stark and Bowyer, 1996)

Functionality = Shape + Physics + Causality(Cooper et al., 1995)

Abstract approaches: These approaches try to model the functionality of objects in general
terms, at a level of abstraction above manipulation and perception.

Reasoning about design requirements(Freeman and Newell, 1971)

Ecological reasoning(St. Amant, 2002; Amant and Horton, 2002)

Common sense reasoning(Lenat, 1996)

− Common sense:A good understanding of physical objects needs com-
monsense knowledge about how to use them and how to match tools
with objects that are available in the environment.

This list suggests that reasoning about the functionality of tools, as well
as recognizing and using tools according to their functionalities, requires
a cross-disciplinary investigation ranging from recognition techniques used
in computer vision and robotics to reasoning, representation, and learning
methods in artificial intelligence.

We can structure previous work on approaches relevant to tool use and
reasoning about functionality into two main categories: systems that interact
with tools and environments, and systems that do not. We further subdivide
these categories according to the dimensions of functionality they consider
and the complexity of the techniques they use. Table 1 summarizes combina-
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tions that have appeared in the AI literature. Some of these methods do not
necessarily aim to recognize the functionality of an object; sometimes their
sole aim is to recognize objects according to their functionalities or recognize
functionalities according to the objects.

Over the years, reasoning about functionality has attracted attention in
many disciplines, including (but not limited to) robotics, computer vision,
psychology, and artificial intelligence; with work originating in image recog-
nition and understanding, (spatial) reasoning, representation and learning.
In the remainder of this article we review a number of past approaches to
reasoning about functionality and to intelligent use of physical tools from the
literature following the basic organization given in Table 1. We examine these
approaches in categories of interactive and non-interactive systems and later
group them according to the dimensions of functionality and the complexity
of the techniques they credit in increasing the sophistication of their mod-
elling capability. Also, we discuss the difficulties that emerge and the issues
that need to be addressed.

We end with the application of a selection of these techniques to a few
representative examples of tools en route to building a tool-using robot-arm.
We believe that work in the recognition of tools for specific uses will lead to
bridge definitions that will enable researchers to bring robots into the world
of human interactions.

2. Non-interactive approaches

Many approaches to tool use, mainly those in the field of computer vision,
do not interact with objects and are limited to the non-contact perceptions to
realize the functionalities of objects. This vastly constrains the experiments
that can be done with them, since they are only observers that cannot have
any effect on the environment. Krotkov (1994) describes methods that are
limited to non-contact perception as superficial, in that they are sensitive only
to the surface of the object. Since they cannot directly measure properties
like density or friction, they are also indeterminate. Nevertheless there is
strong intuitive appeal to a non-interactive approach; experienced tool users
can often recognize the capabilities of a tool simply by inspection.

2.1. FUNCTIONALITY = SHAPE

Models in this category use only the shape of an object to recognize its func-
tionality, with the idea that the shape of an object specifies its functionality.
For example, a hammer can be defined as a T-shaped object with geometric
constraints like the (surface normal of the) head is nearly perpendicular to the
(surface normal of the) handle, and the handle is positioned near the center of
the head.
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Solina and Bajcsy (Solina and Bajcsy, 1986) represent generic objects by
parts, which are modelled by super-quadric volumetric primitives. Parts are
prototypes in that changes in structure and deformation in the shape of objects
are allowed. Each part has a set of features that are used for selecting models
from a model database. The selected models are then matched with the part
data geometrically. The recognition process deforms each part of the models
to match the corresponding object part and selects the model that achieves
the best match. This system relies on the assumption that the shapes of basic
object parts correspond to the function of the artifact.

Vaina and Jaulent (1991) recognize function by using shape and concept
representations, object categories, and requirements of actions. They pro-
pose a conceptual model of compatibility between objects and their usage
in hand actions, based on pattern matching. The level of conceptual or struc-
tural description determines the relationship between the object structure and
function.

Zlateva and Vaina (1991) provide mathematical support for the formaliza-
tion and computation of the shape structure and its representation for deriving
the possible functions of objects. They discuss axis- and boundary-based
methods for defining the parts and subparts of objects. Their method of de-
scribing functionality is based on a theorem from differential geometry, which
claims that any regular surface can be approximated in a finite environment
to some given accuracy by a paraboloid. Based on this observation, they
represent convex parts of objects using polyhedra, cylinders, ellipsoids, and
generalized cones.

Zlateva and Vaina attach example functionality-to-structure feature map-
pings by using the decomposition of the object into largest locally convex
surface patches (LCP). For instance, the functionality of stability and support
needs to have at least three points that define a sufficiently planar surface
that includes the projection of the center of gravity. The functionality of an
action capability such as “can pound” is recognized by a structure that has an
accessible part with a sufficiently flat surface patch; “can be rolled” requires
that the shape representation at the highest level is cylindrical.

The LCP method applies to 3D objects such as differently shaped wrenches,
different types of screws and bolts, and various hacksaws (Zlateva and Vaina,
1992). They note that the decomposed parts relate to specific affordances of
the object (see Section 4.2 for further discussion of this concept): a handle
to hold, an opening to grasp the bolt, a head to provide support for the case
of a wrench. They also claim that in order to know the use of an object, we
need to infer the proper position of the hands, the direction of the action, and
the pressure to be applied. These cannot be learned without spatial relations
between parts and subparts, which implies that the parts and subparts directly
relate to affordances of an object.
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Figure 2. Object representation according to functionality

Rivlin, Dickinson, and Rosenfeld (Rivlin et al., 1995) extend “recognition
by parts” shape recognition framework to “recognition by functional parts”
by matching functional primitives and their relations with volumetric shape
primitives and their relations. They aim to offer an object representation that
integrates function and shape, and address the problem of recovering shape
and function data from either 2D or 3D images. The representation of ob-
ject functionality and the matching scheme between two layers of primitives
(functional and shape) can be seen in figure 2.

In the shape layer, objects are constructed by using volumetric primitives
with spatial relations between them. In the functional layer, objects are rep-
resented in terms of functional primitives and relations. The shape primitives
are mapped to a set of functional primitives and the spatial relations are
mapped to a set of functional relations.

The shape representation Rivlin et al. used models objects using four
classes of volumetric shapes: sticks, strips, plates, and blobs. Their relative
dimensions distinguish these from each other. If a1, a2, and a3 represent
length, width and height respectively, these four classes can be defined as
follows:

Stick: a1 ' a2 < a3 ∨ a1 ' a3 < a2 ∨ a2 ' a3 < a2

Strip: a1 6= a2 ∧ a2 6= a3 ∧ a1 6= a3

Plate: a1 ' a2 > a3 ∨ a1 ' a3 > a2 ∨ a2 ' a3 > a2

Blob: a1 ' a2 ' a3

The functional representation assumes a set of pre-defined functional prim-
itives such as an end-effector and a handle in the case of a manipulation task
and a particular way that these primitives should be joined together.

Although there may be many shape primitives matching a functional prim-
itive (a many-to-one relationship) as in the case of chair legs to chair base, for
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simplicity, this approach is restricted to object models with one-to-one map-
pings. Also, by modelling objects by super-quadrics that support the recovery
of occluded parts, the approach supports reasoning about the functionality of
objects that are only partially visible.

The function-based object recognition procedure supports both bottom-up
and top-down recognition. In top-down fashion, the system looks for a given
object by mapping its functional parts to the image, whereas in the bottom-up
approach, the system recognizes the object according to the given functional
parts. This means that when working bottom-up, the object recognized can be
unexpected or unknown beforehand but while working top-down, we know
in advance what kind of object we are trying to recognize.

In Rivlin et al.’s approach, functionality is defined only in terms of the ob-
ject’s coarse volumetric parts found through region segmentation. Although
they claim that segmentation gives them the granularity needed for focusing
on local object features, this creates under-segmentation or over-segmentation
problems and it relies on opaque object surface textures. Even after realizing
that the relation between function and structure is many-to-one,1 limiting a
system to one-to-one matching seems inadequate.

Kim and Nevatia (Kim and Nevatia, 1998) conduct generic object recog-
nition experiments of desks and doors on real scenes for robot navigation.
The recognition of significant surfaces was achieved by using the orientation,
range of heights, shape, and size of edges in a real intensity scene image.
Their functional representations characterize objects by their significant sur-
faces and name the objects that help the system observe the functional role of
another object as “functional evidence.” For example, the functional evidence
of a door consists of objects that are seen through when it is open. Algorithms
for detecting a door frame and the legs of a desk are also given based on the
assumptions that surfaces are planar and objects are in a standard pose.

Li and Lee (Li and Lee, 2002) use accumulative Hopfield matching (AHM)
in automatic object recognition and learning for articulated object models
based on a small number of images. They accept model-based object recog-
nition as the most effective method for rigid objects but note that if the object
is articulated2, its appearance may change for different perspectives. They
claim that recognition methods based on difference between the actual image
and the model encounter problems for articulated images since the structure
changes with changing viewpoints.

Li et al. use many-to-one (homomorphic) attributed relational graph match-
ing for recognizing both the shape and the structure of objects in images. The
angle at the breakpoints of sub-images and the distance between breakpoints

1 Actually, the relationship is many-to-many since many functions can map to different
structures as well; for example, hammering functionality can map to the structure of a hammer,
a screwdriver, or even a shoe.

2 Object consists of rigid components
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are used as features for the attributed relational graph representation. Their
method randomly partitions the input image into many sub-images where
Hopfield networks are used to derive the isomorphism mappings between
sub-images and models. These results are later accumulated by further iter-
ation until a stable matching is reached. Li et. al. experimented with various
hand tools and keys and were able to find both the objects and the poses
they appear in the images. They claim that their method is extendable to
3D images as well. Li et. al.’s technique recognizes isolated, recurring, or
occluded images invariant to translation, rotation, scale, or distortion.

2.2. FUNCTIONALITY = SHAPE + CAUSALITY

These models use only the shape of an object as input but rely on causal
relationships and learn these relationships to develop a model of functionality.
An early example is Winston’s work (1975) on structural concept learning in
the blocks-world domain. To construct representations of the definitions of
concepts in the blocks world, Winston used semantic nets. It was one of the
first systems that learns a concept from examples, learns by imitation, and
learns by being told.

In this learning process, the system starts with a structural description of
one known instance of the concept, calling it the concept definition. Through
the learning process, this initial definition is amplified according to positive
and negative examples encountered. This definition is thus called the evolving
model. It is generalized by including descriptions of other instances of the
concept and specialized by excluding descriptions of near misses or negative
examples. A near miss is an example which is very similar to instances of the
concept but in fact it is not an instance.

The ANALOGY program (Evans, 1968) of Winston et al. learned the
relation between form and function by using semantic nets (Winston et al.,
1983). He also used Brook’s object modelling system based on generalized
cylinders, ACRONYM (Brooks, 1981), for physical representations. The goal
was to use functional definitions to identify physical properties and provide
an example system that can learn physical models using these functional
definitions (Winston et al., 1983).

The recognition process of this system involved different steps. At first, the
object is described in functional terms, which is translated into semantic net
links. For example, a cup’s functional description is something like “a cup
is a kind of object and open-vessel and it is stable and lift-able.” Semantic
knowledge of “stable”, “lift-able”, and “open-vessel” are then linked to a cup
through causal links. Then the system is given a physical description of an
input object in English, which is sent to the ACRONYM system for gener-
ating the physical model based on generalized cylinders. This model is later
extended with the addition of material properties such as weight and joint
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locations. These additional data are physical properties that are impossible to
obtain from a vision system. The system then tries to show that the functional
requirements are still met by the enhanced physical description and identify
the object. These functionally recognized objects’ physical models are later
learned in the form of if-then rules. Once these if-then based physical models
are learned, the system does not need functional requirements for recognizing
any new examples of the concept.

2.3. FUNCTIONALITY = SHAPE + PLANNING

DiManzo et al. (1989) regard functional reasoning as the ability to integrate
shape and function with the help of planning. They describe the difficulty of
separating the function of a tool from the plan it takes part in, since plans
and tools evolve together and differentiate with time. Their reasoning system
is based on a hierarchy of levels that interact with each other. At the top
level, they have a task and plan representation that uses semantic functional
descriptors (SFD) and functional experts (FE) for planning based on func-
tionality of objects. The object representation level uses FE’s and geometric
primitives to describe objects. The next level carries out function modelling
by describing some basic functions in terms of geometric primitives, and the
last level performs geometric reasoning by defining geometric constraints.

2.4. FUNCTIONALITY = SHAPE + DYNAMICS

These models use the shape, kinematic and dynamic properties of an object
(e.g. motion) to recognize its functionality while the system observes the
action that is performed with the object.

Duric, Fayman, Rivlin (1996) attempt to derive the function of an object
from its motion given a sequence of images of a known object performing
some action. The motion analysis results in several motion primitives and
these are compared with previously known motion-to-function mappings.
They use both the motion and shape of an object because many objects dis-
play similar motion characteristics in their use.

They constrain the many-to-many mappings between function and form
with the help of motion. Optical flow measurements are used to derive motion
information for different objects. The relevant motion is in object’s coordinate
system and its relation to the object it acts on (the actee). This relation is
important for establishing the mapping and creating a frame of reference.
Thus, the motion is derived independently of the place of action; whether
bread is cut on a table or on a wall, for example, does not affect the motion.
Duric et al.’s experiments deal with three cutting actions: jabbing, stabbing,
and chopping. They also consider two different functionalities of the same
object: scooping and hitting with a shovel and hammering and tightening
with a wrench.
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Duric et al.’s approach gives a promising path for learning through observ-
ing the motion of objects. A robot capable of seeing and reasoning about the
function of an object serving in an action can later recognize and apply other
tools that can handle the same function better than the observed one.

2.5. FUNCTIONALITY = SHAPE + PHYSICS + CAUSALITY

Approaches in this category are some of the most comprehensive in attempt-
ing to model the functionality of tools. They incorporate all of the factors
discussed up to this point: shape, physics, and causality.

Brady et al.’s system (Brady et al., 1985), “Mechanic’s Mate”, is intended
to assist a handyman in generic construction and assembly work and to reason
about tools. They investigate the interaction among planning and reasoning,
geometric representation of the shapes, and qualitative and quantitative rep-
resentations of the dynamics in the tool world. According to them, robots
need detailed geometric models while dealing with the real world, so un-
derstanding of geometry needs to be connected with the understanding of
naive physics of forces and causation. Also, by focusing on a higher order
geometrical representation and their functional interpretation, they obtain a
computationally more tractable system.

One of the planning tasks a mechanic needs ischoosing the right tool for
the job. The generic concept of a tool and functional and geometric variations
helps us distinguish one tool from another. If we want to drive tacks into soft
wood and if we have only a sledgehammer, then we might search for another
object with a flat section that can be used as a striking surface like the handle
of a screwdriver. This is very similar to finding the optimal solution for a task
with the given functionalities of objects in the environment. If we cannot find
the optimal tool for the task, we pick the second best tool that can handle the
same job.

Changing the direction of forces, torques, and impulses (lever and ful-
crum, pulley, cam) and devising plans to transmit forces between parts (links,
gears, lead screws) are two main problems that arise in Mechanic’s Mate. To
solve these, Brady et al. give the general description of sample tools and try
to apply them to the problem of peg-out-of-hole. They later give some of the
naive structural regularities of objects’ shape in the physical world and give
some generic knowledge about their usage such as “a saw blade is moved in
the direction of its edge.” With these heuristics, they also identify ways to use
these tools properly or broaden their applicability.

Connell and Brady’s system (Connell and Brady, 1987) learns shape mod-
els from two-dimensional objects by using a substantially modified version
of the ANALOGY program (Evans, 1968) that Winston et al. used (1983).
ANALOGY learns the relation between form and function by using semantic
nets that learned the generalized structural description from a sequence of
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positive examples by using 2D images. The system uses the technique of
ablation and learned concepts from disjunctions. Their primary motivation
is to understand the connection between planning and reasoning about tools
and the representations of the objects’ shapes or, in other words, the relation
between form and function.

Connell and Brady try to find innovative solutions to construction prob-
lems by using tools that were designed for other purposes in a novel way.
Instead of learning that a specific geometric structure is a hammer, their
system infers that something with a graspable portion and a striking surface
can be used as a hammer. They define these two functional concepts geo-
metrically in terms of shape descriptions. Such as, agraspable portionis
something that has a spine that is straight and elongated, and sides that are
only slightly curved and astriking surfaceis an end of a sub-shape that is
blunt and that is parallel to the spine of the handle. Connell and Brady taught
the functionality of a hammer by defining the grasping and striking require-
ments accordingly, and then showing it examples of graspable objects that
has striking surfaces. The program is able to improvise by taking advantage
of having a functional description of a hammer (functional improvisation).
Thus, given a hammering task without a hammer, they were able to match the
functional description of a hammer to any other available tool. A close match
to the geometric form of another tool implies that it can be used as a hammer
by grasping the handle matched to the graspable portion and striking the
matched striking surface. Also, Connell and Brady admit that with the struc-
tural recognition system they have, the descriptions of even simple shapes
typically comprise between fifty and three hundred assertions (Connell and
Brady, 1987). In the example given, they represent a tack hammer with 51
associative triples.

Hodges developed EDISON system (Hodges, 1992) in an effort to im-
itate the human device-using process: match context and object applicabil-
ity, experiment to see if the object will work, recognize behavior through
these experiments, and use experience to predict the function and behavior of
new objects. The system’ s goal was to represent and manipulate problem-
solving situations that require mechanical device use by applying behavioral,
functional, and intentional reasoning. EDISON supported mechanical impro-
visation by applying the notion of functional equivalence from mechanical
primitives (MP) of devices in different situations.

Later, he explored the relationship between the physical properties of an
object, its functional representation, and its use in problem solving with his
Functional Ontology for Naive Mechanics (FONM) model (Hodges, 1995).
FONM representation theory identifies causal relationships between device
structure, behavior, function, and use with its interdependent abstraction lay-
ers. Device statics representation describes the device at rest with states (ge-
ometric, material, and kinematic properties), regions (object shape, size, and
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location), relationships, and processes. Device dynamics explain what would
happen when the device is perturbed with behavioral primitives (motion, re-
strain, transform, store, and deform), and device pragmatics layer describes
how and why the device is used with device use plans. Hodges claimed that
using MP-equivalence and appropriate contextual knowledge might solve the
problem of mapping attributes to function with the vision research on object
recognition.

Brand (Brand, 1997) built a system using causal and functional knowledge
to see, understand, and manipulate scenes. Understanding a scene’s causal
physics demonstrates how scene elements interact and respond to forces and
shows the scene’s potential for action. Brand asserts that systems that use
inferences based on connectivity and free space to model a scene’s causal
structure display desirable properties such as intelligent control of the fo-
cus of attention and understanding of the scene’s potential for action and
manipulation.

2.6. FUNCTIONALITY = COMMON SENSE THEORIES

These systems try to model physical objects and their functionalities by using
the common sense knowledge of shape, physics, and causality together with
naive physical information. With naive physics, we mean the formalization
effort that Pat Hayes’s naive physics manifesto (Hayes, 1978) anticipated and
the efforts towards implementing physical reasoning at the common sense
level. This type of naive, commonsense physical knowledge that Hayes talks
about is needed to build practical systems that are able to reason and interact
with the everyday world around them. Also, DiManzo et al. (1989) mention
that the relation between shape and function is dependent on the dynamic
representation of the world, which can be given in terms of naive physics
models.

Davis has done considerable amount of work (Davis, 1990; Davis, 1993;
Davis, 1998; Davis, 2000) towards formalizing the physical world of objects
through commonsense naive physical knowledge and has asked an instance of
daily physical reasoning problems that led to solutions (Lifschitz, 1998; Mor-
genstern, 2001; Shanahan, 1998) for his famous problem of egg-cracking.

One of Davis’s efforts deals with formalizing the kinematics of cutting
solid objects (Davis, 1993). He shows the geometric aspects of various cutting
operations: slicing an object in half, cutting a notch into an object, stabbing
a hole through an object, and carving away the surface of an object. He also
gives a list of geometric relations between the shapes and motions of the
blades and targets. For example, he suggests that a blade needs to be suffi-
ciently thin and hard but he does not discuss its elasticity or sharpness. In one
representation, Davis (Davis, 1993) views the object as gradually changing
its shape until it is split; when the original object no longer exists and two
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(or more) new objects form. The alternative representation focuses on chunks
of material of the overall object. Until a piece from it is cut away, a chunk
exists and preserves its shape. Davis also shows that these two theories are
sufficient to support some simple commonsense inferences and algorithms.

Davis (Davis, 1998) claims that understanding the relation between the
shape of an object and its functions through physical reasoning depends on
spatial knowledge and spatial reasoning, which is difficult to express. For
example, even if we know the shape of a screw and understand the relation
between its shape and its functions, it is not easy to describe or explain
these without using a technical vocabulary that is incomprehensible for most
people.

As Davis suggests (Davis, 2000), real-time correct reasoning about phys-
ical systems is most of the time unnecessary because physical objects go
through a series of unimportant mode transitions. He gives predicting the
exact behavior of a rigid block falling down from a table as an instance.
Instead, he proposes a commonsense reasoner that is concise and close to
the mode of transitions in between physical states.

Davis’s work pulls together many of the separate ideas in the systems
discussed above in an attempt to impose a useful conceptual framework on
work in this area.

3. Interactive approaches

Non-interactive methods are very helpful in recognizing candidate objects
and disambiguating others. However, the resulting representations are not
entirely trustworthy, since the proper usage of an object is usually highly
dependent on interaction. The models described in this section, most of which
are applications in robotics, interact with objects to recognize their function-
alities. Haptic exploration, grasp planning, and physical perception through
observing changes in objects that are physically distorted are some of the
techniques used in this area.

3.1. FUNCTIONALITY = SHAPE

These models use only the shape of an object to recognize its functionality.
The shape of an object can be represented in different ways using different
knowledge such as the geometry of the object and the spatial data about it.

Allen’s work (Allen, 1990) tries to determine the attributes of 3D objects,
especially shape, through haptic exploratory procedures (EPs). He built an
intelligent robotic system that can recognize shape from touch sensing and
supported it with a vision algorithm for autonomous shape recovery. The
system uses previously found EPs that can reach a success rate of 96-99%
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in identifying object properties using haptic exploration. Allen used grasping
by containment, lateral extent and contour follower perception techniques to
obtain super-quadric surface representation, face-edge-vertex model and gen-
eralized cylinders of objects correspondingly. He interpreted each representa-
tion acquired from EPs as a constraint system that can be used to understand
the input scenes. Allen identifies the usage of multiple representations for
shape as a key component of any working system.

Stansfield (Stansfield, 1992) presented a model and an implementation
of a robotic haptic system based on human haptic exploration and informa-
tion processing. They used the exploratory procedures (EP) that were stud-
ied in previous psychological studies of human haptics such as using pres-
sure to grasp hardness, static contact for perceiving temperature, and unsup-
ported holding for measuring the weight. Furthermore, the robot contained
structured-lighting vision and an expert reasoning system performing object
categorization and grasp generation. The interaction and manipulation proce-
dures added to their robotic system enhanced the perception capabilities of a
robot.

3.2. FUNCTIONALITY = SHAPE + WORK SPACE

These models use the shape of an object with the workspace it requires for
working properly to recognize its functionality.

To apply a given tool, Wilson (1996a; 1996b) measured geometric ac-
cessibility constraints in the placement volume relative to the other objects
where the tool operates. He found out that determining whether a tool can
be applied in a given assembly state is an instance of the FINDSPACE3

problem (Lozano-Ṕerez, 1983). This spatial planning problem can be more
formally defined as:

Determine where an object A can be placed, inside some specified region
R, so that it does not collide with any of the objectsBj already placed
there.

For an object that is represented as a single point in configuration space, the
configurations forbidden to it due to other objects can be specified as regions,
which are called configuration space obstacles (Lozano-Pérez, 1983).

Use volumeis the minimum free space needed for a subassembly to apply
the tool and placement constraints determine where the volume needs to be
placed relative to the reference point, which is at the position of required tool
use. The placement of the use volume according to the placement constraints
is an instance of the FINDSPACE problem (Lozano-Pérez, 1983).

Through this work, Wilson (Wilson, 1996a) tries to answer questions of
the form, “Is there space for this tool to be used?” He also mentions that

3 Wilson names this problem as the FINDPLACE problem.
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in a real-world usage of a tool, there will be more issues that needs to be
addressed, such as finding the space required for a human or robot arm to
grasp the tool, choosing the best tool among feasible ones, finding an optimal
tool-level plan, designing new tools, and dealing with changes that might
allow a tool to be used.

3.3. FUNCTIONALITY = SHAPE + PHYSICS

These models use the shape of an object plus the rules of physics that gov-
ern their interactions with each other and the environment to recognize its
functionality.

Krotkov (1994) tries to perceive material properties by actively contact-
ing and probing them and later sensing the resulting forces, displacements,
sounds. This kind of perception ability is essential for a robotic system to
understand not only where the objects are and how they look like but also
what they are made of.

The senses of a robot are divided into two groups: non-contact and con-
tact based sensing. Krotkov claims that although there are many non-contact
sensing methods available (such as surface luminance for finding coefficient
of friction or using thermal images for estimating the granularity of objects),
determining the material composition of an object in a reliable way requires
contact with it. Similarly, humans practice this physical exploration by press-
ing on, poking, tapping on, hefting, squeezing, shaking, rubbing or striking
on the objects.

Krotkov observes that non-contact methods are superficial because they
are sensitive only to the surface of the object and indeterminate since they
cannot directly measure properties like density or friction. He extended the
acquisition of material properties by procedures like “whack and watch”,
“step and feel” and “hit and listen.”

According to Krotkov, perception of material properties will benefit rea-
soning about object functionality and also other potential applications. With
the material properties that can be added to the reasoning process, we can
recognize that a hard-heeled shoe could be used as a hammer.

Stark and Bowyer’s GRUFF (Stark and Bowyer, 1996) is a function-based
object recognition system that recognizes objects by classifying them into cat-
egories that describe the functionality they might serve. It stands for “Generic
Representation Using Form and Function” and uses boundary surface de-
scriptions to derive previously defined knowledge primitives such as relative
orientation, dimension, stability, proximity, clearance, and enclosure.

The system is based on computer vision techniques for recognizing func-
tionality, and tries to achieve interactive recognition ability by observing the
deformations that happen on objects. In the last section of their book (Stark
and Bowyer, 1996), Stark and Bowyer demonstrate how to acquire physical

Raftpa2.tex; 12/04/2003; 0:27; p.17



18 Ergun Bicici and Robert St. Amant

and shape properties by analyzing the simulations of object interaction using
an object dynamics modelling system named ThingWorld (Pentland et al.,
1990). The interaction was achieved by observing the deformation of objects
made of rubber or oak from chair category while forces were applied. In
a later work (Stark et al., 1996), they give the sequence of steps involved
in function verification through planned interactions. First, they change the
orientation of the object and check for stability. If the object passes this test,
they apply force and then test again. Further tests are done by applying force
or changing the orientation and checking for deformation afterwards until the
association measure for the object shape stabilizes below (object failed the
test) or above (functionality is verified) a threshold.

The system uses ThingWorld (Pentland et al., 1990) to model the dynam-
ics of the objects and to generate planned interactions to verify the suggested
functionality of objects. Function-based recognition is used to recognize ob-
ject categories and their functional requirements. This provides both a high
level abstraction for representation and an association of function to the struc-
ture.

GRUFF’s knowledge primitives are based on geometrical, causal and phys-
ical constraints such as a chair should be able to maintain functional orienta-
tion after being seated. To acquire these properties, they use simple operators
such as apply force and observe deformations, which results in apseudo-
interactivesystem. However, these type of physical constraints exclude chairs
that change their shape whenever they are seated such as a beanbag chair.
But still, this simple operator can provide as an example of how we need to
recognize the functionalities of physical objects in their physical world.

Functional properties are defined in terms of knowledge primitives. For the
functionality of “provides X handle”, testing the dimensions and the clearance
near the object is needed. Green et al. take a comparable approach (Green
et al., 1994), in which kinematic properties are investigated where the corre-
sponding functional representation for scissors and chairs is given.

Bogoni (Bogoni, 1995) adds contextual information to the previous ef-
forts. He defines functionality as the application of an object in a specific
context for the accomplishment of a particular purpose. Thus, he considers
the modality of the operation, which is reflected by the task description and
context of application. The modality is the result of using different sensors
for the recovery of material and functional properties, where uncertainty and
noise can be added from sensors. In his work, models try to reason bottom-
up by acquiring the properties of the objects that are investigated and by
extracting the functional relations between parts. This decreases the need to
make assumptions about object properties. Also, by focusing on the acquisi-
tion of basic properties from analyzing functionality, Bogoni aims to create a
repertoire of primitive functional procedures.

Raftpa2.tex; 12/04/2003; 0:27; p.18



Reasoning About the Functionality of Tools and Physical Artifacts 19

Bogoni and Bajcsy (1993) implemented a robotic system that recovers
shape and material properties and observes the interactions, to establish the
functionality of a tool. In the system, there is a compliant wrist that explores
tools based on their features. The description of the task is formalized using a
discrete event system (Bogoni and Bajcsy, 1994). There are two sensors used:
force and end-effector position sensor. Later Bogoni and Bajcsy (1995) intro-
duce a formalization of a representation for functionality that is recovered
through classes of force profiles identifying the dynamics of the interaction.
They did not use the shape of the object itself for the recognition of the
object prior to interaction. They investigated manipulatory interactions that
emphasize the verification and recovery of the material properties of an ob-
ject, using exploration techniques. One of those interactions, piercing, was
tested to reveal if the object is capable of piercing.

They claim that generality of the functionality is dependent on the prop-
erties assumed. Therefore, inclusion of various properties in object represen-
tation both benefits the acquisition of properties and addresses the aspects
of functional recognition and representation. Although their approach is lim-
ited to tools employed in simple manipulatory interactions, they are able to
extend the functionality research by (1) using different sensor modalities for
the acquisition of properties, (2) incorporating various material properties as
part of the representation, (3) using interaction for verifying, acquiring, and
describing the functionality of an object, and (4) extracting functional features
for future interactions and functional recognition.

Far (Far, 1992) introduced a functional reasoning technique called Qual-
itative Function Formation (QFF) that viewed system structures as an or-
ganization of finite number of interacting component pairs and derived the
function from qualitative behavior. QFF assumes that at least a pair of com-
ponents is required to interact functionally (functionality in item pair) and
interprets a function either as persistence or as an order in the sequence of
qualitative states (functionality in state transition). The technique extends
some qualitative models by including temporal constraints and physical in-
teraction.

3.4. FUNCTIONALITY = SHAPE + PHYSICS + CAUSALITY

Models in this category use representations of dynamic physical relationships
and shape to recognize the functionality of tools. The recognition process is
enhanced by the consideration of causal relationships between objects, such
as the predictable or observable effect on some target object by carrying out
an action with a tool.

Cooper et al. (Cooper et al., 1995) describes a set of programs that attempt
to construct causal explanations of scenes by focusing onwhythe scene is the
way it is andhowan agent can interact with it. This causal explanation later
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forms a basis for functional description of scene elements. They focus mainly
on the causality of support, the causality of objects in static equilibrium. They
also show how causal descriptions can be exploited to physically interact with
the scene. The solutions they offer can be applied to many other problems
including occlusion, focus of attention, and grasp planning.

They see function asa match between tool and intentionand believe that
function arises when the physical configuration of an object permits the object
to be used to satisfy a goal. Causal reasoning can evaluate this match by
understanding both physical and intentional relationships.

They created three different systems. BUSTER (Blocks UnderStander That
Explains its Reasoning) explores and explains blocks world and Fido “sees
around” occlusions by using the knowledge of static stability and segmenting
scenes of link-and-junction objects. The MugShot system understands how
and why to interact with and pick up objects with handles.

3.5. DISCUSSION

Generally speaking, relying on only the shape of an object for reasoning about
its functionality is limited. The interaction between tools and humans is af-
fected by how we use them, and the proper usage of an object is usually highly
dependent on interaction. Objects can have different potential functionalities
and we can only be sure about which one they are using by observing their
behavior. Stahovich, Davis, and Shrobe (1993) see this problem and attempt
to come up with a large-scale, fundamental ontology for mechanical devices
that is organized around behavior, not structure. Even if they give the struc-
tural definition of a lever as “a rigid bar with a pivot that can rotate,” unless
the bar is used to amplify the force, they accept it as a beam, not a lever. They
also claim that a causal explanation is needed for differentiating between the
actual and the possible behavior of a tool.

It is not clever to try to recognize tool functionalities by just looking at
tools; since we do not use them by looking (except in the case of a mirror).
An agent that is interested in learning how a tool can be used either needs to
look for the changes it can achieve in the physical world by using the tool or
be aware of the rules governing the creation of those tools. This way, tools
are no longer named specifically as hammer but asa-tool-that-can-increase-
my-abilities-of-striking-objects- by-using-the-governing-rule-number-X.

Therefore, we need to search for where these tools come from and what is
the underlying functionality that we achieve while using them. For example,
we can think of a hammer as a tool that changes the direction of the force
and the momentum applied to it and we can figure out that its functionality is
based on the basic functionality of a lever4. The human body has itself many

4 (from www.m-w.com): a rigid piece that transmits and modifies force or motion when
forces are applied at two points and it turns about a third; specifically : a rigid bar used to exert
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levers; for this reason classifying tools according to their lever types seems
appealing.

The criterion of success we are going to accept for a system is also a
question of concern. Given that we have a system that can reason about func-
tionality, how do we know that it is functionally aware enough? What are the
adequacy constraints? Can we say that a system that can use a screwdriver as a
hammer is functionally more intelligent than a system that suggests the usage
of a towel instead of a wrist pad? Since there may be various dimensions
along which some reasoning technique that a system is based on, becomes
limited, and since one can always prefer one system to another given better
performance along a dimension, defining a precise notion of the degree of
functional intelligence for different systems may be difficult.

4. Abstract approaches

Finally some models try to realize the functionality of objects without any
preference towards interactive or non-interactive systems. These tend to take
a more generalized view of the problem, abstracting above the level of per-
ception and motor action, while still attempting to represent the core aspects
of the tool-using process.

4.1. REASONING ABOUT DESIGN REQUIREMENTS

According to Freeman and Newell (1971), humans ubiquitously tend to rea-
son in terms of functions. We name things according to their functions: a
machine for washing clothes is called a “washing machine.” In their paper,
they are not really interested in recognizing objects in terms of their func-
tionalities but designing objects and abstract systems like computer programs
that have the desired functions. They give a qualitative model for the task of
designing in terms of functions.

In the given model, they assume a set of propositions for the set of struc-
tures and a set of functions of a design task environment. They talk about
functional connections that occur between structures that provide functional-
ity to each other and how a new structure can be constructed from a set of
structures. The propositions they make can also serve as a model for reason-
ing about functionality of object parts and how structures can be combined
into new structures.

They try to answer the generic design problem:

Given a set of structures and their functional specifications, construct a
structure with desired functional properties.

a pressure or sustain a weight at one point of its length by the application of a force at a second
and turning at a third on a fulcrum.
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They examine the aspects and the framework of automated design systems
with an example of qualitative design: a symbol table in computer systems.
The design methods that can be used can be summed in two different groups:
top- down or bottom-up methods. In this context, top-down methods start
with the desired functions and try to find the structures that provide them,
binding the design as little as possible. Bottom-up methods start with the
structures available and construct larger structures until the desired function-
ality is reached. Freeman and Newell’s work (1971) is the first system that
attempts to explore the field ofautomated functional reasoning.

4.2. ECOLOGICAL REASONING

This work aims to model physical objects and their functionalities by using
the common sense knowledge of shape, physics, and causality together with
naive physical information. In addition to that, they try to interact with objects
with the belief that interaction is an important part of functionality.

St. Amant’s ecological perspective (St. Amant, 2002; Amant and Horton,
2002) and their efforts of building a robotic system that can reason about the
functionality of tool use is the only example in this area that we know of.
St. Amant describes an explicitly ecological approach to understanding the
nature of tool use. He cites the research in non-human primate cognition that
emphasizes behavior in defining tool use:

Tool use involvesdirect action. A striking action with a stone, with the
goal of cracking open a nut, is an example of tool use. Tool use oftenamplifies
existing behavior. Using a stick to extend one’s reach is a common aspect of
tool use in experimental settings and in the wild. Tool use isgoal-directed
activity. Sometimes desirable ends are achieved through the incidental or even
accidental use of an object, which is not considered a tool in that case. Tool
use involveseffective behavior.

St. Amant also gives a taxonomy of tools according to their intended
usage:

− Effectivetools produce a persistent effect on materials or the environ-
ment, such as hammers, saws, screwdrivers after tool use is terminated.

− Instrumentsprovide information about materials or the environment.
Instruments include measuring tapes, calipers, microscopes and mag-
nifying glasses.

− Constrainingtools constrain or stabilize materials or the environment
for the further application of effective tools. Examples are clamps and
rulers.
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− Delimiting/demarcatingtools demarcate the environment or materials,
as when a carpenter uses a pencil to mark a piece of wood, or when a
designer uses pushpins or labels on a drafting table.

Many tools fit into different categories at the same time. A pair of pli-
ers, for example, constrains the material it grips, but also can be used as an
effective tool, to pull on or twist the material.

St. Amant later gives a taxonomy of tools according to their ecological
nature: Tool use can beopportunistic. Tools can be used for purposes not
intended by their designers and conversely, an object can be used as a tool
even if it was not designed as a tool initially. Toolsprovide rich cues about
their appropriate use. The affordances of a tool become obvious in its use.
Tool useinvolves establishing and exploiting constraints(between the user
and the tool, the user and the environment, and the tool and the environment).

One might wave a saw or a hammer in the air, for example, or twist a
screwdriver randomly, as a young child might do. Effective use, however,
requires the establishment of a constrained relationship between the tool and
the material it acts on.

Tools haveaffordances: designed relationships between their physical/dynamic
properties and the properties/abilities of their intended users. Physical af-
fordances, closely related to constraints, are mutual relationships that in-
volve both the agent and the artifacts it manipulates (and the environment
it operates).

The constraints that are relevant in the use of a tool fall into different cat-
egories, which would include the following:Spatialconstraints describe the
spatial relationships associated with a tool and its use in an environment. For
example, to use a hammer one needs enough room to swing it.Physicalcon-
straints describe physical relationships in the use of the tool, such as weight or
size.Dynamicconstraints describe movement- or force-related properties of
tool use. For example, one needs to swing a hammer with appropriate speed
in its use.

4.3. COMMONSENSE REASONING

Commonsense reasoning is a promising technique that concentrates on for-
malizing and finding computational models of how humans reason and think
in a sensible way. Minsky (Minsky, 2000) believes that users have powerful
“commonsense” knowledge that helps them correctly predict the behavior of
functional objects on the screen. He claims that:

“The secret of what X means to us lies in how our representations of X
connects to the other things we know.”

He also mentions the need for classifying objects according to what they can
be used for or which goals they can help us achieve (Minsky, 1991).
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CYC (Lenat, 1996) is a very large, long-term effort to formally represent
commonsense knowledge we have in almost anything. The knowledge stored
in this expert system in commonsense worldis shallow and wide and does
not go into many physical details. So, its definitions can be categorized as
high-level purposeful definitions.

4.3.1. Representation in CYCL
CYC’s high-level purposeful definitions are organized around micro-theories
(Mt) that bundle a set of assertions based on (1) -a shared set of assumptions
on which the truth of the assertions depends, or (2) -a shared topic. EachMt is
a set of abstract concept definitions and assertions for representing a domain5

in CYC. Specialized micro-theories depend on more general micro-theories
from which they inherit assertions.

OpenCYC6 is the open source version of CYC technology. The knowl-
edge base available is very limited. A specialized micro-theory of human
activities is the only context that the use of some tools is mentioned. The
knowledge is hardcoded, and thus the abilities of tools are limited to what
they are supposed to. The “HumanActivitiesMt” assumes that the people are
rational but not innovative in using tools; tools are used for their intended
purpose and functional improvisation such as using a credit card to unlock a
door is not represented.

In the current CYC system, CycL (Lenat, 1996) is used as the represen-
tation language. This is an extended version of the language of first-order
predicate calculus (FOPC). We implemented the representation of tool use
in CycL according the ecological perspective described in Section 4.2 as
follows:

(and
(requiresForRole ?TU ?A deviceUsed)
(or (isa ?A PurposefulAction) ;goal-directed activity

(isa ?A ActionOnObject)) ;direct action
;amplifies existing behavior
(requiresForRole ?TU ImprovementEvent deviceUsed)
(isa ?Tuser Animal)

(thereExists ?Tuser (beneficiary ?TU ?Tuser))
)

We created a ToolUse micro-theory by using the OpenCYC system that
is running on a Linux OS. However, the system’s inferential abilities are
restricted in the current version, which prohibits us from deriving conclusions

5 Technical sense of context
6 At www.opencyc.org.
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that involve multiple micro-theories and their physical constraints. For exam-
ple, if we are to achieve functional improvisation by using CYC, we need
to be able to infer that an object that has a graspable portion and a striking
surface can serve as a hammer.

Even though inferential problems are solved in the newer releases of Open-
CYC, its compatibility with a robotic system that will interact with a physical
environment as well as its efficiency in transmitting and executing those in-
ferences in a timely manner is questionable. Also, the inability to make any
additions to the inference engine is another concern.

There are still a couple of problems that face a scientist using CYC. To
represent any concept in OpenCYC, we first need to find the micro-theory
that it belongs to. Therefore, we need to have an idea of what each micro-
theory is about, what they contain and what are the conceptual relationships
between them. If you consider the amount of knowledge encoded, it becomes
more obvious that you need considerable amount of time to realize where
your concept belongs to.

After this first step, you may conclude that the system does not have
enough knowledge to represent your concept (either because it is really not
encoded yet or because you have not found the possible7 micro-theory) and
end up creating your own; just as we did in the case of ToolUse. Another
problem occurs when we try to define each of the ecological requirements of
tool use since they contain subjective concepts like “beneficial.”

In addition to that, the micro-theories that we use (either for the whole
concept or its subparts) may be either more general or more specific than what
we want to cover. So, to overcome the mismatch in the semantic granularity
of these definitions, you end up creating your own micro-theories by using
more and more basic ones. It is very likely that you are either forced to use
cyclic definitions or resolve to infinitely deep chain of micro-theory creations.

In the end, our previous egg-yolk theory of the meanings about the func-
tionalities of objects end up being vague and the only way to know that you
cover the objects in your micro-theories is by creating them as instances in
an appropriate (“impossible”) micro-theory. So, you end up doing “armchair
engineering” rather than conducting empirical experiments in your physical
world.

7 Not correct since we believe that it is nearly impossible to find the correct micro-theory
for your concept. This is because the concepts already in the system and the one you want
to represent do not match each other. Even if they do match and it is represented the way
you want to use it, it may be implemented or interpreted in a different way. Also, since the
knowledge base of OpenCYC is not complete and may have discrepancies with the original
CYC, which is proprietary, the trust in it is questionable.
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5. Issues

There are other issues that still needs to be addressed about function based
reasoning. We will try to address these as much as we can here.

5.1. FUNCTION-BASED REASONING: CONSTRAINT PROGRAMMING OR

PLANNING OR COMMON SENSEREASONING?

Function-based reasoning can be seen as a constraint satisfaction problem
where functional descriptions constrain structure or structure constrains func-
tional possibilities. The mappings available between form and function are
actually many-to-many and recovering an object by matching previously rec-
ognized ones’ functionalities experience combinatorial growth. Model-based
recognition has been thought as a solution.

Another view can consider reasoning about functionality as a planning
module that is composed of helper procedures for recognition. In this view,
the functional description is done at a higher level, discarding the complete
representation. A complete representation of physical world could attempt
to represent the forces governing the universe and reach from gravitational
forces between planets to forces between chemical compounds and atoms.

Freeman and Newell (1971) claim that the uniformity of functional rea-
soning across all domains results in amodel-independentreasoning technique
that adapts according to the needs of the reasoner, not the domain. Humans
find many ways to represent problems and knowledge so that if one method
fails, they have the ability of switching between them. Minsky (2000) ac-
cepts commonsense reasoning as a domain-independent, adaptable scheme
that switches between representations instead of looking for the best. In this
sense, function-based reasoning is similar to commonsense reasoning.

As figure 3 implies, reaching the optimum tool use may sometimes be
like finding a needle in a haystack. Selecting the most effective reasoning
technique in tool use, or relying on a combination of previous techniques, is
one of the issues that needs further investigation.

5.2. TOP-DOWN OR BOTTOM-UP?

The functional recognition process can be broken down into two types of
methods: top-down and bottom-up. This division assumes that the problem
we are facing is a search problem. Given the functional classifications, top-
down methods start with the desired functions and try to find the structures
that provide them, constraining the model as little as possible. Bottom-up
methods start with the structures available and construct larger structures until
the desired functionality is reached. That’s why in the bottom-up methods, the
object recognized is unexpected or unknown beforehand but in the top-down
approach, we expect what kind of object we are trying to recognize.

Raftpa2.tex; 12/04/2003; 0:27; p.26



Reasoning About the Functionality of Tools and Physical Artifacts 27

Figure 3. Needle in a haystack

Tools as well as objects in general can be recognized and reasoned about in
a top-down fashion, based on conventions for their construction and design-
ers’ intentions for their use. For example, if an amateur mechanic is working
under his car and has no appropriate tools for a hammering task within reach,
the nearest object to hand can become a hammer. The assessment that an ob-
ject can be used as a hammer is based on its heft, its grasp-ability, its solidity,
and so forth, rather than on the imposition of an external categorization.

Clearly tools can be recognized and reasoned about in a bottom-up fash-
ion, based on their physical properties and potentially on the observation of
their use. For example, hammers conventionally have a long handle and a
protruding head with a flat surface. A carpenter in search of a hammer on his
workbench does not need to reason about the functionality of all the objects
within sight, but instead can simply search for objects that have the general
visual appearance of a hammer.

Consequently, the dilemma boils down to the question of: Are we try-
ing to match some known models that are supposed to give some known
functionalities to our objects, or are we trying to find those models that may
support some functionalities we seek? How much spatial reasoning do we
need to come up with to satisfy the criterion of functionality? As is reflected
in much of the preceding work, effective reasoning about tool use must rely
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on a combination of top-down and bottom-up reasoning. How to combine
them effectively also remains for future research.

5.3. GESTALTIAN “ DEMAND CHARACTER” VERSUSGIBSONIAN

“AFFORDANCE”

Psychologists have two different perspectives about the ecological existence
of objects. On one side, they claim that the use of objects can be directly
perceived as it is supported by the idea of demand character of Gestaltians.
Objects have a demand character that demands an action and rejects others.
On the other hand, they believe that the properties of an object can indirectly
determine how it can be used with the idea of affordances described by Gib-
son (1979). The affordances of an object are the properties that it offers and,
the values and meanings of these to the environment can be perceived by
looking at what it affords.

The difference between these two approaches can be more obvious with
an example. A Gestaltian will think that a hammer is meant for hammering
whereas a Gibsonian will claim that with its striking surface and its graspable
handle, a hammer affords hammering.

5.4. FRAME AXIOMS AND THE FRAME PROBLEM

Dynamic state of the real world forces a robot to model all of the actions that
can modify its own or its environment’s state. This is called the frame problem
since we are monitoring the environment through the window or frame of all
of the actions we think that will effect the conditions (relevant actions), which
will result in a reaction in the robot’s sense-plan-act cycle.

Frame axioms describe how the world stays the same rather than how the
world changes. Each predicate that may change its value over time needs
a successor-state axiom, which lists all of the possible ways the predicate
can become true or false. However, it may be hard to explicitly state all of
the possible ways a predicate will hold true. In real world, it is difficult to
define the circumstances under which an action is guaranteed to work (the
qualification problem(McCarthy, 1977)). For example, grasping the handle
of a tool may fail if it is slippery or electrified or too hot or nailed to the table.
If we fail to include all of these possible situations, the robot can generate
false beliefs.

The ramification problemcan also occur, when we cannot predict the exact
consequences of actions. For example, lifting a tool from where it was staying
can result in an unbalanced weight distribution that can cause a collapse of
the structure that was supporting the tool before.

To overcome this type of complications, we can assume that we are in a
closed world and all of the things that are not explicitly changed will stay the
same (and all of the things we do not know about are false).
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5.5. REPRESENTINGFUNCTIONALITY OF OBJECTS

An unbiased view of functionality needs to be a domain-independent solution
to many recognition problems. This leads to the question of how functional
representation should be. Davis et. al. (Davis et al., 1993) listed five important
and distinct virtues of knowledge representation that sometimes conflict in
their goals. We will reorder them here to match their importance in terms
of functional representation (FR). The original ordering in Davis et. al. is as
follows: 3-2-1-5-4.

1. FR as fragmentary theory of intelligent reasoning:

2. FR as a set of ontological commitments:

3. FR as a surrogate:

4. FR as a medium of human expression:

5. FR as a medium for pragmatically efficient computation:

6. Summary

Representing, classifying and recognizing tools by their functionality can
provide us new opportunities for understanding and eventually improving an
agent’s interaction with the physical world. Throughout this paper, we have
seen examples of approaches to functional reasoning in a general framework
of tool use. We have collected the work in this area in categories of interac-
tive and non-interactive approaches and later grouped them according to the
dimensions of functionality and the complexity of the techniques they credit
in increasing the sophistication of their modelling capability.

Non-interactive systems are observers that do not interact with the physi-
cal artifacts or the environment to realize object functionalities. A number of
these systems use only the shape and structure and some extend these with
learning and planning; a few use motion in addition to shape; several add
physical and causal rules and some consider commonsense knowledge for
recognizing objects with their functionality.

On the other hand, interactive systems interact with the objects and ob-
serve changes using techniques like haptic exploration, grasp planning, and
physical perception to realize object functionalities. Similarly, a number of
these approaches use only the shape and structure and some extend these by
adding work space requirements; several use physics in addition to shape and
some add causal relations.
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There have been a couple of general approaches that do not specify any
preference towards interactive or non-interactive approaches. Freeman and
Newell look at the problem from a design standpoint and try to construct
a structure with desired functionalities starting from a set of structures and
their functional specifications. St. Amant describes an explicitly ecological
approach to understanding the nature of tool use and CYC attempts an ex-
pert system in the commonsense world that has shallow knowledge lacking
physical details.

We note and discuss the difficulties that emerge and the issues that need to
be addressed for reasoning about functionality. We apply a selection of these
techniques toward a few representative examples of tools en route to building
a tool-using robot-arm. We believe that our work in the recognition of tools
for specific uses will lead to bridge definitions that will enable researchers
to bring robots into the world of human interactions. We envision an emerg-
ing need for applications using functionally aware robots and systems in the
future.
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